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Abstract: In this paper we present a delay differential equation model for the dynamics between proliferating 

cells and quiescent cells. This model includes the positivity and boundedness of the  solution. Stability has been 

investigated for trivial and nontrivial steady states. We analyze the sensitivity on performed parameters for the 

dynamical system. Using He’s variational iteration method to obtain approximate solutions for the given 

dynamical model. 
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I. Introduction 
Recently many mathematical models for the description of tumour growth have been developed [1]. 

When investigating tumour growth, one cannot neglect the process of cell ageing and cell division. Cell growth, 

or cell proliferation, is a central topic in cell biology, immunology and tumour growth. Historically, ODEs have 

been used to model cell growth - this is mainly due to their mathematical simplicity and the long-standing 

availability of software for solving them. However, it is obvious that cell division, as well as cell differentiation 

and cell maturation, are not instantaneous processes but take a finite time to occur.The total number of cells in 

human tissue in vivo or cell culture in vitro is controlled by the processes of quiescence and cell death and the 

regulation of cell cycle phase duration. In non cancerous adult human tissues the total number of cells should be 

kept constant over time (homeostasis) and this an equilibrium may be achieved differently in different tissues 

[2,3]. For instance, in the hematopoietic system, the proportion of proliferating cells is very low in more 

differentiated stages, and eventually cell death (by apoptosis) guarantees continual renewal of the whole 

population. Thus, to maintain system homeostasis, high proliferative activity is expected to be balanced by a 

correspondingly high death rate (possibly by apoptosis), of fully differentiated quiescent cells. On the other 

hand, in tissues where apoptosis is a rare event, homeostasis is expected to be main- tained by keeping all cells 

quiescent. Our model consists of two structured system of equations for the proliferating and quiescent cell 

compartments.  

The organization of the paper is as follows: In section 2, we describe a 2-dimensional model for 

Tumour growth with Quiescence. In section 3, we investigate the stability analysis of the model with 

positiveness and boundedness of solutions. We determine the sensitivity analysis in section 4. We review the 

procedure and application of VIM in section 5. Finally ends with brief discussion. 

 

II. Model Description 
The mathematical model proposed by [3,11] describes the tumour growth system interaction and is 

given by a system of two differential equations with single delay : 

    )())(()())(()( tQtNrtPtNrtbP
dt

dP
QP    

    )()))((()())(( tQtNrtPtNr
dt

dQ
QQP              (1) 

Here, we modified the above model (1) as follows, 

    )())(()())(()( tQtNrtPtNrtPbe
dt

dP
QP   

 

    )()))((()())(( tQtNrtPtNr
dt

dQ
QQP              (2) 

In biological terms, )(tP  is the number of proliferating cells at time t and )(tQ  is the number of 

quiescent cells at time t. )()()( tQtPtN   is the total number of cells in the tumour (or the size of the 
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tumour) at time t; 0 Pb   is the intrinsic rate of the proliferating cells (where 0  is the division 

rate of the proliferating cells and 0P is the death rate of cells of the proliferating cells), the term 
e  

describes the survival rate of proliferating cells. 0Q  is the mortality rate of the quiescent cells. )(NrP is 

the (nonlinear) transition rate from the proliferating class to the quiescent class and )(NrQ  is the (nonlinear) 

transition rate from the quiescent class to the proliferating class. For this tumour population, one suppose that 

)(NrP is nondecreasing and )(NrQ is nonincreasing, )(NrP and )(NrQ  are Lipschitz continuous on 

bounded sets of N in  [3] and the constant   is the time delay which the proliferating cells needs to divide. 

 

2.1  Positivity and boundedness 

Proposition 2.1.   

      For all nonnegative initial condition, the unique solution ( )(tP , )(tQ ) of (1) is nonnegative. 

Proof: 

 First assume that there exists 0 , such that 0)( P  and 0)( tP  for t . Then from the 

above equation (1), 

   0)())(()(
)(

  tQtNrtPbe
dt

dP
Q

 
, 

Consequently, 0)( tP  for 0t . Next we assume that there exists 0  such that 0)( Q , and for 

t , then the same reasoning, the equation leads to 

   0)())((
)(

 tQtNr
dt

dQ
P


, 

and we deduce that 0)( tQ  for 0t . As for the boundedness of (1), we have 

    )()()( tQtPtN   

Calculating the derivative of N along the solutions of the system (1), we find 

    )()( tQtPbe
dt

dN
Q  

     (3)

 

using Gronwall’s lemma [4], solve the above equation (3) we get 

    MdsesbPseNtN
stt

P

t QQ 



)(

0
)()()0()(


 , (4) 

there exists 0M  such that solutions of )(tN is uniformly bounded. 

