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Abstract: In this paper, we study the existence of a random attractor for a stochastic dynamical system
generated by nonlinear damped wave equation with multiplicative white noise defined on R3.First we proving
the existence of the pullback absorbing set and the pullback asymptotic compactness of the cocycle in a certain
parameter region by using uniform estimate then we prove the existence of a random attractor.
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1. Introduction
We consider the asymptotic behavior of non-autonomous stochastic nonlinear damped wave equation

with multiplicative noise defined in the space R3:

Uy —AMu+o@u, + Au+ f(w) = glx, t) + eu‘i—f 1,1
With initial data

ult,x) =uy(x) , u,(1,x) =u;(x) x€ R3,7€ER (1.2)
Where A is the laplacian with respect to the variable x € R® , u = u(t,x) is a real function of R® and
t>1,T€ER ¢ and A are positive constants. The given function g(x,t) € L2, (R, L*(R3) is external force
dependent of t , W(t) are independent two sided real-valued wiener processes on probability space and define
{6, }er ON R3 by 6,0w(.) = w(.+t) — w(t),w €Q
The following conditions are necessary to obtain our main results.
(@)The function o € C*(R) is not identically equal to zero and satisfying the following conditions.

—a<a; <0(s) fa, <+o;|d(s)| < a3 (1.3)
a, = |a;i| , where a,aq,a, and a3 are positive constants.
(b) The nonlinear given function £ € C1'(R) with f(0)=0 ,and it satisfies the following conditions.

f(s) zkls|,vseR (1.4)
F(s) =fsf(r)drzﬁl(lslz—l),VSeR ; (1.5)
0
and
sf(s) = Bo(F(s) —1),VseR ; (1.6)
f(s)=k ,VvseR ; (1.7)

Where C, B, B, k are positive constants.

It is well known that wave equation describe a great variety of wave phenomena occurring in the extensive
applications of mathematical such as physics, engineering, biology and geosciences. In general there have been
a lot of profound results on the dynamics of a variety of systems to equation(1,1)-(1,2),when o(s) = a has
studied by many authors,regraded the long time behavior of solution for deterministic and asymptotical behavior
of solution for stochastic differential equation.For example,the asymptotical behavior of solutions for
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deterministic damped wave equation, regarding which kind of deterministic(global, uniform and exponential)
has been investigated by many author(see[1,4,11,14,16-17,20,23-25,27,31,36]).

For the asymptotical behavior of solution of stochastic wave equation(1,1)-(1,2) when a(s) = a that
case reduce a stochastic damped wave equation autonomous and non-autonomous with additive noise have been
studied by several author(see[3,10,13,18-19,22,29]).

Random attractor for non-autonomous stochastic damped wave equation(1,1)-(1,2)when o(s) = «a

with multiplicative noise regarded in bounded domain and on unbounded domain have been investigated by
(see[6,8,26,30,34-35]). But the case of equation (1,1)-(1,2)has investigated with additive noise by(see,[33].
In this paper we will combine the splitting technique in [35] with the idea of uniform estimates on the tails of
solutions to investigate the existence of a random attractor for the stochastic damped wave equation with
multiplicative noise defined onR3. So far as we know, there were no results on random attractors for stochastic
damped wave equation (1,1)-(1,2) with random term and nonlinear damping term defined on bounded domain ,
which is more important and interesting.

This paper is organized as follows. Next section, we recall some preliminaries and properties for
general random dynamical system and results on the existence of a pullback random attractor for random
dynamical systems. In Section three, we define a continuous random dynamical system for (1.1) in H! (R3) X
L? (R3) then we drive all necessary proving the existence of bounded absorbing sets and the asymptotic
compactness of the equation to obtain the uniform estimates of solution as t — oo In Section four,In Section
five,we first establish the asymptotic compactness of the solution operator by giving uniform estimates on the
tails of solutions, we prove the existence of a random attractor.

Written as|. [y. The letters C and C;(i=1, 2) are generic positive constants which may change their values form
line to line or even in the same line.

2. Preliminaries and Abstract Results

Let (Q,F,P) be a probability space and (X,d) be a polish space with the Borel o-algebra B(X).The
distance between x € X and B € X is denoted by d(x,B).If B € X and C < X, the hausdorff semi-distance B
to C is denoted by d(B, C) = sup,e¢p d(x,C).
Definition 2.1. (Q,F,P,{6;};cr) is called a metric dynamical system if :Rx Q - Q is (B(R) x F,F)
measurable, 6, isthe identityon Q, 6,,, =6,060, , Vs, teR and P=P ,VtER.
Definition 2.2. A mapping ®(t, T, w,x): R* x R X Q) X X — X is called continuous cocycle on X over R and
Q,F,P,{0,}cr) ,ifforall TER,w € Q and s,t € RT the following conditions are satisfied:
i) (1., ) RFXRxOXxX->X isa (B(RY) x F,B(x)) measurable mapping
i) @(,t,.,.) isidentityon X.
i) o(t+s,1w,.) =0, 7+5,0,w,.)00(s,T,w)
iv) ®(,T,wx):RtXRXQ XX - X iscontinuous .
Definition 2.3. Let 2% be the collection of all subsets of X ,a set valued mapping 7,w — D(t,w):R X Q —
2% is called measurable with respect to F in Q if D(t,w) is a(usually closed Ynonempty subset of X and the
mapping w € Q = d(X,B(t,w)) is (F,B(R)) ) -measurable for every fixed x € X, and T € R , then
B =B(t,w):T € R,w € Q iscalled a random set .
Definition 2.4. A random bounded set {B = B(t,w): T € R,w € Q} € D of X is called tempered with respect
to{6, };cg, if forp-ae w € Q,

lim e Pd(B(B_w)) =0,V >0
Where
d(B) = supgepllx|lx

Definition 2.5. Let D be a collection of random subset of X and {K = K(t,w):7 € R,w € Q} € D ,then K is
called an absorbing set of ® € D if forallTt € R,w € Q and B € D there exists T = T(t,w,B) > 0 such
that.

ot t—t0_w,B(t—t0_w)) S K(t,w) ,vt=T
Definition 2.6. Let D be a collection of random subset of X the & is said to be D-pullback asymptotically
compact in x if for p-ae w € Q, {®(t,,T —tn,e_tnm,xn)}:o=1 has a convergent subsequence in x when

evert, - o and x, € B(6_.w) withB(w).

