
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 2 Ver. III (Mar. - Apr. 2016), PP 77-86 

www.iosrjournals.org 

DOI: 10.9790/5728-1202037786                                     www.iosrjournals.org                                         77 | Page 

 

Detection of AUC and Confidence Interval Using Normal-

Mixture ROC Curve 
 

Sudesh Pundir
1
, Azharuddin

2 

1,2
Department of Statistics, Pondicherry University, INDIA 

 

 Abstract: Receiver Operating Characteristic (ROC) Curve is one of the renowned statistical techniques to 

assess the accuracy of a diagnostic test to discriminate between healthy and diseased subjects. In this paper, 

two component Normal-Mixture ROC curve is studied and its properties are discussed to know the 

characteristics of the ROC Curve. Area under the Curve (AUC) of Normal-Mixture ROC Curve and Confidence 

Interval of AUC are also derived. The proposed model is validated by using the simulation studies. 
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I. Introduction 
The Mixture distribution arises where a statistical population contains two or more sub populations. It 

takes into account the heterogeneity of the population. For example, in medical diagnosis, if we have a set of 

patients suffering from cancer disease and we can also do further sub-classification again of the patients 

suffering from stomach cancer, blood cancer, throat cancer, neck cancer etc. So, in this case the mixture 

distribution is used for considering the heterogeneity of the population.  

The finite mixture distributions are widely used in real life situations as a statistical model. First time, 

the Normal-Mixture distribution introduced is by Newcomb (1886) who showed the application of normal-

mixture distributions as models for outliers. Pearson (1894) discussed the estimation of parameters of two 

component normal-mixture distribution by the method of moments. In his paper Pearson estimate the five 

parameter of the two component normal-mixture distribution. The first comprehensive monographs of the 

mixture distribution are Everitt and Hand (1981) and Titterington et al. (1985).  They discussed the finite 

mixture distributions and the different estimation methods of mixture distributions. Mclachlan and Basford 

(1988) discussed different mixture distributions. Bohning et al.  (1998) also discussed the application of mixture 

model in medicine. McLachlan and Peel (2000) discussed the finite mixture distributions. Schlattmann (2009) 

discussed the application of finite mixture distribution in medicine. Wirjanto and Dinghai (2009) discussed the 

application of normal mixture distribution in finance. They discussed the maximum likelihood estimate, moment 

generating function, switching regression model and stochastic regression model by using the normal-mixture 

distribution. Patrick et al. (2011) discussed estimation of finite mixture distribution by the method of moments. 

Dass and Seong (2012) discussed estimation of multivariate bi-normal mixture ROC Curve. Lee (2012) showed 

the Gaussian mixture model in pathological voices. Gonen (2013) discussed normal mixture of Receiver 

Operating Characteristic Curve. He also discussed that the diseased population has higher variability than can be 

explained by a single distribution. Hughes and Bhattacharya (2013) discussed the symmetric properties of 

Binormal and Bi-Gamma ROC Curves using the Kullback-Leibler Divergences.  

The Receiver Operating Characteristic (ROC) Curve is discovered by the radar engineers during World 

war II in signal detection theory. Green and Swets (1966) discussed the ROC curve and Egan (1975) discussed 

the ROC Curve. Karzanowski and Hand (2009) also discussed the ROC Curve for continuous data. The Area 

under the ROC Curve generally denoted AUC and discussed by Green and Swets (1966). Bamber (1975) 

discussed the area above and below the ROC curve. Hanley and McNeil (1982) discussed use of the area under 

the ROC Curve. Bradley (1997) also discussed the use of the Area under the Curve. Pundir S and Amala R 

(2013) discussed various aspects of ROC Curve in continuous data. 

Dorfman and Alf (1969) discussed the maximum likelihood estimation of parameters in signal 

detection theory and they also discussed how to find the confidence interval. Wirjanto and Xu (2009) discussed 

the maximum likelihood estimate of normal-mixture distribution. Kamaruzzaman et al. (2012) also discussed 

the maximum likelihood estimate the normal-mixture distribution. They also discussed the Expectation 

Maximization algorithm for estimating the parameters. For finding the ML estimate of normal-mixture 

distribution we also used the EM algorithm because the normal-mixture distribution have not closed form. 