Remark : . Since, the tumour cell is controlled by a proliferating cells, therefore maximum bound of tumour 

cells depend only on proliferating cells. Thus, we have )(tN  is bounded. 

 

III. Stability Analysis 
In this section we study the local stability analysis of model (1). The model (1) has two steady states: 

the first, called the trivial steady state 0E  and the second one is called the non-trivial steady state 1E . The 

steady state points are as follows: 

    )0,0(0 E  

    .,),( *

22

**

1 


















P
b

brbrbr

be
QPE

QQPQQQQ

Q





 

For biomedical reasons, it is important to look at the long-term behaviour of tumoural cell populations. 

In this section, we investigate only the stability of trivial steady state and non-trivial steady of the system 

(2).The linearized system of (2) at the trivial steady state (0,0) is 

    )()0()()0()( tQrtPrtPbe
dt

dP
QP   

, 

    )())0(()()0( tQrtPr
dt

dQ
QQP       (5) 
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The Jacobian matrix of the system (5) is as follows, 

    

















)())0(()0(

)0()0(

tQrr

rrebe

QQP

QP





 

From the above matrix gives the characteristic equations by 

    0)( 3441

2   eaaaa ,     (6) 

where,    )0()0(1 PQQ rra   , 

    
 bea2 , 

    ))0((3 QQ rbea   
, 

    )0()0())0()(0(4 QPQQP rrrra   . 

For 0 , the system (6) is asymptotically stable around the trivial equilibrium point. Here the 

eigenvalues )(  represent the roots of the characteristic equation (6). The system is stable around the steady 

state if and only if the eigenvalues have negative real parts. The conditions for this steady state to be stable (that 

is to obtain negative real parts of the eigenvalues) are 021  aa  and 043  aa  (by Routh Hurwitz’s 

criteria). If 0 , this equation has infinitely many roots. Next, we shall discuss the sum of zeros of equation 

(7) in the open right half plane. 

        Let )0(   i  be a root in (6), and separating the real and imaginary parts, we have 

   )sin()cos( 234

2  aaa  ,     (7) 

   )cos()sin( 231  aaa  .     (8)

  

Squaring and adding both equations of (7) and (8), we can obtain the following fourth degree equation for  : 

    0)2(
2

3

2

4

2

24

2

1

24  aaaaa .    (9) 

Putting u2  into (9), we can get the following quadratic equation 

    0)2()(
2

3

2

4

2

24

2

1

2  aaaaauuuF .  (10) 

If we assume that 02
2

24

2

1  aaa  and 0
2

3

2

4  aa , then (10) has no positive real root. In fact it is 

observed that, 

   
2

24

2

1

' 22)( aaauuF  .     

Has no positive real root by Descartes rule of sign. Thus, if 02
2

24

2

1  aaa  and  

0
2

3

2

4  aa then there is no   such that i  is an eigenvalue of the characteristic equation (6). i.e.,    

will never be a purely imaginary root of equation (6). Thus the real parts of all eigenvalues of (6) are negative 

for all 0 . Therefore the trivial steady state of model (2) is locally asymptotically stable when 0 . 

For the linearized system of (2), at 

 

),( **

1 QPE  is

)(2)()()()()(2)( 2

*

1

*

2

*

2

*

1

*

1

*

1

1

222111
tuQrtuQrtuPrtuPrtuQrtuPrtube

dt

du
uuuuuu   

)11)((2)()(()()()()(2 2

*

1

*

2

*

22

*

1

*

1

*1

2222111
tuQrtuQrtuPrtutuPrtuQrtuPr

dt

du
uuuuuuu  

 

Then the Jacobian of the system (11) as follows, 

   

















******

******

2212211

221211

22

22

QrPrPrQrPrQr

PrQrPrQrPrQrebe

uuuuuuu

uuuuuu





 

From the above matrix gives the characteristic equations by 

    0)( 2121

2   eccbb ,    (12) 
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where,    
221

)()( **

1 uuu NrNrb  , 

    
211112

***

2 2 uuuuuu rQrQrPb   , 

    
 bec1 , 

    ).(
2221

***

2 uuuu brbQrbPrbPec   
 

Let )0(   i  be a root in (12), and separating the real and imaginary parts, we have 