Definition 2.7. Let D be a collection of random subset of X and {4 = A(t,w):T € R,w € Q} € D then A is
called a D-random attractor (or D-pullback attractor) for & the following conditions are satisfied: for all
teER",TeER and weQ }

i) A(t,w) iscompact,and w € Q — d(X,A(w)) is measurable for every x € X

ii) A(t, w) is invariant ,that is

DOI: 10.9790/5728-1202023955 www.iosrjournals.org 40 | Page



Random Attractors For A Stochastic Wave Equations With Nonlinear Damping And Wi...

CD(t,‘r, w, A(T, co)) = A(t+t6w) ,Vt=>T1.
iii) A(t, w) Attracts every setin D, that is for every {B = B(t,w):TER,w € Q} € D,

lim e Ptdy(@(tt—10_0Br—1t0_0))ATw) =0

Where dH is the hausdroff semi -metric given by

dy(Y,2) = Supyey inf,ez|ly — zllx
Forany YeX andZ e X.
proposition 2.8 Let D be a neighborhood-closed collection of (t,w)- parameterized families of nonempty
subsets of X and @ be a continuous cocycle on X over R and (Q,F,P,{6,.};cr) is .then @ has a pullback
D-attractor A in D if and only if & is pullback D-asymptotically compact in X and & has a closed , F
-measurable pullback D-absorbing set K in D. The unique pullback D-attractor A = A(z, w) is given

A(t,w) = ﬂ U (D(t,r —t,0_w,K(t—t G_tw))
r>0 t=>r
TERwWENQ

3. Cocycle for A Stochastic Damped Wave Equations

In this section ,we focus on the existence of a continuous cocycle for the stochastic wave equation on
H! (R3) x .2 (R®) for our purpose, we need first introduce a transformation &(x,t) = u, + du, is a positive
constant, then (1.1)-(1.2) can be rewritten in the form of the following equivalent system

E(x,t) =u +6u (3.1)
&+ (a(uw) — 6)é(x,t) + (/1 + 6% - 6a(u))u +Au+f(uw) =g(xt)+ euo‘z—? (3.2)
u(x, 1) = ug(x),§(x, 7) = & (x) = uy (x) + dup(x) (3.3)

TO study the dynamical behavior of problem (3.1)-(3.3),we need to convert the stochastic system into
deterministic one with a random parameter. We introduce an Ornstein-Uhlenbeck process driven by the
Brownian motion, which satisfies the 1t differential equation

dz+ézdt=dw, 6 >0 (3.4)
And the solution is given by
z(0,w) = z(t,w) = =8 fog e%(B,w)sds , ER , w €N (3.5)

From [5],it is known that the random variable |z(w)| is tempered and there is a invariant set Q € Q of full P
measure such that z(68,w) = z(t, w)is continuous in t for every w € Q . For convenient we shall write Q as
Q .To define a cocycle for problem (3.1)-(3.3), let v = &(x, t) — euz(6,w) then (3.1)-(3.3) can be rewritten as
the equivalent system with random coefficients but without white noise
U, +ou =v + euz(b,w) (3.6)
v+ (0 —8)v+ (A+ 6% —8a(w))u + Au+ f(w)
=g, t)—e+owu—28u+ cuz(,w))z0,w
(3.7)
u(x, ) = up(x),v(x, v) = vy(x) = uy(x) + duy(x) — euz(6,w) (3.8)
Where A=—-A, €R®, T€R.
Let E(R3) = H' (R®) x L2 (R3) and endow it the standard norm

1
IV g3z ey = CIII2 + (82 = Sz + Dllull? + [IVul|?)2 (3.9)
For y = (u,v) " € E(R®) whereT stands for the transformation.
We define new norm ||Y]|2 @& by

1

IYIIE g2y = (0IZ + A+ 82 = Sa@)llull® + IVull?)? (3.10)
Lemma 3.1 (see[30 ,35]) for the Ornstien-Uhlenbeck process z(6,w) in (3.4)-(3.5),we have

l. |Z(9tw)| _

My, — 17— =0, (3.11)
Jim . [° 2(6,0)ds = E[2(6,0)] = 0, (3.12)

. 1,0 1
tgrinw;f_tz(esw)ds = E[z(8,w)] = = (3.13)
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0

1 1
1 — 2 = 2 = —
tl_l)grn ; _t|Z(95(U)| ds = E[|z(6,w)|“] 55 - (3.14)

By (3.13)-(3.14), there exists T; > 0, such that for all ¢t > T; (w),

0 2 0 1
J_, 2(6;w)ds < =t J_12(6,0)[*ds < =t (3.15)

Lemma 3.2 (see[25]) Put  @(t, T, w, o) = (u(t, T, w, uy, v(t, T, w,v9)))" Wwhere @ = (ug,vp)" , and let
(1.3)-(1.7) hold. Then for every w € Rand ¢, € E(R®) the problem (3.6)-(3.8) has a unique solution
(u(t, T — t,w,up, v(t, T — t,w,vy))" which is continuous with respect to (ug,v,)" in E for all t >0. Hence the
solution mapping

O, T, w,0y) = o(T, T, w0 ) . (3.16)
Generates a continuous random dynamical system.

Introducing the homeomorphism P(8,w)(u, &) = (u, & + cuz(6,w))' , (w,&)"' € E with an inverse
homeomorphism P~1(6,w)(u, )" = (u, & — euz(8,w))" then the transformation.

&(t,w) = P(6,w)o(t, w)PL(t, w). (3.17)
Also generate a random dynamical system associated with (3.1)-(3.3). Note that the two random dynamical
systems are equivalent. By (3.17),it is easy to check that ®(t,w) has a random attractor provided
d(t, w)possesses a random attractor . Then we only need to consider the random dynamical system &®(t, w)

We also need the following condition on g(x,t) € L7,. (R, L2(R®) there exists a positive constant ¢ such that

ST Nlg(,9)ll’ds <o VT ER . (3.18)
Which implies that?
limgo, [* flxlzk e’ |g(x,s)|*dxds = 0 Vr € R. (3.19)

The condition (3.18) does not require g(.,t)to be bounded in L?(R) when|t| — oo.