Dempster et al. (1977) discussed the Maximum Likelihood Estimate of incomplete data via EM algorithm. 

Joshua (2013) discussed the EM algorithm in multivariate Gaussian mixture models. 

Suppose X is a random variable which follows any continuous distribution having scores of patients 

into healthy and diseased group of individuals. For classifying the patients into healthy and diseased cases, let us 
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take a reference standard or a threshold value (t). Let the diseased and healthy individuals are denoted by 1 and 

0. The individuals are regarded as diseased cases if the score (s) exceeds the threshold value (t) else they are 

regarded as healthy cases. To know the performance of classifier, we define four probabilities rates viz. True 

Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR) and False Negative Rate (FNR). 

These are defined as follows: 

True Positive Rate is the probability that an individual from diseased population is correctly classified i.e.,  

TPR= ).1/t>s(p  

False Positive Rate is the probability that an individual from healthy population is misclassified i.e.,  

  FPR = ).0/( tsp >  

True Negative Rate is probability that an individual from healthy population is correctly classified i.e.,   

TNR = ).0/≤( tsp   

False Negative Rate is the probability that an individual from Diseased population is misclassified i.e.,  

FNR = ).1/( tsp ≤   

Moreover the ROC Curve focuses only on the probabilities such that s > t in the two populations, then 

for all smaller values of t, we must have TPR=1 while FPR varies from 0 to 1 and for all larger values of t we 

must have FPR=0 while TPR varies from 1 to 0. The coordinates of the area under the curve lying between 

[0,0], [0,1] and [1,1] correspond to the ROC space. The ROC curve that falls near to [0,1] get maximum 

accuracy 1. The ROC Curve is a graph that shows True Positive Rate on the vertical axis and False Positive Rate 

on the horizontal axis, as the classification threshold t varies.  

ROC Curve have been extensively used in the evaluation of diagnostic test. We have two groups of 

individuals  namely diseased cases and healthy controls. ROC Curve is defined as 

  ( ) ( )( )[ ]txFGty -1-1 1-=  ,  1≤)(≤0 tx                                                                                      (1.1)                                                                       

where x (t) denote the 1-specificity or False Positive Rate (FPR) and y(t) denote the sensitivity or True Positive 

Rate (TPR). Specificity is also defined as the proportion of patients without disease who test negative and 

Sensitivity is defined as the proportion of patients with disease who test positive. G and F denote the distribution 

function of the healthy cases and diseased cases. The performance of the curve is measured by the area under 

the ROC Curve. The area under a ROC Curve assesses the overall ability of the test to discriminate between 

healthy cases and diseased cases. The mathematical definition of AUC is 

  
1

0

AUC P y x y(t)dt  
                                                                         (1.2)                                                                              

 

A test having an area of 0.5 is a worthless test and a perfect test has an area of 1.00. 

The  ROC Curve must satisfy the following properties. 

1. ROC Curve and AUC is unaltered with respect to monotone increasing transformation of the test scores. 

2. The test values of X are smaller than Y. 

3. ROC Curve is monotonically increasing function, i.e. 
dy(t)

0
dx(t)

  

4. ROC Curve is said to be convex if 
2

2

d y(t)
0

dx (t)
 and concave if 

2

2

d y(t)
0

dx (t)
 . 

5. The slope of ROC Curve at any operating point is equal to the ratio of PDF of diseased to PDF of healthy at a 

particular cut-off point  t is given by 

)(

)(

tq

tp
slope=                                                                                                                          (1.3)           

6. For symmetric ROC Curve, if p(x) and q(x) are the two continuous probability distribution, the Kullback-

Leibler divergence is a non-symmetric measure of two probability distributions of p(x) and q(x). Let p(x) denote 

the healthy distribution and q(x) denote the diseased distribution then KL(p,q) denote the Kullback-Leibler (K-

L) divergence between the distributions of diseased and healthy group with p(x) as the comparison distribution 

and q(x) as the comparison reference. The 

   
 
