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Abstract: The aim of this paper is to develop a fractional order implicit finite difference scheme for
two-dimensional space-time fractional diffusion equation. We also prove that the scheme is unconditionally stable
and convergent. As an application of this scheme numerical solution for two-dimensional space-time fractional
diffusion equation is obtained with the help of Mathematica software.
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I.  Introduction

The fractional order integral and differentiation, which represent a rapidly growing field in both theory
and in applications to real world problems. Fractional order partial differential equations, as generalizations of
classical integer order partial differential equations are increasingly used to model problems in fluid flow, finance,
physics and other areas of applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. We consider two dimensional
space-time fractional diffusion equation (2D-STFDE) under Dirichlet boundary conditions. The two dimensional
space-time fractional diffusion equation is obtained from the standard two dimensional diffusion equation by
replacing the first order time derivative by fractional derivative of order «,0 < <1 and the second order space
derivatives by fractional derivatives with respective x and y of order g and y, 1<f<2, 1<y<2

respectively.
Consider the two dimensional space-time fractional diffusion equation

a g 7
M:d(x’y)M+e(X,y)M,0<th,(X,y)’€Q (11)
@ ox? oy’
boundangonditionu(x, y,t) =0, (X, y)edQ (1.2)
initial condition :u(x, y,0) = uy(X,Y) (1.3)

Where Q={(x,y)/ —a<x<a,~b<x<b}d(x,¥y)>0e(x,y)>0.
We assume that this fractional diffusion equation has a unique and sufficiently smooth solution under the
initial and boundary conditions. The classical diffusion equation in two dimensions is given by « =1 and
B =y =2.Inequation (1.1), for the first order we use the Caputo fractional derivative of order a(0<a<1).

For every  and y (0<n-1< g,y <n) the Riemann-Liouville derivative exists and coincides with the

Guinwald — Letnikov derivative. The relationship between the Riemann-Liouville and Guinwald — Letnikov
definitions also has another consequences which is important for the numerical approximation of fractional order
differential equations, formulation of applied problems, manipulation with fractional derivatives and formulation
of physically meaningful initial and boundary value problems for fractional order differential equations. This
allows the wuse of the Riemann-Liouville definition during problem formulation and then the
Guinwald — Letnikov definitions for obtaining numerical solution. Therefore we use the shifted Guinwald
formula at all time levels for approximating the second order space derivatives.

The plan of the paper is as follows: In section 2, the implicit space-time finite difference scheme is
developed for two dimensional space-time fractional diffusion equation. The section 3, is devoted for stability of
the scheme and the question of convergence is proved in section 4. Numerical solution of two dimensional
space-time fractional diffusion equation is obtained using Mathematica software in the last section.

Il.  Finite Difference Approximation For Two Dimensional Stfde
In this section we develop the fractional order implicit Euler finite difference scheme for two
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dimensional space-time fractional diffusion equation (STFDE) (1.1)-(1.3).
We apply Euler method to equation (1.1) on rectangular domain € with grid points (X;, yj) where
X, =iAx and y; =jAy fori=0,1,2 .,N, andj=0, 1,2 .., N, respectively. Define t, =nAt to

integration time 0<t, <T, Ax=h>0 is the grid size in x-direction, Ax=-"—L
X

with x; = x_ +iAx for

i=0,1,2,..,N,, Ay>0 isthe grid size in y-direction, Ay = % with y; =y, + jAy forj=0,1,2, ..,
y
N, . Let ui"‘j be the numerical approximation to U(x;,Y;,t,). Similarly we define d; ; =d(x;,y;) and
& =e(x.Y;).
In the differential equation (1.1) the time fractional derivative term is approximated by the following