For any bounded nonempty subset B of E, denote by||B|| = sup,c|l¢llzin the subsequent section B will be the
following neighborhood-closed of E

B = {B(1r,w): T € R, w € Q}:B is bounded and satisfy

lim7@%||B(t + s, 0,w)||Z = 0 . (3.20)

S—00

4. Uniform Estimates Of Solutions
In this section, we drive uniform estimates on the solutions of the stochastic strongly damped wave

equation (3.1)-(3.3) defined on R3 when t — oo with the purpose of proving the existence of a bounded
random absorbing set and the asymptotic compactness of the random dynamical system associated with the
equations. In particular, we will show that the tails of the solutions, i.e. solutions evaluated at large values of |x|,
are uniformly small when the time is sufficiently large.
We always assume that D is the collection of all tempered subsets of E from now on. Let § € (0,1) be small
enough such that

82 —68a,+1>03a—68>0. (4,1)
Throughout this section we assume that

—2V8(y1y2 + 1) + \/45(]/1]/2 + 1)? — ndy, 0.

Vo
1 a
Wherey1=1+m and y2=6+72+(a2—a)6

The next lemma shows that @ has a random absorbing set in D.
Lemma4.1  Assume that (1.3)-(1.7) hold and g(x,t) € L?,. (R, L*(R®) satisfies (3.18) and (3.19). Then
there exists B(t —t,0_,w) € D such that {K(w)},eq is a random absorbing set for & in D, that is, for any
B = {B(w)},eq and P-a.ew € Q, thereis T = T(t,w,B) > 0 such that

Ot t—t0_0,B(t—t0_w) CK(t,w) ,vt=T (4.3)
Proof Taking inner product of the second equation of (3.7) with v in L?(R®),we find that

lel = (4.2)

w,v) + (c(w) — &)W, v) + (/1 + 6% — 6a(u))(u, v) + (Au,v) + (f(w), v)

=(g(x,t),v)—¢ ((v +o(w)u — 26u + suz(Hta)))z(Qta)), v) . (4.4)
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By the equation (3.6), we substituting the above v into the second and third terms on the left-hand side of (4.4),

we find that

v= 2—1: + du — euz(6,w) , (4.5)

du
@ v) = (% + Su = 2uz(0,0)) < HEull? + Slull® = lellz@ )l (46)

2
dt
(Au,v) = (—Au,i—z: + 6u — suz(@tw)> < (Vu,V(i—l: + 6u — euz(ﬁtw)>>
14 Vull? + §||Vull? - 6 Vul|? 4.7
< 5 1Vull® + 8lIvull™ = lellz(6, )l Vull®. (4.7)

From condition (1.4)-(1.6) we get
f),v) = <f(u),2—l: + 6u — suz(@tw)>

<1dFd+6 F(uwd 6 Fw)dx + dx — 6B, + 0 4.8
<5t )., FOOdx +68: [ Pandx— folellz0a)] | Faodx+ | fudx =66 + folellz@.0)l. (40)

Using the cauchy-schwartz inequality and the young inequality, we have

DI | a=s
(9@ 0),v) < llgCe, Dllllvll < = 4 222 2, (4.9)

(8 — e2(8,w))z(8,w)) (u,v) < &(8 — £2(8,w))z(6,w)) llulll|v|
1
< (Blellz@w) + 5520 ) Il + ul®) 5 (410)

e(v,1)2(6,w) = lellz(8:)IIVII* . (4,11)

By substitute (4.6)-(4.11) into (4.4) and F = [ 5 f(u)dx we obtain

1d 3
57z (P17 + (87 = 80(w) + Dllull® + IVull® + 2F (W)

+6 (vl + (62 = Sy + Dllull? + [IVull? + ,Fw))
~lellz(6,w)| (IIvI? + (62 = Say + DIl + [IVull? + B, F (w))

lgCe, O | a—
<
- a-96 + 4

(hali® + 1IvI*) — B, <j Prdx + |el |z(6, w)| — 5) : (4.12)
R3

6 5 1 1, )
ol + (8 - 52 lellz@w)] +52212(6.)]

1d
_— 2 2 _ 2 2 g
57z (W12 + (8% = 60 () + D lfull? + [IVull? + 2F ()
< =5 (IIV11? + (82 = 6y + Dllull? + IVull + B,F ()

+lellz(8.)! (IVI1? + (82 = Sz + Dlull® + IVull? + B, F (w) )

.OlI? .«
+|Ig( )| +
a—90

Alall® + 1vlIi®) = B, <f Prdx + |e| |z(6, w)| — 5) : (4.13)
R3

-6 5 1 1, )
Il + (8- 52 ellz @) + 5 22120,

Let
0 = min {6, 62&} (4.14)

d .
2 (1112 + (62 = 80 (w) + Dl + [1Vull? + 2F (w))

N| =
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1
<|-o +lellz@ +74 (58126001 + v, lellz@0) )|
(w12 + (62 = 8tz + Dlull? + 1Vull? + f,F (w) )

2
+% — B <fR3,81dx + || |z(6,w)| — 6) . (4.15)

Let

I(t,w) = =0 + lellz(8,0) + ¥, (5€212(6,0) 2 + ¥, lellz(8,w)])  (4.16)

1d 3
za(llvllz + (8% = 6o(w) + Dlull® + 1Vul? + 2F () )

<1t 0) (V112 + (82 = 5@z + Dl + 1Vull? + B.F )

gl DI
+ a—2§8

B> <IR3/31dx + lel |z(6, )| - 5) : (4.17)

Recall the new norm ”‘PHE(D@) in (3.14); we obtain from (4.13)

L2 (gl + F@) + Tt ) (ol + Fa)) + 18 — g, (1 gidx + [e] 12(,0)| — 6) . (4.18)