  










D

dx
xq

xp
xpqpKL ln,                                                                         (1.4)          

 

Similarly, let KL(q,p) denote the K-L divergence between the distribution of healthy and diseased 

group with q(x) as  the comparison distribution and p(x) as the reference distribution, then 
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               
 
  










D

dx
xp

xq
xqpqKL ln,                                                                                   (1.5)                         

where D is the common range of p and q. It should be noted that if KL(p,q) and KL(q,p) are positive and 

KL(p,q) = KL(q,p) = 0, if and only if p(x) = q(x). these two measure gives the asymmetry of ROC Curve about 

the diagonal. If KL(p,q) < KL(q,p), then the ROC Curve is said to be True Positive Rate asymmetric and if 

KL(p,q) > KL(q,p), then the ROC Curve is said to be True Negative Rate asymmetric. 

In this paper, there are six sections. In Section 2, we discussed the Normal Mixture ROC (NMROC) 

Curve  and its properties are discussed to know the behavior of the normal-mixture ROC Curve. To know the 

accuracy of ROC Curve, Area under the normal-mixture ROC curve is also found. In Section 3, we found the 

maximum likelihood estimator of AUC of normal-mixture ROC curve. In Section 4, confidence interval of Area 

Under the NMROC Curve is derived. We discussed the simulation studies by taking a numerical example for 

the validation of the model in Section 5. Section 6 consists of the conclusion. 

 

II. Normal Mixture ROC Curve 
Let X be a random variable which follows normal-mixture distribution and it comes from healthy 

controls. It has probability density function 

       2 2
i 10 10 i 20 20f x pf x , , 1- p f x , ,                                                                                (2.1)                    

where, 𝜇10 , 𝜇20 , 𝜎10
2 ,  and  𝜎20

2  are the means and variances of the normal mixture distribution.  First subscript 

in parameter shows that the it is coming from 1st and 2nd normal density and second subscript 0 shows that it is 

coming from healthy controls. p and 1-p are the weights of the mixture distribution. The sum of weight should 

be equal to 1 in mixture distribution.  

 Similarly, Y be a random variable which follows normal-mixture distribution and it comes from 

diseased cases. It has probability density function 

     2 2
i 11 11 i 21 21g(y) pf y , , 1- p f y , ,                                                                         (2.2)                                                     

where 𝜇11 , 𝜇21 , 𝜎11
2 ,  and  𝜎21

2  are the means and variances of normal mixture distribution. First subscript shows 

that it is coming from 1
st
 and 2

nd 
normal density and second subscript 1 means that it is coming from diseased 

case. p and 1-p are the weights of the mixture distribution. 

The two component normal-mixture ROC (NMROC) curve is defined as 

         
















  txptxpty 1

2121

211

1111

11 1
1

1








                             (2.3)                                                  

where,    is the cdf of normal mixture distribution and  

   


















20

20

10

10 -
-1

-
)(







 t
p

t
ptx  , -∞ < t < ∞, ∞- <<∞ ij , 0>ij , i=1,2, j=1,0. 

Before plotting ROC curve, one should check the following assumptions                                                                                                                                                      

1. The mean of the healthy controls which follows normal mixture distribution should be greater than the 

mean of the disease cases which also follows normal mixture distribution in normal-mixture ROC model. 

2. If 2010  >  , 
2
20

2
10  > , and 2111  > , 

2
21

2
11  >

,
 higher the Area under the NMROC curve. 

3. All properties of NMROC Curve should be satisfied.  

4. Attach more weights to the density function which have high mean and high variance. 

 

Properties 

1. NMROC Curve is monotonically increasing function. 

Proof : A function is said to be monotonically increasing function, if the first derivative of the function is 

positive. Differentiating (2.3) with respect to x, we get 

          

 
     
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
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
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p
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txtdx

tdy
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
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
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p>0, ∞-∞ << x , ∞-∞ << ij  and 0>ij  i=1,2. 