    )cos()sin( *

2

**

12

2*  ccb  ,   (13) 

    )sin()cos( *

2

*

1

*

1  ccb  .    (14) 

Squaring and adding both equations of (13) and (14), we can obtain the following fourth degree equation for 
* : 

    )15(,0)2(
2

2

2

2

2

12

2

1

24  cbcbb  

Putting 
*2 u  into (15), we can get the following quadratic equation 

    0)2()(
2

2

2

2

2

12

2

1

*2**  cbcbbuuuF .  (16) 

Taking derivative with respect to 
*u  of equation (16), we get 

    
2

12

2

1

**' 22)( cbbuuF  .    (17) 

It is easy to verify that the coefficient in the above equation (16) are all positive. By Descartes rule of 

signs, equation (16) has positive root 
*u  and thus equation (15) has a pair of purely imaginary roots 

*i . From 

equation (13) and (14), we obtain 

    
*2*2

1

2

2

22211

2*

*

*

0

2))((
arccos

1












j

cc

cbcbc



















 ,  where j=0,1,…, 

We can conclude that all the characteristic roots have negative real parts for any ),0[
*

00   . By 

using the following mathematical calculation we can say that the infected steady state of model (2) remains 

stable for 
*

00    and Hopf bifurcation occurs when 
*

00   . 

 

IV. Sensitivity Analysis 
Sensitivity analysis can be used to determine the relationship between proliferating and quiescent cells 

for the dynamical system. Here, we show the sensitivity analysis with respect to the parameter is considered. 

We would like to consider how a small shift in the parameters would change the stability of the trivial 

equilibrium for this model. It is quite usual for a model to display high sensitivity to small variations in some 

parameters, while displaying robustness to variations in other parameters. Sensitivity analysis involves taking 

partial derivatives of the equation with respect to the parameters we want to test.      Therefore, we want to find 

the sensitivity of the equation (11) with respect to the parameter ‘b’ and P respectively. Since none of the 

equations of (11) depend on P  therefore the corresponding sensitivity system (11) with respect to the 

parameter P  is zero. The sensitivity functions with respect to an arbitrary parameter q, for the model (11) are 

denoted by, 

    
q

tu
u q






)(1
,1 , 

                    
q

tu
u q






)(2
,2 .       (18) 

The corresponding sensitivity system (11) with respect to the parameter ‘b’ at 2E as follows, 
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),(2

),(),(),(),(),(2)(

,2

*

,1

*

,2

*

,2

*

,1

*

,1

*

1,1
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22111

btuQr

btuQrbtuPrbtuPrbtuQrbtuPrtueu

bu

bububububuq


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)),(2

),(),((),(),(),(),(2

,2

*

,1

*

,2

*

,2,2

*

,1

*

,1

*

,2

2

222111

btuQr

btuQrbtuPrbtubtuPrbtuQrbtuPru

bu

bubububububuq



 
 

 

The semi-relative sensitivity solutions are calculated by simply multiplying the unmodified sensitivity 

solutions by a chosen parameter which provides information concerning the amount the state will change when 

that parameter is doubled (i.e., a perturbation on the order of ‘b’). It is best to calculate this type of sensitivity 

solution to obtain a more thorough understanding of the dynamics. 

 

V. Variation Iteration Method 
The VIM method has been employed to solve a large variety of linear and nonlinear problems with 

approximations converging rapidly to accurate solutions. Some advantages of this technique are 

1. The initial condition can be chosen freely with some unknown parameters. 

2. The unknown parameters in the initial condition can be easily identified. 

3. The calculation is simple and straightforward. 

This approach is successfully and effectively applied to various equations, see for example [5,6,9]. 

The VIM transforms the differential equation to a recurrence sequence of functions and the limit of the 

sequence, if exists, is considered as the solution of the differential equation. Consider the following differential 

equation 

   )()()( tgrtMutLu i  ,       (19) 

Where L is a linear operator, M  is a known analytic function, ir is the delay term and )(tg is an 

inhomogeneous term. Given an initial guess )(0 tu , a correctional functional as 

    




t

innnn dgruMLututu
0

 

1 ))()()()(()()(      ,   (20) 

Is made, where   is a general Lagrangian multiplier [5,6] which can be identified optimally via the 

variational theory and the function nu   is a restricted variation which means 0
 




nu . After determining the 

Lagrange multiplier   and selecting an appropriate initial function 0u , the successive approximation nu  of the 

solution can be readily obtained [9]. Consequently, the exact solution may be obtained by using 

              )(lim tuu n
n 

 . 

