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 Abstract : Bifurcation control has gained increasing attention in the last decade. This paper makes an attempt 

to highlight a simple and unified state-feedback methodology for developing Hopf bifurcation linear or 

nonlinear controls for continuous-time systems. The control task can be either shifting an existing bifurcation or 

creating a new one. Some numerical simulations are included to illustrate the methodology and verify the 

theoretical results. 
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I. Introduction 
Bifurcation control refers to the control of bifurcative properties of a nonlinear dynamical system, 

thereby resulting in some desired system output behaviors. Typical examples of bifurcation control include 

delaying the onset of an inherent bifurcation, relocating an existing bifurcation point, modifying the shape or 

type of a bifurcation chain, introducing a new bifurcation at a preferable parameter value, stabilizing a 

bifurcated periodic trajectory, changing the multiplicity, amplitude, and/or frequency of some limit cycles 

emerging from bifurcation, optimizing the system performance near a bifurcation point, or a certain combination 

of some of these [3,5,9,10]. Bifurcation control is also important as an effective strategy for chaos control since 

period-doubling bifurcation is a typical route to chaos in many nonlinear dynamical systems. 

Bifurcation control has great potential in many engineering applications. In some physical systems 

such as the stressed system, delay of bifurcations provides an opportunity for obtaining stable operating 

conditions for the machine beyond the margin of operability at the normal situation . It is often desirable to be 

able to modify the stability of bifurcated system limit cycles, in applications of some conventional control 

problems such as thermal convection experiments [11]. Other examples include stabilization via bifurcation 

control in tethered satellites [6], magnetic bearing systems [2], voltage dynamics of electric power systems [4]; 

delay of bifurcation in compressor stall in gas turbine jet engines, and in rotating chains via external periodic 

forcing [11]; and in various mechanical systems such as robotics and electronic systems such as laser machines 

and nonlinear circuits [7]. Bifurcations can be controlled by means of linear delayed-feedback [7, 8] or 

nonlinear feedback [1], employing harmonic balance approximation [6], and applying the quadratic invariants in 

the normal form [8]. In this paper, a unified nonlinear as well as simple linear state feedback technique is 

developed for Hopf bifurcation control, which by nature is different from the aforementioned existing 

approaches. Both problems of shifting and creating a Hopf bifurcation are discussed, and Computer simulations 

are included to illustrate the methodology and to verify the theoretical results. 

 

II. Hopf Bifurcation: Fundamentals 
In this section, the classical fundamentals of continuous-time Hopf bifurcation are briefly reviewed. 

These background concepts are needed in the development of the bifurcation control technique given in the 

subsequent sections.  

First, consider a two-dimensional continuous –time autonomous parameterized system  

( , ; )

( , ; ) (1)

x f x y

y g x y













 

Where R   is a real variable parameter, and both
1 2, ( )f g C R . Assume that the system has an equilibrium 

point
* *( , )x y , satisfying 

* * * *( , ; ) ( , ; ) 0f x y g x y    for all R  . Let ( )J   be its Jacobian at this 

equilibrium, and suppose that  J  has a pair of complex conjugate eigenvalues, 
1,2 ( )   with

1 2 


 . Assume that 

1 moves from the left-half plane to the right as   varies, so does 
2 , and they cross the imaginary axis at the 

moment  
*   in such a way that 
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*

* 1

1

Re{ ( )}
Re{ ( )} 0 0 (2)and

 

 
 

 





  

Where, Re {.} denotes the real part of a complex number. Here, the second condition in (2) refers to as the 

transversality condition for the crossing of the eigenlocus at the imaginary axis, which means that the eigenlocus is not 

tangent to the imaginary axis. Then, the system undergoes a Hopf bifurcation at the bifurcation point 
* * *( , , )x y   

[4,18]. More precisely, in any small left-neighborhood of 
*  (i.e., 

*  ) , 
* *( , )x y  is a stable focus; and in any 

small right-neighborhood of 
*  (i.e., 

*  ) , this focus changes to be unstable, surrounded by a limit cycle of 

amplitude 
*( )O   . 