scheme:
aIZU(Xi’yj o) ~ 1 iU(Xi Y 'tk+1)—U(Xi,Yj ) (s d&
ot* r(l—a) k=0 At o (tn+1 _g)a
__ 1 Zn“u(xi’Yj'tk+1)—u(xi,yj,tk)("kﬂ)md_f7
F(l—a) k=0 At o 77(1
= 1 c u(xilyj’tn+1—k)_U(Xi,yj,tn_k)(lﬁ'Jl.)Atd_?7
I'l—-a) = At J °
_ (@™ g ”(Xi'yj’tnﬂfk)‘”(xi’yj'tn—k)[(k +1) k]
r2-oa)i= At
_ (A
_m[u(xi’yj’tn+1)_u(xi!yjutn)]+
(at)™@ s . .
T _ N (X, Yiothaa k) —UlX, Y.t k+1 —k
r(z_a);[ (6, Y breai) ~ U0k, Yty TR +1) ]
— (at)™ n+ n (At)™ 0 ks -
“ra-aM U g R Y

where b, =(k+1)"* —k**,k=0,1,2,..., n.
We discretize the spatial /3 -order fractional derivative using the Griinwald finite difference formula

at all time levels. The standard Grlinwald estimates generally yield unstable finite difference equation
regardless of whatever the resulting finite difference method is an explicit or an implicit system for related
discussion. Therefore, we start with a right shifted Grlinwald approximation to the fractional derivative term
and in this paper we prove that this leads to stable and convergent alternating directions implicit (ADI)
implementation for the two-dimensional implicit Euler formulation. The right-shifted Gruinwald formula for
1< p<2 is[7]

oPu(x,t 1 1 NIk —

(ﬁ ) lim 72—( Py~ (k—1h,t)
OX [(=p) No=oh? =5 T(k +1)

where N, is the positive integer, h:(XRN;XL) and T'(.) isthe gamma function.

We also define the normalized Grtinwald weights by

M k=01
r-Ark+1’ o

For Dfu(xi,yj i) DJU(X;, ¥;,t,,,), we adopt the right shifted Griinwald formula at all time levels for

Opk =
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approximating the second order space derivatives by implicit type numerical approximation to equation (1.1), we
get

(At)ia n 1 (At) “ n k+1 _  n-kq_— n l n+1
F(Z—a) IT |]] 1_,(2_ )z k[ B ,j ]—d 5ﬁx |+ 5yyu|]r
where the above fractional partial differentiation operators are defined as

i+1 j+1

1 _ 1 1_ 1
5/3)( |n]— - (AX)ﬂ Zgﬁ ku|n+k+lj and 5}/ yuln]r - (A )7 Zgﬁk |n]——k+1
which are an O(Ax) and O(Ay) apprOX|mation to the f -order and y -order fractional derivatives

respectively.
Therefore the approximated equation is

i+1

(At)ia n+1 (At) “ n— k+1 n k n+1
F(Z—a) ulj Uil re- )Zk[ (Ax)ﬂ Zgﬂk kL

j+l

(A )y Zg7 k In]rik-%—l

d; i (At) " T(2— o) & -
: 2

n+1 n-k+l n k
—Uij + Zbk [ui; = pkYUickia, j

LG (A)TR-a) i e

KYi ket
@y =7

i+1 j+1

n+l n—k+1 n k n+l
_ul i +Zbk[u rlzgﬂ ku k+l] +r229y kUi, j—k+1

di;(A)T(2-a) e ;(A)T(2-a)
’ ndr,=—
(Ax)” (ay)’

wherer, =

i+1 j+1

n+l n+ n+1 n-k+1 n k
Ui rlzgﬂ kUi- k+lj rZZg%kui,j*kJrl ' i Zbk[u
k=0

For n =0, we have

i+1 j+1
1 1 1 —.,0
(L4 B0+ /)0 =6 D Qi =T 9ratije = Ui @D
k=0,k=1 k=0,k=1
Forn=1,2, ..., we get
i+1 j+1
1 1 1

L+ B+ MUy -1 Z 9pkUitken, ~ T2 0y kUit

k=0,k=1 k=0,k=1

U0

= (1-by)u| +Z(bk 1)U} +byu?, @2)

The initial condition is approxmated as

U =¢,;=4%.y;).1=0,1,2, .., N ,j=0,1,2,.., Ny.