Now, to illustrate how to find the value of the Lagrange multiplier  , we will consider the following 

case, which is dependent on the order of the operator L in (20), we will study the case operator 
dt

d
L   

(without loss of generality). 

Making the above correction functional stationary, and noticing that means 0
 




nu , we obtain 

   















t

ntnn

t

innnn

duuu

dgruMLututu

0
111

0

 

1

0))(('|)(

))()()()(()()(







 

Where 
 

nu  is considered as a restricted variation i.e., 0
 




nu , yields the following stationary 

conditions 

  0)('  ,        0|)(1  t ,      (21) 

This equation is known as Lagrange - Euler equation with natural boundary condition. The solution of 

this equation gives the Lagrange multiplier 1)(  . Now, the following variational iteration formula can 

be obtained 
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   




t

nnnn dguMLututu
0

 

1 ))()()(()()(                   (22) 

We start with an initial approximation, and by using the above iteration formula (23), we can obtain 

directly the other components of the solution. The several approximations )(tun , , follow immediately, 

the exact solution may be obtained by  

          )(lim)( tutu n
n 

 . 

 

5.1   Application of VIM 

The VIM is useful to obtain exact and approximate solutions for linear and nonlinear delay differential 

equations. It has been used to solve effectively, easily and accurately a large class of nonlinear problems with 

approximations. To show the efficiency of the VIM method, in this subsection, we apply the VIM to solve the 

following system of nonlinear delay differential equation (2). 

According to the VIM, we can construct the correct functional as follows: 

   




t

nnPnQnnn dtPbePNrQNrPtPtP
0

 

11 )]()()()(')[()()(  
,  

     

  




t

nQQnPnnn dQNrPNrQtQtQ
0

 

21 ]))(()()(')[()()(  ,                             (23) 

Where 1 and 2  are the general Lagrange multipliers, and 
 

nP  and 
 

nQ  denote restricted variations, 

i.e.,  0 .  
  




nn QP  . Making the above correction functional stationary as, 

  

t

nPnnn dPNrPtPtP
0

11 )]()()(')[()()(  ,    (24) 

And 

  

t

nQQnnn dQNrQtQtQ
0

21 )]())(()(')[()()(  .   (25) 

The equations (24) and (25) yield the following stationary conditions, 

  ,0)()()(' 11   NrP  ,0|)(1 1  t  

  ,0)())(()(' 22   NrQQ  0|)(1 2  t .                  (26) 

The general Lagrange multipliers can be identified by solving the system of equations in (26), to obtain 
))((

1 )(
tNrPe




 ,  
)(

2 )( tce   (where ))(Nrc QQ   .  Substituting these values back into the 

correction functional equation (23) results into the following iteration formula: 

    






t

nnPnQn

tNr

nn dtPbePNrQNrPetPtP P

0

 
))((

1 )]()()()('[)()(  
, 

   






t

nQQnPn

tc

nn dQNrPNrQetQtQ
0

 
)(

1 ]))(()()('[ )()( 
.  (27) 

We start with initial approximations )0(),0( 00 QQPP   from [7]. We obtained the value of 

)(1 tPn , from the first equation of (27) and the value of )(1 tQn  from the second equation of (27), this 

increases the convergence rate. By the above iteration formula (28), we can obtain a few first terms being 

calculated. 

Continuing this manner, the rest of components of the iteration formulas can be obtained using 

packages such as Maple. In our case, only three terms from the iteration formula are used to obtain the 

approximation for our solutions. 

 

VI. Conclusion 
In this paper we presented a model using delay differential equations to describe the dynamics of 

tumour growth with Quiescence cells. Here we are investigating the stability of two equilibrium for delay 

differential equations. From this model, we showed that the intrinsic rate of proliferating cells we can control 

the tumour cells. Therefore, total number of tumour cells depend only on proliferating cells. Special emphasis, 

was given to investigate the sensitivity of the proliferating and quiescent cells due to perturbing the parameters 
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appearing in the model and the initial conditions of the model using direct approach. Here the parameter ‘b’ 

plays a vital role this model. Using He’s variational iteration method has been successfully applied to find the 

approximate solution of nonlinear delay differential equations. We can find that VIM method is extremely 

efficient to solve this biological model. From the solutions obtained using the suggested method we can 

conclude that these solutions are in excellent agreement with the exact solution and show that these approaches 

can solve the problem effectively. 
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