 

III. Controlling Hopf Bifurcation 
The Hopf bifurcation control problem is the following: Design a (simple) controller, 

( ; ) ( , ; ) (3)u t u x y   

That can move the existing Hopf bifurcation point * * *( , , )x y  to a new position ( , , )x y   
, which does not 

change the original equilibrium point at * *( , )x y . It is clear that this controller must satisfy  

* *( , ; ) 0 (4)u x y    

 

We Can Add The Controller (3) To Any Of Two Equations Of System (1). 

(a) For the sake of calculation let us add the controller (3) to the first equation, namely: 

( , ; ) ( , ; )

( , ; ) (5)

x f x y u x y

y g x y

 







 



 

This controlled system has a Jacobian at ( , )x y 
given by  

( ) (6)
x x y y

x y

f u f u
J

g g


  
  
  

 

With eigenvalues  

2

1,2

1
( ) ( ) ( ) 4[ ( ) ( )] (7)

2

c

x x y x x y y x x x y yf u g f u g g f u g f u           
 

 

To have a Hopf bifurcation at ( , , )x y   
as required, the classical Hopf bifurcation theory says that the following 

conditions must be hold: 

(i) ( , )x y 
is an equilibrium point of the controlled system (5) , namely, 

( , ; ) ( , ; ) 0

( , ; ) 0 (8)

f x y u x y

g x y

 



 



   

 
 

(ii) The eigenvalues 
1,2

( )
c

 of the controlled system (5) are purely imaginary at the point ( , , )x y   
and are 

complex conjugate: 

( ) 0 (9)x x yf u g
 

    

 

( ) ( ) 0 (10)y x x x y yg f u g f u        

2( ) 4[ ( ) ( ) ] 0 (11)x x y y x x x y yf u g g f u g f u
 

         

(iii) The crossing of the eigenlocus at the imaginary axis is not tangential ( transversal), namely 

* *

1
( )Re{ ( )}

0 (12)

c
x x yf u g

   

 

  

  


 
  

(b) Now let us add the controller (3) to the second equation, namely: 

( , ; )

( , ; ) ( , ; ) (13)

x f x y

y g x y u x y



 







 

 

This controlled system has a Jacobian at ( , )x y 
given by  
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( ) (14)
x y

x x y y

f f
J

g u g u


 
  

   

 

With eigenvalues  

2

1,2

1
( ) ( ) ( ) 4[ ( ) ( )] (15)

2

c

x y y x y y x y y y x xf u g f u g f g u f g u           
 

 

To have a Hopf bifurcation at ( , , )x y   
as required, the classical Hopf bifurcation theory says that the following 

conditions must be hold: 

(i) ( , )x y 
is an equilibrium point of the controlled system (13) , namely, 

( , ; ) 0

( , ; ) ( , ; ) 0 (16)

f x y

g x y u x y



 



 

 

   
 

(ii) The eigenvalues 
1,2

( )
c

 of the controlled system (13) are purely imaginary at the point ( , , )x y   
and are 

complex conjugate: 

( ) 0 (17)x y yf u g
 

    

 

( ) ( ) 0 (18)x y y y x xf g u f g u        

2( ) 4[ ( ) ( )] 0 (19)x y y x y y y x xf u g f g u f g u
 

         

(iii) The crossing of the eigenlocus at the imaginary axis is not tangential (transversal), namely 

* *

1
( )Re{ ( )}

0 (20)

c
x y yf u g

   

 

  

  


 
  

Now we present some examples to illustrate these results: 

 

Example I: Van Der Pol Oscillator 

 

2(1 ) (21)

x y

y x y x







  

 

(a) (Nonlinear controller) 

 

