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Abstract: In the present paper ,we prove existence of fixed point and contraction
mapping in Hilbert spaces by iretates.
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l. Introduction
In recent years some fixed points of various type of compability mapping in
Hilbert space and Banach spaces were obtained, among others by Browder[1],Browder and
Petryshyn[2],Hicks and Huffman[3] , Jungck[4].

Il.  Preliminaries
2.1 Norm : A norm on X is a real-valued function ||.|| : X—R defined on X such that for any x, y € X and for all
reK
(@ |x||=0ifandonlyifx=0

(b)  Ipc+yll < x| + iyl
© x| = [ [l

2.2 Normed Linear Space : It is a pair (X, ||.|) consisting of a linear space X and a norm ||.|. We shall
abbreviate normed linear space as nls.

2.3 Cauchy Sequence : A Sequence {x,} in a normed linear space X is a Cauchy sequence if for any given ¢
> 0, there exist ng e N such that ||Xm, - Xy || <& for m, n> ng

2.4 Convergence Condition In NIs : A sequence {x,} in a nls X is said to be Convergent to x € X if for any
givene>0,3 nye Nsuchthat ||x,- x| <eforn>ng

2.5 Completeness : A nls X is said to be complete if for every Cauchy Sequence in X converges to an element
of X.

2.6 Banach Space : A Banach Space (X, ||.||) is a complete nls.

2.7 Inner Product Space : Let X be a linear space over the scalar field C of complex numbers. An inner
product on X is a function (., .) : XxX — C which satisfies the following conditions
(a) x,y) = (y,X) forx,y e X

(b) (Ax+pny,z2)=A (X, 2)+ply,2)fork,neC,xy,zeX
(©) X, x)=0;xx)=0 iff x=0

2.8 Law Of Parallelogram: If x and y are any two elements of an inner product space X then  [x + y||* + ||x-
yI* = 2Ix + 2lly|I

2.9 Hilbert Space : An infinite dimensional inner product space which is complete for the norm induced by the
inner product is called Hilbert Space.

1. Material And Method
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Theorem:Let C be a closed subset of a Hilbert space H. T,g:C —>C are contraction

and continuous map of C , then { Tg"X} converges to Ta. If T,g satisfying the following
condition
I Tgx-Tgy||* < o||Tx-Ty|| for ae[0,1)

Then g has a fixed point a.

V. Result And Discussion
Proof of theorem: It can be proof in four Steps

Step 1: Limw”‘I’g"”x—Tg”x‘2 =0
‘2 <a"[Tgx—Tx|*

Since HTg””x—Tg”x

n+1 n 2
Therefore HTg x—-Tg X‘ =0 as a€[0,1)

Step 2: { Tg"x} is bounded sequence

Suppose { Tg"x} is unbounded then there exist{l‘](k)}:;1 s.t.n(1)=1 and for each
keN,n(k+1) is ‘minimal’

So ”Tg“(k”)x—Tg”(k’tzﬂ and ”Tg’“x—Tg”“‘)xHZs 1,

for all m = n(k)+1,n(k)+2,...... n(k+1)+1

But 1<|Tg " x ~ Tg “(k)xuzs [Tg"*x-Tg ”“‘*1)‘1xH2 +[Tg e x—Tg"® XH2

2
< ”Tg n(k+1) y¢ ~Tg n(k+1)—lXH +1

2
So HTg "y —Tg n(k)XH —>1 ask— o0

2 2
Therefore HTg "y —Tg ”(k)XH <a ”Tg ey _Tg ”(kHXH contradiction

Step 3: {Tg nx}:o:1is a Cauchy sequence

‘25 o Tgm‘”x—TxH2 fora e[0,1)

Since HTgmx—Tg”x

m n 2
Therefore HTg x-Tg X‘ =0
Step 4: G has A Unique Fixed Point

V. Conclusion

N n
As is a Cauchy sequence ,then Tg'x =Ta.
{Tg x}n:1 y seq g

So ”Tg " —TgaH2 <a HTg "X —TaH2

—0 fora €[0,1)
Therefore Tga=Ta or ga=a ,hence g has a fixed point a.
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