The Dirichlet boundary conditions on the rectangle in the form
u(x,0,t) =u(0, y,t) =u(L,y,t) =u(x,L,t) =0 are approximated as uj, =ug; =u; ; =u;', =0 respectively.

Therefore the fractional approximated IBVP is
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i+1 j+1 n
Uirjjfl - rlzgﬂ,kuinjklﬂ,j -hn zgy,kuir?ﬁkﬂ =u - Zbk [Uir?}k+1 - Uir?}k (2.3)
k=0 k=0 k=1
initiakonditionu’; =¢ ;,i=012...,N,,j=012... N, (2.4)
boundargonditionsu, =ug; =u ; =u’ =0 (2.5)
_ 4 (A T2~ a) dr. = & (A)*T(2~-a)
M RE T T Ty

The above two-dimensional implicit Euler method has local truncation error of the form

0(At)” + 0(Ax) + 0(Ay).
The finite-difference equations (2.1) and (2.2) are expressed in the matrix form:

AUt=U" (2.6)
n
AU ™ = (1-b)U" + > (b — I, UM +b,U° 2.7)
k=1
where
u"= [Uln!Ugv""U(Nx—l)(Ny—l)]T
= [Uln,l’ug,l""’ulr\]lx—l,li
Uy'z,Ugz s U, 12
uln,Nyfl'ug,Ny—l""'ulTlx—l,Ny—l]T
and A=[a;] isasquare matrix of coefficients
D E
E, D E
E, E, D E
A= : :
E. E., E, D
and
A —N0s0
—h0s0 A —NhQs0
—h0s3 —N0g» A —N0g0
D=
—hOsn,  ~hOpn 1 —N05, 4

where 43 =1+ fr +, and E, is a diagonal matrix with diagonal element of each E, is —1g,

fork=0,2,3, .., N,.
The system of algebraic equations (2.3)-(2.5) is solved by using Mathematica software in section 5.
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I11.  Stability
This section is devoted for the stability criteria of the space-time fractional implicit finite difference
scheme (2.3)-(2.5) for the STFDE (1.1)-(1.3).

Lemma 3.1: In equation (2.1) and (2.2), the coefficients b, and g4, fork =0,12,.... satisfy
(i) b, >b,,k=0,1,2,.
(i) by =1,b, >0,k=0,1,2,...

(i) 9p1= =B, 20(k#1), > gy =0
k=0

n
(iv) For any positive integer n, Zgﬁ’k <0.
k=0

V) 9,1=-7.0,x 20(k=1),>g,, =0

k=0

n
(vi) For any positive integer n, Zg;/,k <0.
k=0

Theorem 3.1 The fractional order implicit finite difference scheme for two dimensional fractional diffusion
equation (1.1) - (1.3) defined by equation (2.3) - (2.5) is unconditionally stable.

Proof: We assume that Ui'fj,i =0,12,...,N,,j=012,.., N, is the exact solution of equation (1.1),

the error &', =0 —u;,i=0,12,..,N,,j=012,..,N

y
satisfies equations (2.1) and (2.2), therefore, we

(R AR L y
have
i+1 j+1
1 1 1 _ 0
I+ pr+my)e -1 Z 9pk€iksj 2 Z 9, k&ijkn = €ij (3.1)
k=0,k1 k=0,k1
i+1 j+l
n+l n+l n+l
L+ pr+m)e; —n Z 9pk€iksj 9y ki, jk+
k=0,k=1 k=0,k=1
-
— n n—k 0
=(1-by)ei; +Z(bk —b e +bei; (3.2)
k=1

where 1=01.2,...,N,-1,j=012...,N, -1
Now, equations (3.1) and (3.2) can be written in the matrix form:

