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Abstract. In the present paper we discuss the highly pathogenic avian influenza epidemic model in the presence 

of vertical transmission function in poultry. We introduce a basic reproduction number 0R  for the model. The 

stability of the equilibrium points of the system is studied and discussed. Finally a numerical example is also 

included to illustrate the effectiveness of the proposed model.  
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I. Introduction 

Since 2005 highly pathogenic avian influenza A H5N1 viruses have spread from Asia to Africa and 

Europe infecting poultry, humans and wild birds. The highly pathogenic avian influenza has a high death rate, 

which is about 100 percent for birds and more than 70 percent for humens [7]. Up to now we found that avian 

influenza virus subtypes which can directly infect human are: H5N1, H7N1, H7N2, H7N3, H7N7, H9N2, 

H7N9, subtype. The avian influenza virus not only caused human causalities, but also hit the poultry industry. 

The highly pathogenic influenza A virus subtype H5N1 has killed millions of poultry in a growing number of 

countries throughout Asia, Europe and Africa. India’s first H5N1 outbreak was reported in January of 2006 in 

the Navapur District, Maharashta, India, since H5N1 has been reported in 8 different states. In West Bengal, 54 

H5N1 outbreaks in poultry were reported between Jan 2006 and Aug 2010 making it the state with highest 

incidence in India.  

By March 2013, the world has reported a total of infection of highly pathogenic H5N1 avian influenza 

in 622 cases, including 371 deaths. The distribution of cases in 15 countries, including China, is found in 45 

cases, 30 cases of death. Most of human being infected with H5N1 avian influenza are young people and 

children. In March 2013, human infection with H7N9 avian influenza was first found in China. By May 1, 2013 

Shanghai, Anhai, Jiangsu, Zhejing, Beijing, Henan, Shandong, Jiangxi, Hunan, Fujian and other 10 city have 

reported 127 confirmed case, including 26 death cases studied by Che [1]. The number of mathematical 

modeling studies have been carried out to quantify the potential burden of an influenza pandemic in human 

being and to assess various control strategies considered by et al. [2, 3, 4, 6, 8, 9, 10, 11,13]. Avian influenza 

modeling studies involving humans and birds was carried out in Gumel [5] and Iwami [7].  

 In this paper we consider highly pathogenic avian influenza epidemic model with vertical transmission 

function in the poultry. In the next section, we present the model. In third section we derive the disease free 

equilibrium and the endemic equilibrium. In the fourth section, we prove some theorems for the global stability 

of the disease free and endemic equilibrium. The last section contains a numerical simulation and discussion.  

 

II. Mathematical Model. 
2.1 Basic Model. 

Shuqin Che et al. [1] has proposed the following four dimensional system of autonomous differential equation 

model for the avian influenza 
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 Here ( )X t and ( )Y t  are the numbers of susceptible poultry and infected poultry of birds respectively, ( ),S t  

( )I t and ( )R t the number of susceptible, infected and recovered of human being respectively. The parameters 

c and b  are respectively the natural birth rate of Avian and human being. d and  are respectively the natural 

mortality of poultry and human being. m and  are respectively the poultry and human mortality due to illness. 

 stands for infectious rate of susceptible poultry to infected poultry,  stands for infected poultry of the 

infection rate of susceptible individuals,   is the recovery rate that infects individuals through treatment. When 

Y is small, the contact ratio, infected poultry and susceptible poultry, is appromately proportional to the Y : 

with the increase of ,Y  the contact rate gradually reaches saturation. When Y is very largy, it is close to a 

constant .  The same way to explain (1 ),Y  that is to say,  is a parameter which is effects of 

infectious diseases, when the contact rate of the disease is saturated. 

 

2.2 Model with Vertical Transmission Function in Poultry.  

The model (2.1) with vertical transmission function in poultry is given by
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where p is suitable constant. The rest of the parameters have similar meaning as for as the model (2.1). 
 