Applying Gronwall’s lemma over 7 — t, = we find that, for all ¢t > 0,
~ T—t ~
lp(t, T =t 0, @o)lIE + F(u(,, T~ t,,u)) < e T2 (llgg |1 + F(uo))

T 2
[ et fTarawar (% — B, ( Jos Brdx + e] 12(6, )| — 5)) ds . (4.19)

By replacing w by 6_; w , we get from (4.19) such that for all t > 0,

- T—t ~
lo(tt—t6_w, @)l + F(u(r,t—t0_w,up) < ek " (llggll + F(uo))
“rer— llg 0112
+°, e2Js Tr—rw)dr <% — B, ( S Brdx + |e] 12(8,_, )| — 5)) ds. (4.20)
By (4.1)-(4.2) and Lemma 3.1 we can show that
o2 1) <G = o5 (4.21)
For any s since|e| |z(8,w)| is tempered by (3.18),(4.2)and(4.21) it then follows from Lemma(3.1) @, (6_w) €
B(6_,w). and the fact that B(w) is tempered that note that (1.5) , (1.6) and due to ¢, = (ug, vo)" € B(t —
t,0_w). And B € D,we get from (4.21) such that
Jim e~ (llgollz + F(ug)) = 0 (422)
Therefore, there exists T = T (1, w, B) > Osuch that e~ (||@,ll% + F(up)) =1 forall t > T thus the lemma
follows from (3.19), (1.5)-(1.6) and (4.22) we can written the following results

”(\O(TIT -t e_T(,l), (pO)”% + ﬁ(u(":u‘t -t e_-[(l), uO)) <

T 2
+ ff_t g2k Tr—rw)dr <7”gix_';)” — b (fRs Brdx + |e| |z(6;—, w)| — 8)) ds < o0.(4.23)

Then we complete the proof. o
Lemma 4.2 Assume that (1.3)-(1.7) hold and g(x,t) € L2, (R,L?(R3) satisfies (3.18) and (3.19). Then
there exists a random ball {K = K(t,w):7 € R,w € Q} € B centered at 0 with random radius.

02(t, ) = C [ 2K T4 (| g, 12 + 1+ |e] 12(6,_rw))ds (4.24)
such that is a closed measurable D-pullback absorbing set for the continuous cocycle associated with problem
(3.6)-(3.8)in D, that is ,for every TER,w € Q and {B=B(t,w):TER,w €Q} €D , there exists
T =T(t,w,B) > 0,suchthatforall t>T

d(t,T—-t0_wB(t—t0_w) CK(t,w) ,vt=T

Proof This is an immediate consequence 0f(3.16)-(3.18 ),(4.14), (4.21) and Lemma4.1.0
We can choose a smooth function p defined on R* suchthat 0 < p(s) <1 forall s € Rt and
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0 for0<s<1
‘D(S)_{l for 1<s<2
Then there exists a constant u; and u, such that | (s)| < py,|p ()| < u, for any s € R*,given > 1 ,
denote by H, = {x € R®:|x| < k} and R3®\ H, the complement of Hkto prove asymptotic compactness of

the random dynamical system we prove the following lemma

Lemma 4.3 Assume that (1.3)-(1.7) hold and g(x,t) € L%, (R,L*(R3)) satisfies (3.18)and (3.19). Let
{B=B(tw):TeR,w € N} €D andy,(w) € B(t,w). Then for every n > 0 and P-a.e w € Q,there exists
T=T(t,w,B,) >0 and k =k(t,w,m) > 1 such that @(t,T—t,0_.w, @y(w)) the solution of (3.6)-(3.8)
satisfies, forall t > T ,k >k

”cp(‘r T—t0_,w, cpo)”E(R3\H ) <n. (4.26)

Proof Multiplying (3.7) by [os p ('Xlz)v in L?(R%),and integrating over R3 we find that

1d R
st | o (5 ) o x+(a(u)—)j< ) i

2 2
+(A+6%-50(w) f <k2 )uvdx+ f p(Au) (|X| )vdx+ j (l al )f(u)vdx
R3 R3

= Xl d Xl 26 6 6,0)) vd 4.27
= fp = glx, v x—sfp 7 ((v+a(u)u— u + euz(6,0))z( tw))v X. (4.27)
R3 R3

Estimating the third left side of (4.27) we obtain
Jes P ( )uvdx = [P (IXI ) (Z—’; + Su — guz(etw)) dx

IxI?

< fp(—) (2dt|u|2+é'|u|2 |£||z(9tw)||Vu|2>dx. (4.28)
]R3

Estimating the fourth left side of (4.27) we obtain

f |x|? Ix|* |2
P\ Auvdx = f (—Aw) + Su — cuz(0,w) |d
R3 R3
[Ayor(z o)
p (Vu)v + 6u — cuz(6,w) | dx

R3
2x  (|x|? x|
< J;Vqu 53 vdx+j3Vup =2 \Y dt+5u—8uz(9tw) dx
R R

2x 1d IxI* |2 IxI* |2
< f Vu — puVuvdx + - — f p |Vu|?dx — f (=8 + lel|z(8,w))|Vu|?dx
k2 2dt A
R

k<|x|<2V2
V2
k

IA

2 1d 1xI? IxI? 2

<= (vl + vl ”zafp Vuldx = [ o5 ) -6+ lellz@@Divalar . 429
R3

Estimating the fifth left side of (4 27) by using the condition (1.3)-(1.6) we obtain

Jio0 (55) Faovdx = fop (55) £ (% + 6u = cuz(0,0)) d
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1d |x|2 |x|?
SEEL <k2 )F(u)dx+6ﬁzf (kz )F(u)dx

| ; 5
Bylellz(6:w)] f Fwdx + f B1 — 8B, + Bolellz@))dx (4:30)
R3

Using the cauchy-schwartz inequality and the young inequality, we have

|| |x|?
J-p(v> g(x, t)vdx < fp(v) lg(x, )| |v]dx
R3

R3

2 2
6J- (l | )lg(x t)lzdx+—f <|X| )lvlzdx , (4.31)

Jes P (lxl )8(5 - euz(Htw))z(Otw))uvdx < &(6 — euz(6,w))z(6,w)) Joa P (IXI ) lul|v|dx