Clearly the system has a Hopf Bifurcation at the point * * *( , , ) (0, 0, 0)x y   . If the aim of control is to move 

the bifurcation value of  from * 0 0to    while preserving the equilibrium point of the system to be 

unaltered: ( , )x y 
= * *( , )x y = (0,0) , then the condition (9) yields a nonlinear controller of the form 

2

(1 ) (22)
3

x
u x  

 

Which satisfied all conditions required by equations (4) and (8) – (12) stated in (i) – (iii) above. More precisely, 

since
* 2

* * * ( )
( , ) (0, 0) ( , ; ) (1 ) 0

3

x
x y and u x y x       

, conditions (4) and (8) are satisfied. 

For condition (10) to be satisfied we must show that ( ) ( )y x x x y yg f u g f u       . 

Now 
2( )y x xg f u         and   ( ) 1x y yg f u     ,  so condition (10) says that 2 1    or  

2 1  , so condition (10) must be satisfied merely for   1 1    , but as mentioned before we choose 

 only for values 0  . Thus the nonlinear controller (14) is valid only for 0 1  . 

Similarly condition (11) is satisfied. 

And finally, since * *

1
( )Re{ ( )}

1 0

c
x x yf u g

   

 

  

  
 

 
 condition (12) is satisfied. 
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(b) (Linear controller) 

Again the system has a Hopf Bifurcation at the point * * *( , , ) (0, 0, 0)x y   . If the aim of control is to 

move the bifurcation value of  from * 0 0to    while preserving the equilibrium point of the system to 

be unaltered: ( , )x y 
= * *( , )x y = (0,0) , then the condition (17) yields a linear controller of the form 

2(1 ( ) ) (23)u x y     

Which satisfied all conditions required by equations (4) and (16) – (20) stated in (i) – (iii) above. We can check 

these results by the same manner as we did in the nonlinear controller. 
Note that this linear feedback controller may significantly extend the operational range of the key system parameter, 

 , of the system as desired. Such an extension can be very important in some real applications: it may actually 

enhance the stability and/or performance robustness of the dynamical systems. 

 

           It is very important to mention that different bifurcation control tasks can be performed by means of 

different controllers for the Van Der Pol oscillator. For example if the goal of control is to shift the original 

equilibrium point of the system from * *( , )x y =(0,0) to , say ( , )x y 
== ( , 0)x , with 0 1x  , while 

maintaining the bifurcation parameter value  at * 0   , then another linear feedback controller can be 

designed. Actually the simple constant controller  u x 
 can perform the task. This fact can be easily checked 

by following the same steps discussed above. 

 

Example II: the above control procedures can be applied to other dynamical systems, for which different 

controllers can be designed with satisfaction of conditions (8) – (12) or (16) – (20). The following two systems 

give typical examples [1]:  

the first one is  

2

3 (24)

x x y xy

y x y y









  

  

 

For which linear controller 22( 2( ) )u y y      changes the original Hopf bifurcation point (0, 0, 0) to       

(0.1, 0.1, 0.9) and the nonlinear controller 
34

2
3

y
u     moves the original bifurcation point to                 

(0.1, 0.1, 0.99) , respectively ; and the second system is   

2

2 (25)

x x y xy

y x y x









  

  

 

For which linear controller 22( 2( ) )u y y      changes the original Hopf bifurcation point (0, 0, 0) to 

(4 6 3)1 6
( , , )

2 4 8

 
  and the nonlinear controller 

3
2 2

3

y
u x     moves the original bifurcation point to                 

(0.1, 0.1, 0.99), respectively. 

 

IV. Conclusion 
In this paper, a simple and unified state-feedback control strategy has been developed for Hopf 

bifurcations, for continuous-time systems and for both problems of shifting and creating a Hopf bifurcation point in 

the controlled system. Other types of bifurcations, for instance, pitchfork, saddle node, transcritical, and period-

doubling bifurcations can also be controlled by similar linear or simple nonlinear controllers, which are investigated in 

other topics and publications. 
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