
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 2 Ver. V (Mar. - Apr. 2016), PP 58-60 

www.iosrjournals.org 

DOI: 10.9790/5728-1202055860                                 www.iosrjournals.org                                             58 | Page 

 

Fixed Point in Hilbert Spaces  
 

Aradhana Sharma
1 ,

 Gauri Shanker Sao
2  

1
Deptt .Of  Mathemat ics  

Govt .Bi lasa  Gir ls PG College  Bilaspur  
2
Deptt .Of  Mathemat ics  

Govt .ERR PG Sc.Col lege Bi laspur  

 

Abstract: In the present  paper  , we  prove existence of f ixed po int  and cont rac tion 

mapping in Hilber t  spaces by ire ta tes .  
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I.  Introduction 
 In recent  years some f ixed po ints o f var ious  type of compabil i ty mapping in  

Hilber t  space and Banach spaces were ob ta ined,  among others by Browder [1] ,Browder  and  

Petryshyn[2] ,Hicks and Huffman[3]  ,  Jungck[4] .  

 

II. Preliminaries 

2.1 Norm : A norm on X is a real-valued function ||.|| : XR defined on X such that for any x, y  X and for all 

K 

(a) ||x|| = 0 if and only if x = 0 

(b) ||x+y||  ||x|| + ||y|| 

(c) ||x|| = || ||x|| 

 

2.2 Normed Linear Space : It is a pair (X, ||.||) consisting of a linear space X and a norm ||.||. We shall 

abbreviate normed linear space as nls. 

 

2.3    Cauchy Sequence : A Sequence {xn} in a normed linear space X is a Cauchy  sequence if for any given  

> 0, there exist  n0  N such that ||xm - xn || <  for   m,  n   n0  

 

2.4  Convergence Condition In  Nls : A sequence {xn} in a nls X is said to be Convergent  to x  X if for any 

given  > 0,   n0  N such that  ||xn - x|| <  for n  n0  

 

2.5 Completeness : A nls X is said to be complete if for every Cauchy Sequence in X converges to an element 

of X. 

 

2.6 Banach Space : A Banach Space (X, ||.||) is a complete  nls.  

 

2.7 Inner Product Space : Let X be a linear space over the scalar field C of complex numbers. An inner 

product on X is a function (. , .) : XxX  C which satisfies the following conditions  

(a) (x, y) = ),( xy  for x, y  X 

(b) (x + y, z) =  (x, z) +  (y, z) for ,   C, x, y, z  X 

(c) (x, x)  0 ; x x) = 0  iff   x = 0 

 

2.8 Law Of Parallelogram: If x and y are any two elements of an inner   product space X then     ||x + y||
2
 + ||x-

y||
2
 = 2||x||

2
 + 2||y||

2     
   

 

2.9 Hilbert Space : An infinite dimensional inner product space which is   complete for the norm induced by the 

inner product is called Hilbert Space. 

 

III.  Material And Method 
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Theorem:Let C be a  c losed subset  o f a  Hilber t  space H.  T ,g:C C  are  contrac tion 

and   cont inuous map of  C ,  then {  xTg n
} converges to  Ta.  I f  T ,g  sat i s fying the  fol lowing 

condit ion  

  Tgx-Tgy  
2
  ≤   α   Tx-Ty  

2              
for   α[0 ,1)  

Then g has a  fixed point  a .  
        

  

IV.  Result And Discussion 
Proof o f theorem: I t  can be proof in four  Steps               

Step 1:  0
2

1 


xTgxTg nn

Lim n
   

Since 
2

1 xTgxTg nn 
≤

n
2

TxTgx   

Therefore        
2

1 xTgxTg nn 
=0    as  α[0 ,1)        

 

Step 2:  {  xTg n
} is  bounded sequence  

Suppose {  xTg n
} is  unbounded then there exist )}({

1
kn

k




     s . t .n(1)=1  and for  each 

kN,n(k+1) i s  ‘minimal’  

So  
2

)()1( xTgxTg knkn 
>1  and 

2
)( xTgxTg knm  ≤ 1,   

for all m = n(k)+1,n(k)+2,……,n(k+1)+1 

But 1<
2

)()1( xTgxTg knkn 
≤

2
1)1()1( xTgxTg knkn   +

2
)(1)1( xTgxTg knkn 

  

 ≤
2

1)1()1( xTgxTg knkn   +1 

So  
2

)()1( xTgxTg knkn  1  as k   

Therefore   
2

)()1( xTgxTg knkn 
≤ α

2
1)(1)1( xTgxTg knkn        contradiction 

Step 3: }{
1

xTgn
n





is  a  Cauchy sequence  

Since   
2

xTgxTg nm  ≤ α
n

2

TxxTg nm 
  for α[0 ,1)  

Therefore     
2

xTgxTg nm  =0 

Step 4: G  has A Unique Fixed Point  

 

V.  Conclusion 

As   }{
1

xTgn
n





 i s  a  Cauchy sequence , the n Tg
n
x =Ta.  

So    
2

1 TgaxTg n 
≤ α

2

TaxTg n   

0     for α[0 ,1)  

Therefore Tga=Ta    or  ga=a ,hence   g has a fixed point a. 
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