2 1
< f (l i )(5ISIIZ(9tw)| +5e2|2(0: )P (VI + [ul?) dx (4.32)
R3

f (I I2> (I I2> 5
s(v)vz(@tw)dx—Isllz(Htw)If |v]|* dx. (4,33)
R3

By substitute (4.28)-(4.33) into (4.27) we obtain
1d [x]* 2 2 2 2 =
EE p<F)(|v| + (8% = 6o(w) + Dlul® + |Vul? + 2F (w)) dx
+5f < ) (Iv1? + (82 = Say + Dl + |Vul® + p,F (w)) dx
2
—|s||z(9tw)|j (' ') (Iv]2 + (87 = 8ty + Dl + [Vul® + B,F () dx

% g (x, O a—2§ |x|? 1 1
< £p<? Sk jap o) Ivfdx + (5—Ea2)|ellz(9tw)|+E£2|z(9tw)|2
R R

2 2
—\/7—#1(||Vu||2 +IvII®) + j (l X )(lul2 + [VI*)dx — B2 (By + lel 12(8,w)| — 8)dx . (4.34)

R3

Recall the new norm ||<p||é(R3)in (3.14), we obtain from (4.34)

1d | |2
2o | o (5 ) (el + 2F@) dx
R3

2 2 2
< f p<|l)i—|2) (II(pIIE(D@) +F(u)> I'(t, w)dx + J- p(ll}i—lz)%dx

R3 R3

V2 ) 2 I |2
— 5 P IVull® + VI = £, (B1 + |l |z(6,w)| — &)dx (4.35)
R?y
Applying Gronwall’s lemma over 7 —t, t we find that, forall t > 0,

Ix[2 o
f p( )(ncp(rr t 0, @12 + F(u(, T — t, @, ug)))dx

R3
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T
navaP |x|? ~ Tt x|\ lg (x, O)I?
< o2 ) TGrw)dr fp<k—2) (lpoll% + F(up))dx + fezfs I(r—tw)dr f (kz ﬁdxds

R3 T—t R3

T

VZ . 2

+o f e? s Tr—rw)dr f (' x| )(IIVu(sr t,w, ug) |12 + [lu(s, T — t, w, ug)[|2)dxds
R3

T " 2
+p, fezfs FGr-rw)dr fp(l | )(ﬁ1 + le| |1z(8,w)| — 8)dxds . (4.36)
T—t

R3

By replacing w by 8_, w , we get from (4.36) such that for allt > 0,

2
f (l x )(”(P(T T—t0_.0,@)lIF + F(u(r, T — t,6_.»,u9)))dx

R3

Tt rw)dr | |2 i Tr-t,w)dr |X|2 Ig(x,t)lz
< g2l TCrwkd fp( >(||<Po||E+F(uo))dx+ fezfsr( ) fp(k—z g oxds

R3 T—t R3

VZ [
oo [T (gus, = 10w, u) + s, T = 60w, up)l)ds

T—t

T : 2
+8, f Q2 [ TEr—Tw)ir f <' X )(/31 + le] 126, _. )| — 8)dxds. (437)
T—t

R3

Follows the procedures in the proof of lemma 4.1, it is similar to (4.21) and (4.22) that by (4.2), we estimate the
term of right hand side of (4.37). For any initial data ¢, = (ug, vo)" € B(t —t,0_w). And B € D and (1.5) we
have

limy oo e 50 (55) (leolit + Flu))dx <. (438)
Then there exists T, = T;(t,w,B,n) >0 suchthat t > T,
For the second and last terms on the right hand side of (4.37) , there exists k; = k;(t, w,n) > 1 such that for
all k > k; by lemma 4.1 ,(4.21),lemma3.1and (3.18) there are T, = T,(t,w,B,n) > 0 and k; = k;(t, w,1) >
1such thatforall t > 7, and k >k,

T 2
c fe”s roed f (l : )(Ig(x D12 + (1 + lel |2(8,_,w)| — §))dxds < 7 . (439)
T— R3

Next we estimate the third term on the right hand side of (4.37) by lemmad.1lthere are
T; = T3(1,0,B,m) > 0and k, = k,(t,w,m) > 1suchthatforall t >T; and k >k,

T
V2 .
s f 2 [ Tr=r@)dr (| gu(s, T — £,0_w, up) 1% + Ilu(s, T = t,8_cw, up)[1D)ds < 7. (4.40)
-t
Letting

T = maxifily, T,, T5)
K= max(kl, kz) (4,41)
Then combining with (4.38),(4.39)and (4.40) ,we have for all t>T and k>K

Jesp ( ) (ll(p(‘r T—60_.0,¢)% + Flult,t—t0_0, uo))) dx < 3n (4.42)
Which implies (4.26) we get?
"CD(‘I.', T-t0 0, <P0)||E(R3\Hk) =m
Then we complete the proof. o
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High-Mode Estimates.
Now we drive uniform estimates on the high-mode parts of solution in bounded domains H,;, =
{x € R3:|x| < 2k} these estimates will also be used to establish pullback asymptotic compactness ,denote
q(s)=1-p(s) ,where p(s) is the cut-off function defined by (4.25) given positive integer r, we define two new
variable @ and ¥ by

it T, w,Ty) —q( )(t‘t w, ug)
(T, W, V) = q( )(t T, W, Vy) (4,43)
Then @(t, T, w, o) = (ﬁ(t,‘r,w,uo),v(t,‘t,w,vo)) is the solution of problem (3.6)-(3.7) on the bounded
domain H,, ,where @, = q('i—'j) ®o € E(Hyy)
Multiplying (3.7) by q ('i—'zz) ,we obtain

U= du 61l uz(0 4.44
U= E-l_ il — etiz(0, w) (4.44)

_ - L |x|?
7, + (c(w) — 8T+ (A + 6% —do(w))i + All + q<F)f(u)

|x|? _ o |x|? |x]?
=q (k—2> glx,t) — s(v + (o(uw) — 26)i + suz(@tw))z(etw) + uAq ( 2 ) —2VuVq ( = ) (4.45)

i = 7 =0 For |x]| = 2k. Consider the eigenvalue problem
Ati =14 In Hy, with @ =0 on dH,, (4.46)