AE! = E° ~

AE™! = (1-by)E" + ¥2Zi(b, — byys) E" + b, E (33)

E =0

where

E" =[E]}, E51 ER, 11,

n n n
El,2 ' E2,2 1 ENxfl,2 '
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E'v 1. ESn 4ven ER T
1,Ny—1 2,Ny—1 NX—l,Ny—l]
We have to analyze the stability by mathematical induction: Let

1 I — 1
IE L=[et]= max e
1<i<Ny~11<j<Ny -1

When n =1 and by lemma 3.1, we have

1+1 m+1
1 =1 1 1 1
I E ||oo—‘5|,m‘§(1+ﬂr1+7f2)‘3|,m‘_r1 Z gﬂ,k‘gl,m‘_rZ Z gy,k“gl,m‘
k=0,k=1

k=0,k=1
1+1 m+1
1 1 1
S(l+ﬂrl+7r2)‘gl,m‘_rl Z gﬁ,k‘gl—kﬂ,m‘_rz z g;/,k‘gl,m—kﬂ
k=0,k=1 k=0,k=1
1+1 m+1
1 1 1
<|A+ B+ )E 1 z 9pk€1-ksrm — P2 Z 9, k€lm-k+1
k=0Kk=L k=0k1
_|.0
=[eln]
0
< E"
1 — || = 1
Suppose [[E" |, =leln|=  max  |&l]

1<isN, -L1<jsN, -1

we assume that || E" ||, <||E®|l.,n=1,2, ..., kand using lemma 3.1, we have

1+1 m+1
n+l —|..n+l n+1 n+1 n+1
IE™ .= |eim | < A+ Br+m)eim | — 1 Z 9pkléim |~ T2 Z 9, k[€1,m
k=0,k=1 k=0,k=1
1+1 m+1
n+l n+l n+l
<A+ +m)am |- n z 9pk gl—k+l,m‘_ P} Z 9y k[€1mk+1
k=0,k=1 k=0,k=1
1+1 m+1
n+1 n+1 n+1
|3+ P +m)em —h Z 9pk€1-ks1m ~I2 Z 9y k€1 m-k+1
k=0,k=1 k=0,k=1

<

n-1
(L= by)efly +byelm + D (b —bya)el

k=1

n-1
<(1=b) [ E" [l +b, 1 E® L. + (o, —ba) I E™ L,

k=1
n-1
<(1=B) I E [l +by I E [l +D (0 =y ) I E L.,
k=1
<IE |
Hence by mathematical induction, we have prove that

IE"|..<| E°|., for all n.
Hence the proof is completed.

IV.  Convergence
In this section we discuss the convergence of the finite difference scheme.

Theorem 4.1 The solution of the fractional order implicit finite difference scheme for two dimensional space-time
fractional diffusion equation (1.1) - (1.3) defined by (2.3) - (2.5) is convergent.

Proof: Let ui’jj,i=0,1,2,..., N, —1,j=O,1,2,...,Ny—1 be the numerical solution of the two
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dimensional space-time fractional diffusion equation (1.1)-(1.3) at mesh point (X;,y;,t,) . We define

e'; =U;; —u; , where T, is the exact solution of the two dimensional space-time fractional diffusion
equation (1.1)-(1.3).
Let
n _ n n n
& =[er1,€20 8N 115
n n n
€12:€22:- 6N 120
n n n T
el,Ny—lveZ,Ny—li'"’eNX—l,N ]
Using e =0 and e i’fj - iJ-,satlsfylng equations (2.1) and (2.2), we get
i+1 j+1
1 1 1 — 50
1+ + )6 —n Z 9pkCikst,j — 2 Z 9, k€ j-k1 = €
k=0,k#1 k=0,k=1
i+1 j+1
n+1 n+l n+1
(1+ﬂrl+7f2)e z gﬁkel k+1, j r2 z g;/kelj k+1
k 0,k=1 k=0,k=#1

= (1-bye/; +Z(bk by.a)e* +byel’;
where 1=0,1,2,..,N, -1,j=0,1.2,..., Ny -1.