                                                                                      (2.4)                                                                                                                                                                                                                                                                                                                                                          
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where   is the density function and Ф is the distribution function of normal-mixture distribution. Hence, 

NMROC Curve is monotonically increasing function. 

2. NMROC Curve is concave. 

Proof : A function is said to be concave if the second derivative is negative. Differentiating (2.3) with respect to 

‘x’ i.e. 

    

     

  
 

  

     
 

  

-1 -111 21

2 22
11 11 21 2111 21

2 2
-1

-1 -1 -111 21

11 11 11 21 21 21

1 pp 1 1
x t x t

d y t 1
0

dx t 1- pp 1 1x t - x t x t x t

      
                     

  
                                   

       

                                                     p > 0, ∞- <<∞ x , ∞<μ<∞- ij  and 0>ij     i=1,2. 

(2.5)      

3. The slope of the NMROC Curve at the threshold t is given by 
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4.  NMROC curve is invariant with respect to monotonically increasing transformation of the test scores. 

5. The NMROC Curve is TNR asymmetric. 

Proof:The K-L divergence between the distribution of diseased and healthy group with p(x) as the                

comparison distribution and q(x) as the reference distribution is given as 
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(2.7) 
Similarly, the K-L divergence between the distribution of healthy and diseased group with q(x) as the 

comparison distribution and p(x) as the reference distribution has been given as 
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            (2.8)                                                                                    

It is found that KL(q,p) > KL(p,q). Hence, NMROC Curve is TNR asymmetric. 

Optimal cut-off value 

In medical diagnosis, the optimal cut-off value, i.e., t, decides about the condition of patient whether he 

is healthy or have disease. First time, it is introduced by the Fluss et al. (2005). He applied the optimal cut-off 

value in the youden index which is obtained by taking the maximum difference between F(t) and G(t) where F(t) 

represents the distribution function of healthy controls and G(t) represents distribution function of disease cases. 

The optimal cut-off value of NMROC Curve is given as 
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            (2.9) 
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The AUC of two component NMROC curve is derived as  
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                        (2.10) 
  

III. Maximum Likelihood Estimate of parameters of NMROC curve via EM algorithm 
For assessing the diagnostic accuracy, there are three approaches of estimating the ROC Curve-

Parametric, non-parametric and semi-parametric approaches. Here, we discuss the parametric approach for 

estimating the ROC Curve. The probability density function of the normal-mixture distribution is  
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For k=2, the pdf of two component normal-mixture distribution is given as  
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The likelihood function of the two component normal-mixture distribution is  
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The log-likelihood function of the (3.2) is as follows       
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For maximizing the log-likelihood function, differentiating (3.3) with respect to p, 𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2 and equate 

them to zero, we get 
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where   
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We observe that the likelihood equation of two component normal-mixture distribution is not in a 

closed form. If the equation is not found in a closed form, we will use the Expectation-Maximization (EM) 

algorithm to estimate the parameters. In this method, there are two steps to get the estimates using EM 

algorithm.  

(i) Take expectation of the likelihood function and  

(ii) Maximize the log likelihood function.  

 

Suppose X is a mixture data with N observations, the likelihood of the data assuming that ix  are 

independently distributed is given as 
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The problem of mixture estimation from data X can be formulated as to find the set of parameters 
that gives the maximum likelihood estimate (MLE) solution 

 XL |maxarg* 


.                                                                                                                            (3.10)                       

 

The summation inside the product in (3.9) checks the possibility of analytical solutions. One alternative 

is to maximize the complete likelihood in an expectation-maximization (EM) algorithm. So, after maximization 

of the of (3.4)-(3.8), we get the estimates as follows 
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Substituting maximum likelihood estimates from (3.11) in (2.10), we can get the estimate of AUC. 

 

 

IV. Confidence Interval of AUC of NMROC Curve 
The estimated AUC of two component NMROC is given as  
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The confidence interval of AUC of NMROC Curve cannot be found directly because it is a mixture of 

two component CDF function. First we will find the variance of ˆ
1  and ˆ

2  because  ˆ
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monotonically increasing functions of ˆ
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The covariance terms are all zero due to identically independently distributed random variables. 