The problem has a family of eigenfunctions {e;};cy with the eigenvalue{A;};ey A S A <o <A <-4 4 >
+00(i » o) such that {e;};ey is an orthonormal basis of L?(H,;) given n, let
X, ={ey ....e,} And p,:L%(Hy,) — X,
Be the projection operator.
Lemma 4.4 Assume that (1.3)-(1.7) hold and g(x,t) € L3, (R, L*(R3)) satisfies (3.18)-(3.19).Let {B =
Arw:7eER ,wENELD and @0 (w)EFt,w. Then for every >0 and P-a.e wel,there exists 7=7w,B,n>dand
k=k(wm) >1and N = N(w,m) > 0 such that ¢(t,w, @,(®)) the solution of (3.5)-(3.7) with satisfies, for
all t>T,k>kandn>=N
”(1 - pn) (’\[j(‘l.', Tt e—rw' (\00)"%(H2k) < n (447)
Proof Let i, = p,ii,¥,, = p,¥ and @, , = (1 —p,)i,¥,, = (1 —p,) ¥ applying (1 —p,) to equation
(4.44)
By = (;7 Ty + Oty — sﬂn‘zz(etw)) : (4.48)

Then applying (1 —p,) to equation (4.45) and taking the inner product of resulting equation with #,, in
L?(H,,) we have

(Buzp Buz) + @) = 8)(Boz B2) + (A + 67 = 60(u))(ﬁn 2 Tn2) + (AL, D,.5)

2
+(1—pn)q<| u )(f(u) Uy2) = (1 - pn)q< )(g(x t), ¥nz)

_ o _ |x|? |x|?
—¢ ((Vn,z + (c(u) —28)i + euz(@tw)) z(6,w), Vn,z) + <qu< )~ 2VuVvq %2 s Una |- (4.49)
Estimating the third left side of (4.49) we obtain

(un 2 Un 2) ( n 2: n 2 + 6ﬁn,2 - gan,Zz(etw)>

1d 1d 2 - 2
Lo il = @l <ol b+ @D sl 450)

DOI: 10.9790/5728-1202023955 www.iosrjournals.org 48 | Page



Random Attractors For A Stochastic Wave Equations With Nonlinear Damping And Wi...

Estimating the fourth left side of (4.49) we obtain

d
(Aun,Z'vn,Z) = (_Aun,zvvn,z) = <_Aun,2!aun,2 + 6un,2 - gun,ZZ(gtw)>

d d
< (Vil, 2, V (E fly o + 0Ty, — gan,zz(etw)> < (Vil, 2,V <E ., — (-6 + sz(Htw))ﬁnz)

1d 2
< s [Vt - (=5 = lellz@@D|Van, | 451

Estimating the fifth left side of (4.49) by using the condition (1.3)-(1.6) we obtain
((1 —pa () Fw), , 2) <(1 —p)a (B5) F), L4, 5 + 1L, — e, zz(etao)

d IxI* |2 |x]? -
<2 (1-png f), i, | — (=6 + ez(6,0)) | (1 —py)q =3 fQ), i, 2

2
((1 —pn)q<| x )fu(u)unzt un2> - (452)

For the first term on the right- hand- side of (4.49)by using the cauchy-schwartz inequality and the young
inequality ,we have

((1 —pwa () g0, vnz) <|la-poa(t) g 0| 7.2
2

a—0

(i
JozrnGe)oeo] ol @s3)

a—0

For the second term on the right- hand- side of (4.49)by using the cauchy-schwartz inequality and the young
inequality ,we have

£ (( olu)—6+ suz(@tw))z(ﬁtw)) (2 Upo) <€ (( olu) -6+ euz(Btw))z(Gtw)) ||ﬁn2|| ||17n’2||
1 1
< (8 +5@lellz@) +5 220 ) (ol + 70l 458

(B, Bn2)2(0:w) = |€]12(8,0)|||Bz|” - (4,55)

For the last term the right- hand- side of (4.49) we obtain
x| Ix|? 4x? ¢ (x| 2, (Ix? 4 AN
(waa (55) - 2vuva (55), 12) = (- (370 (45) + 24 (55) ) - Hvud (35 e
4x? ¢ (Ix|? 2, (Ix? 4x X2\ .
S Jeciri<avz <_u<k_4q (k_2)+k_2q(k_2)> iz vy q( ) Un >

8 2 42 B 8uy + 21 W2 _
- (—u (it + zm) =~ wavu ,vn,z) < (—) a2l + = walvl][3,.2]
By substitute (4.50)-(4.55) into (4.49) we obtain

k2
1 8uz+2u1)2 2
<
_a_5<( = ||u||+ ull? ) +
) a
1d

1 [(8uy + 2u;)? -6,
il 7l 56)
_ |x|?
22l + 02 = 8y + Dl + [, +z<c1—pn>q( ). uM)

1.1

=a_6( el +

S R _ 2 _ 2 |x|? _
_(_6+|5||Z(9tw)|) ”vn,Z” +(6 _6a2+/1)||un,2” +||Vun,2|| +B2 (1_pn)q ? f(u)uun,Z
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Hu—mmO'ﬁ@w” —ay 2 X2\
a—30 + ||l~7n,2|| + (1_pn)q<v)fu(u)ﬁn,2t'ﬁn,2
1 ((Bup + Ml)
a_a( A fu? + nvnﬁ
26+ ay + 2(ay — )8
+( = 2(“2 “ |g||z(etw)|+552|z(etw)|2)(||an,2||2+||an,2||2). (4.57)

It follows that

1d B N B |x |2
L9 (ool + 6% = sy + Dl + 71 +2 (a ~pa (2 0.2 )

28+ oy + 2(a; — )6
2

2 (—5 + lellz(6:w)| +v1 ( lellz(6,w)| + %82|Z(9tw)|2)>-

_ _ N |x|? _
ol + 5= 4 Dl + 195l + (1 - 2o (3 ) 0. )

llull* +

a—3§6 k*

1 ((8up + 2u)?
a—2~6

B )+ Ja-roa(8)s

28+ oy + 2(0; — )8
2

<(1 - pn)q (t_lzz) f(u)rﬁnz) + <(1 - pn)q (lilz ) (U)unz ’ nZ) (4.58)