We have mathematical induction to prove this theorem. Considering 7" is the truncation error at time
level t, and using lemma 3.1, we get the convergence analysis as follows:

Forn=1, let ‘e,lm‘: max ‘eﬁj‘,we have
' 1<isN, -11<j<Ny -1

1+1 m+1
1 1 1 1 1
‘e|,m‘§(1+ﬂr1+7rz)‘e|,m‘_r1 z gﬁ,k‘el,m‘_rz Z gy,k‘el,m‘+‘r‘
k=0,k+L K=0K~L

1+1 m+1
1 1 1 1
<(1+pn +7f2)‘e|,m‘_r1 z gﬁ,k‘el—k+l,m‘_r2 z gy,k‘el,m—k+l +‘T ‘
k=0,k1 k=0k»1
1+1 m+1
1 1 1 1
<|Q+ S+ ) —h Z 9skC-ksm — 2 Z 9y k€I mks1t7
k=0,k=1 k=0,k=1
_ .0 1
R
S‘eﬁm‘+‘rl‘
Suppose [e"| < [e®|and e = max en+1 we have
pp I,m
1<i<N, -L1<j<N -1
y
n+1 n+l n+1 n+1
<A+ pn+m)em | —h Z gﬂk‘elm - Z gykelm
k=0,k=1
n+1 1 n+l n+1
<A+ pn+m)eim|—h zgﬂk K+, ‘ I Zgykelm k1| T

k=0,k=1 k=0,k=1
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1+1 m+1
n+l n+l n+l n+1
<|(A+pr+m)em —h Z 9pkCikam — 2 Z 9y kCimknt7T
k=0,k#1 k=0,k#1
n-1
n 0 n—k n+1
< (1_ bl)el,m + bnel,m + Z(bk - bk+1)el,m +7
k=1
n-1
n 0 n—k n+l
<(1-by)jej | +b, el,m‘ +Z(bk T i ‘4‘ T
k=1
n-1
0 0 0 n+1
< (l_ bl)‘el,m‘ + bn el,m‘ + Z(bk - bk+l) eI,m‘ +|T
k=1
g‘eﬁm‘ +[r"

Hence by mathematical induction, we have prove

e" 7", for all n.

< ‘eﬁm‘ +

Since, lim ‘r”‘=0, and ‘eﬁm‘:‘eo‘
(Ax, Ay, At)—>(0,0,0)
en

Hence — 0, as (Ax, Ay, At) — (0,0,0) .

The proof is completed.

V.  Numerical Solutions
In this section we obtain the numerical solution of two dimensional space-time fractional diffusion
equation by a discretization scheme developed in equations (2.3)-(2.5). In our test problem we consider the value
of «=0.8,=18andy =18,

u(x, y,0) = sinzxsinzy, 0< x, y <landu(x, y,t) =0 . Also here we consider the square grids with
AX=Ay =0.20,andAt =0.01. The approximate solution of the test problem is

ul,1! = 0.31965, u2,1* = 0.514383, u3,1* = 0.514383, u4,1* = 0.31965,
ul,2! =0.513734, u2,2! = 0.827546, u3,2' = 0.827546, u4,2* = 0.513734,
ul,3! = 0.513734, u2,3' = 0.827546, u3,3! = 0.827546, u4,3' = 0.513734,

ul,4! =0.31965, u2,4* = 0.514383, u3,4! = 0.514383, u4,4' = 0.31965,

Fig.5.1: Initial solution of the test problem.

VI.  Conclusions
(i) We develop a fractional order finite difference scheme for two dimensional space-time fractional diffusion
equation.
(if) The numerical example is presented to show that the numerical results are in good agreement with our

theoretical analysis. Therefore these solution techniques can be applied to other fractional partial differential
equations.
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(iii) This is unconditionally stable finite difference scheme.
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