Substituting all the expressions from (4.5) and (4.6) in (4.3) and (4.4), we get 
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Using (4.7) and (4.8), the confidence interval of ˆAUC  is given as follows 
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                                                                                                                                                                            (4.9) 

where 

2

Z  is the critical value of Z for a two tailed test and α is the level of significance.  

 

V. Simulation Studies 
Monte Carlo simulation is an estimating algorithm that is based on repeated random sampling to obtain 

numerical results. Anderson (1986) discussed the Metropolis algorithm and Monte Carlo Simulation. The 

following steps are used in Monte Carlo simulation. 

1) Define a range of possible inputs. 

2) Generate random numbers from a probability distribution over the range. 

3) Execute a deterministic computation from the inputs. 

4) Aggregate the results. 

In this section, we discuss a numerical example to observe how the confidence interval of AUC 

behaves by using Monte Carlo simulation. We check the behavior of Area under the NMROC Curve (AUC). 

Let the sample sizes for healthy and diseased cases are n=10, 20, 30, 100, 200, 300 and the mixture of 

healthy cases with population parameters p=0.7, .1=σ,3=μ,2=σ,6=μ 20201010  Similarly, the mixture 

of disease cases with population parameters, p=0.7, .2=σ,7=μ,3=σ,10=μ 21211111  The weights are 

same for healthy and disease cases.  Using these values of parameters, the maximum likelihood estimates of 

parameters, estimated AUC and 95% confidence interval are given in Table 5.1.  

Let the fixed values of population parameters of healthy controls as 6.0,1,5.1 102010    

and 4.020   and fixed values of 1.211   and 121  for disease cases for all sample sizes. The mean of 

disease cases are  14,9,6,5,411   and  3.4,2.3,1.2,8.1,5.121  for all sample sizes. The weight of 

healthy controls and disease cases are fix p=0.7 for all. The sample sizes n=(10, 20, 30, 40, 50) for all healthy 

and disease cases. Using these values of parameters, the maximum likelihood estimates of parameters, estimated 

AUC and 95% confidence interval are given in Table 5.2.  

It is observed from Tables 5.1 and 5.2 that if we increase the sample size, the estimated value of mean 

and variance become closer to the population parameters. In table 5.2, we see that as the difference between the 

mean of disease cases increases with sample sizes, the AUC of NMROC Curve increases and difference 

between the UCL and LCL also decreases.  

 

 

VI. Conclusion 
When a population has the heterogeneity and it is further divided into subpopulations, then mixture 

distribution is used for considering the heterogeneity of the population. In this case, the two component normal-

mixture ROC curve gives higher accuracy of diagnostic test as compared to the Binormal ROC curve. Its 

properties are discussed and it is found that Normal mixture ROC curve is monotonically increasing, concave, 

TNR asymmetric and is invariant under the monotonically increasing transformation. The confidence interval of 

AUC is also derived. Hence, it is observed that whenever heterogeneity is present in the population, one should 

use two component normal-mixture ROC curve instead of Binormal ROC curve. 
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Table 5.1: MLE,  CÛA  and 95% confidence interval of CÛA  for different sample sizes 
n 

0p̂  11μ̂  10μ̂  11σ̂  10σ̂  
1p̂  21μ̂  20μ̂  21σ̂  20σ̂  CUA ˆ  

Confide

nce 
Interval 

10 0.70 

(0.0) 

11.81

8 

(1.818
) 

6.718 

(0.718

) 

2.402 

(-

0.598) 

1.944 

(-

0.056) 

0.70 

(0.0) 

4.580 

(-2.42) 

1.903 

(-

1.097) 

0.128 

(-1.872) 

0.179 

(-0.821) 

0.965 

(0.069) 

[0.786, 

0.992] 

20 0.85 

(0.15) 

10.00

6 
(0.006

) 

5.313 

(-
0.687) 

1.874 

(-
1.126) 

1.558 

(-
0.442) 

0.90 

(0.2) 

3.225 

(-
3.775) 

1.956 

(-
1.044) 

0.211 

(-1.789) 