+2 (5 — lellz(6:w)| = v1 ( lelz(6;w) +%€2|Z(9tw)|2)>

Then (4.16) using we can written

1d

2
55(”%,2”2 + (62 - Saz + /1)||ﬁn,2||2 + ||van,2||2 + 2 ((1 -pu)q (llt—lz> f(u),ﬁnz))

< 2T (t,w) +2(=6 +0))

102l + (6 = 025 + [ |* + [V | +z<a-¢mm(">«u)wﬂ>l
||(1 —Pn)q (lﬁ—lz) g(x, t)”

a—=~6
20+ a +2(a —0)d 1
'ﬂ<5—MVWMN—ﬂ< 22 : |duwwn+5ﬁuwwnﬂ>

|x|? |x|?
(1 - pn)q< )f(u) un 2 (1 - pn)q< )ﬁl(u)un 240 un 2 (459)

Recalling the new norm |[. ||z in (3.10),we have

||cpnz|| +2<(1—pn)q(| i )f(u) unz>

1 ((8uy + 2uy)?
a—2§6 k*

llull> + IIV I|2>
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2
< (2r(t,w) +2(=6 + ) | [|@n.l} + 2((1 —Pn)q (' x )f(u) zm))

e =poa (7 W) g

a—1=6
26+ 0y + 2(0; — 0)d 1
: 2(2 )|e||z(etw)|+5e2|z(etw)|2>

2 2
((1_pn)q<| | )f(u) un 2) +<(1 pn)q (l | )ﬁ(u)unzt un 2) . (460)

Using condition (1.4)and young inequality, we have

1 ((8#2 +211)°

2
2 Vu 2
L (B2 By ||)

+2 (5 — lellz(6:w)| —v, (

1 1 28+ ay + 2(a; — )6 1
4<—§|e||z(etw)|——yl( — |s||z(etw)|+§eZ|z(9tw>|2)>

<(1 -p )q< >f(u) unz)

28+ay+2(ay—a)d

< (_%|g||z(9tw)| _%Yl (%lsllz(etw)l +%€2|Z(9tw)|2))

((1 . )q<| '2) (kllull ||un2||))

-1

< .U3(1 +12(0:0) D) (lull. [&n,2])) < usAZ,, (1 + 12068 0) ) (lull. || 2]])
—IIVunzII + syt (1 + |2(6,0) ) lull®. (4.61)
Using condition (1.4)and young inequality, we have

25((1 - p)a (5F) ), ,.5) < 26(1 —p)a (55 lull [ 2]) < allull. ||, |
-1

<u4ln+1(||u|| ”VunZH) Sy ”VunZ” + gt llull; (4.62)
Using condition (1.7) we have
x|

26((1 - pn)q(kz ) (e Wt T z) < prs elul. |2 ) < w52 = (el V2, )

IIVun N + ms2t llul. (4.63)
Substituting (4.61)—(4.63) from (4.60) we have

& (Inall + (260 p2a () . 3,2))
< 21, ) (| @nzll, +2(1—pn)q("")f(u),an,z)+c(||¢n,2|| + (2 - poa (B5) fw, unz))

IxI* 2. € 2
(1—pn)Q< )g(x t) ||U|| +F||Vu||

e b (lull® + lullf + |Z(9tw)|4); (4.64)

2

Note that A, — +oo when (n — +oo) there exists N; = Ny(n) > 1 and k; = k;(n) > 0 such that for all

>Ny k=ky
(sl + (20 - pa (35
dt Dn,2 E ( pn)q (u) unZ

I |x|? _ _ 2 | |
< Zr(t'w) ”(pn,Z”E + 2(1 - pn)q F f(u):un,Z +c ”(pn,Z”E + 2(1 - pn)q f(u) unZ
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2

IxI* 2 2
+c (1—pn)q(F>g(x,t) ||ll|| +2 ||Vu||

+en(llull? + llullf + |Z(9tw)|4) ; (4.65)
Applying Gronwall’s lemma over 7 — t,7 we find that, for all ¢ > 0,

2
||(:6n,2(r,‘t t, w, (po)” +2 ((1 - pPu)q (l | )f(u(‘[ T—t w, uo)),ﬁn_z(r,r —t,w, ﬁo))

T
T—t w - |X|2 - T _ - - 2
< o2 T [ 1513 + 2 ((1 — Pn)dq <_k2 )f(uo),u0> +C f e2 i Tr—rw)dr |#n2(tt—t o, <Po)||5d5

-t

H 2
+2C fezfs F(r—r.w)dr ((1 pn)q<| | )f(u(‘c T—tw, uo)),ﬁn_z(‘r,‘r -t w, ﬁ0)> ds

T—t

T
T X 2
+c fe”s e (61 —pn)q<| | )g(x t)
T—t

T
C T
ds +a j @2l Ter—n0dr |1y (s 1 — t, w, @) ||2ds
T—t

C T
by [T s, T - b, [)ds

T—t
T

+Cn fezfsrr(r_f'“’)’” (lue(s, T =t w, G2 + lluls, T —t, w,up)lli: + 12(6,w)|*)ds. (4.66)

T—t

By replacing w by 6_.w ,we get from (4.66)such that for allt > 0

~ ~ x| N N
”‘Pn,Z(T!T - t!e—‘rw' @0)”2 + (2(1 pn)q< )f(u(‘[. -t e_-[(,l), UO)), unlz(T,T - t,e_-[(l), u0)>

-t N |x|? .
< g2l T <||(Po||% + (2(1 - Pn)q (ﬁ) f(uo), uo))

T

+c erfSTF(r—r,w)dT |#n2(s,t—t0 00, C()O)”zds

-t
T

+c f e2J Tr—rw)ar (2(1 - pu)q (l )f(u(s T—1,0_.0,Up)), f,2(5,T— t,0_;w, ﬁo)) ds

T—t

T
+c erfSTF(r—t,w)dr

-t

Ix]2 2
(1-pn)q <?> gx,t)
E

T
C T
ds + o f e2Js Tor—tw)dr (Jlu(s, T — t,06_,w, ﬁo)”zds
T—t

T
C T _ -
+ﬁ fezfs Fr=r0)dr gy (s, T —t,0_,, w, ) ||2)ds

T—t

+cn fezfsrr(r_f"")dr lu(s, T —t,0_c, o)1 + llus, T — t, 0_w, Tip) 171 + |2(B,w)[*)ds.  (4.67)

T—t

Next we estimate each term on the right hand side of (4.67) for the first term by using condition (1.4) ,(4.21)we
find that there existsp, € B(t — t,,0_,, w),B € T, = T;(7,B,w,n) >0 and k; = k;(r,w,7) =1 such that
t>T k>

e [x/2
g2 Tlrw)d ||(p0||125+2<(1 pn)q< )f(uo) uo> <n; (4.68)

For the fourth term of right hand side, condition (3.18) and (4.21) since g € L?(R?), there is N; = N, (t, w,n) >
0 such that for all n > N;
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2

|x]?
ds < ; (4.69)

T
¢ erIS Frne)dr (1 — pﬁ‘l(v)g(x. s)

T—t E

For the fifth terms on the right hand side of (4.67) ,by lemma 4.1 there exists T, = T,(t, B, w,n) > 0 and k, =
Kk, (t,w,m) = 1 such that forall t > T, and k >k,
[T, e Tammdr (£ flu(s, T — £ 06—, up) P + 5 IVu(s, T = £ 0, &) ) ds < 1 (4.70)
For the second, third and last terms on the right hand side of (4.67), by lemma 4.1 ,(4.21) , lemma3.1 ,(4.5)
and (3.15) there exists T; = T5(t,B,w,n) > 0 suchthatforall t > T; we have
T

c fezfs’m—f'w)df |#n2(sT— 10 0, ?[50)||st

T—t
T

T X 2
c f g2l Tr—rw)dr (2(1 - pn)q (|k—|2> f(u(s, T—t60_,w, uo)), T 205, T—t,0_w, ﬁ0)> ds

T—t
T

cn f 2 Tr=)dr |1y (5,1 —t,0_00, Tp) 12 + lu(s, T — t,0_0, 6ip) 131 + |2(B,)[H)ds < 7. (4.71)

T—t

Letting
T = max{Tl, Tz, T3}
K = max{K,,K;} i (4.72)
Then combining with (4.68)-(4.71),we have for all t>T and n>N
~ ~ 112 2 <
| %n2 (T — .00, 3o)| +2 <(1 — pu)a (B fu, u0>) < 4n (4.73)

This implies (4.47) we get

11 =BG, 60—, 9o (0 )IE @y, < 47 (4.749).

Then we complete the proof. o
5. Random Attractors
In this section, we prove the existence of a D-random attractor for the random dynamical system

(1 associated with the stochastic wave equation(3.1)(3.2)on R3.1t follows from lemma 4.1 that & has a closed
random absorbing set in D,which along with the D-pullback asymptotic compactness will imply the existence of
a unique D-random attractor. the D-pullback asymptotic compactness of ¢ is given below and will be proved
by using the uniform estimates on the tails of solutions.
Lemma 5.1.we assume that(1.3)-(1.7) hold and g(x,t) € L3, (R, L*(R®) satisfies (3.18)and (3.19). Then the
solution of problem (3.6)-(3.8)or random dynamical system ¢ is D-pullback asymptotically compact
in E(R3) ;that is , for every TER,w €Q and B={B(r,w):T €ER,w € N} € D,w € Q ,the sequence

{(p(r,r —t,, 0_,w, (po,n)}has a convergent subsequence in E(R3)provided ¢, » o and ¢, € B(t —
ty, 0_¢ ).
Proof Let t, > o, B€D andgo, € B(t —t,,0_,, w).Then by Lemmad.l, for P-ae w € 2,we have
that {p (7,7 — t,,0_.w,9,,)} is bounded in E(R®);that is,for every(l T € R,w € 2 there exists M; =
M, (t,w,B) > 0 such that for all m > M;

loG T = 0, 6-.0, 00,0l g, < 03T, ) 1)

In addition, it follows from Lemma4.3 that there exists k; = k;(7,w,n) > 0 and M, = M,(z,B,w,n) >0
such that for all m = M,

o= tn, 0, 90l sy, <1 (52)

Next, by using Lemma4.4,there areN = N(t,w,n) > 0, k, = k,(t,w,n) > k;and M3 = M;(z,B,w,1n) > 0
such that for all m > M,

(1 - Pn)”(ﬁ(TrT —ty, 0w, (pO,n)||z(H2k2) =7n. (53)
using (4.43) and (5.1) ,we find that {P,@(7,7 —¢t,,6_,w,¢,,)} is bounded in finite-dimensional space
B,E(H,y,) Wwhich associates with (5.3) implies that {@ (7,7 — t,,,60_,w,90,)} is precompactin H}(Hyy,) X
L*(Hyy,).
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Note that q(

||
k2

) =1 for{x € R3:|x| < k,} recalling (4.43) we find that {p(t,T —t,,0_w, o)} is

precompact in E(Hy,) , which along with (5.2) show that the precompactness of this sequence in E(R3?) this
completes the proof.o

The main result of this section can now be state as follows.

Theorems5.2. we assume that(1.3)-(1.7) hold and g(x,t) € L%,. (R, L*(R3) satisfies (3.18)and (3.19). Then the
continuous cocycle @[] associated with problem (3.6)(3.8)or random dynamical system & has a unique
D-pullback attractor A = {A(r,w): T € R,w € 2} € D in R3.

Proof. Notice that the continuous cocycle @ has a closed random absorbing set {A(w)},eq in D by
Lemma4.2 .on the other hand,by (3.16) and Lemmab5.1 ,the continuous cocycle @ is D-pullback asymptotically
compact in R3. Hence the existence of a unique D- random attractor for & follows from proposition 2.1

immediately. o
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