0.649 

(-0.351) 

0.972 

(0.077) 

[0.911, 

0.992] 

30 0.60 
(-0.1) 

9.461 
(-

0.539) 

7.384 
(1.384

) 

3.670 
(0.670) 

1.068 
(-

0.932) 

0.77 
(0.07) 

8.536 
(1.536) 

3.532 
(0.532) 

0.276 
(-1.724) 

0.650 
(-0.35) 

0.774 
(-0.121) 

[0.671, 
0.858] 

10

0 

0.67 

(-
0.03) 

11.98

3 
(1.983

) 

7.234 

(1.234
) 

2.896 

(-
0.104) 

1.332 

(-
0.668) 

0.80 

(0.10) 

7.512 

(0.512) 

3.698 

(0.698) 

1.916 

(-0.084) 

1.261 

(0.261) 

0.935 

(0.040) 

[0.905, 

0.958] 

20

0 

0.88 

(0.18) 

11.07

9 

(1.079

) 

7.005 

(1.005

) 

2.439 

(-

0.561) 

2.075 

(0.075) 

0.59 

(-

0.11) 

7.692 

(0.692) 

4.918 

(1.918) 

2.425 

(0.425) 

0.635 

(-0.365) 

0.884 

(-0.010) 

[0.854, 

0.910] 

30
0 

0.70 
(0.0) 

10.48
7 

(0.487

) 

6.326 
(0.326

) 

2.855 
(-

0.145) 

1.722 
(-

0.278) 

0.62 
(-

0.08) 

6.837 
(-

0.163) 

2.833 
(-

0.167) 

1.974 
(-0.026) 

1.103 
(0.103) 

0.919 
(0.024) 

[0.900, 
0.935] 

    ( ): bias of the estimates 

 

Table 5.2 MLE,  CÛA  and 95% confidence interval of CÛA  for different sample sizes 
n 

0p̂  11μ̂  10μ̂  11σ̂  10σ̂  
1p̂  21μ̂  20μ̂  21σ̂  20σ̂  CUA ˆ

 

Confidence 

Interval 

10 0.72 
(0.02) 

5.685 
(1.685) 

1.169 
(-

0.331) 

0.350 
(-1.75) 

0.466 
(-0.134) 

0.59 
(-0.11) 

1.989 
(0.489) 

0.359 
(-0.641) 

1.392 
(0.392) 

0.036 
(-

0.364) 

0.950 
(0.135) 

[0.830, 0.988] 

20 0.54 

(-
0.15) 

3.651 

(-
1.349) 

1.611 

(0.111) 

2.403 

(0.303) 

0.170 

(-0.43) 

0.85 

(0.15) 

0.719 

(-
1.081) 

0.764 

(-0.236) 

0.371 

(-
0.629) 

0.213 

(-
0.169) 

0.749 

(-
0.144) 

[0.599, 0.862] 

30 0.44 

(-
0.25) 

6.550 

(0.55) 

1.662 

(0.162) 

1.164 

(-
0.936) 

0.356 

(-0.244) 

0.52 

(-0.18) 

2.148 

(0.048) 

0.669 

(-0.331) 

1.440 

(0.44) 

0.291 

(-
0.109) 

0.924 

(-
0.016) 

[0.869, 0.961] 

40 0.23 

(-
0.46) 

9.138 

(0.138) 

2.230 

(0.73) 

2.210 

(0.11) 

0.352 

(-0.248) 

0.79 

(0.09) 

2.736 

(-
0.464) 

0.948 

(-0.052) 

0.852 

(-
0.148) 

0.465 

(0.065) 

0.992 

(-
0.001) 

[0.977, 0.997] 

50 0.20 

(-

0.49) 

13.991 

(-

0.009) 

2.029 

(0.529) 

1.766 

(-

0.334) 

0.691 

(0.091) 

0.72 

(0.02) 

4.226 

(-

0.074) 

1.246 

(0.246) 

1.012 

(0.012) 

0.504 

(0.104) 

0.998 

(-

0.001) 

[0.944, 0.999] 

 

 