 

 

3. Equilibria of the system. 

   The first four equation of system (2.2) do not contain ,R by the method of Vanden Driessche and Watmough 

Diekmann [12] 
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 It can be checked that the system (3.1) has two non-negative equilibrium and one of them disease free 

equilibrium  0 , , , ,0, ,0o o o o c b
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Here 
* * * *, , ,X Y S I are the positive solution of the following algebraic equation, 
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Solving (3.2) we get 
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Where  ( ) ,( )( ) .d m pc d m d pcd        

Theorem 3.1. If 0 1,R   the system (2.2) only exists the disease-free equilibrium 0 ,0, ,0 ,
c b

E
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 when 

( ) ,( )( )d m pc d m d pcd       and 0 1,R  there exists only one endemic equilibrium 
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III. Linear stability analysis. 

Theorem 4.1 The disease free equilibrium 0E  is locally asymptotically stable if 0 1,R   and disease free 

equilibrium 0E  is unstable if 0 1.R    

Proof. The Jacobian matrix of system (3.1) is  
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   The roots of (4.1) are  
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The first three roots having negative real parts and fourth root ( )
c
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if 0 1.R  Thus all roots of (4.1) have negative real parts so 0E  is locally asymptotically stable if 0 1,R  and 

the root ( )
c

d m pc
d


     will have positive real part if 0 1,R   so 0E  is an unstable.

 
Theorem 4.2 The disease free equilibrium 0E  is globally asymptotically stable if 0 1.R  . 

 

Proof. Consider the Lyapunov function 

    

1 lnL X X X Y  
 



The Highly Pathogenic Avian Influenza Epidemic Model with Vertical Transmission Function In.. 

DOI: 10.9790/5728-1203024048                               www.iosrjournals.org                                               44 | Page 

        

' ' '

' '1

1 ( )
1 1

X
X X Y

X

X
X Y

X

X XY XY
c dX pc d m pc Y

X Y Y

 

 

  

 
   
 

   
              







 

                                

1 ( )
1 1

X XY XY
dX dX pcY d m pc Y

X Y Y

 

 

   
              




 

 

             

2( )
( ) 1

( )

d X X X
d m pc Y

X d m pc

 
      

  

 

 

                                
 

2

0

( )
( ) 1 .

d X X
d m pc Y R

X


     



 

When 
0 1,R   we can get 

'

1 0L   and 
'

1 0L   has no other closed trajectory in addition to 0E is globally 

asymptotically stable if and only if 0 1.R     

Theorem 4.3 The endemic equilibrium E  is locally asymptotically stable if 
0 1.R   

Proof.  The Jacobian   matrix of system (3.1) at  
* * * *( , , , )E X Y S I  is  

  

* * * * *

* * 2

* * * * *

* * 2

* * *

* 2 *

* * *

* 2 *

(1 )
0 0

1 (1 )

(1 )
( ) 0 0

1 (1 )

(1 )
0 0

(1 ) 1

(1 )
0 ( )

(1 ) 1

E

Y X Y X Y
d pc

Y Y

Y X Y X Y
d m pc

Y Y
J

S Y S Y Y

Y Y

S Y S Y Y

Y Y

   

 

   

 

   


 

   
  

 

  

 

  
    

 
 
  

   
  

  
   

  
 

 
   

   

 

                        

0
E

A
J

B C

 
  
 

 

Where  

   

* * * * *

* * 2

* * * * *

* * 2

(1 )

1 (1 )

(1 )
( )

1 (1 )

Y X Y X Y
d pc

Y Y
A

Y X Y X Y
d m pc

Y Y

   

 

   

 

  
    

 
 
  

   
  

 

   

* *

* 2

* *

* 2

(1 )
0

(1 )

(1 )
0

(1 )

S Y S Y

Y
B

S Y S Y

Y

  



  



 

 

  
 


 
  
 

 

 



The Highly Pathogenic Avian Influenza Epidemic Model with Vertical Transmission Function In.. 

DOI: 10.9790/5728-1203024048                               www.iosrjournals.org                                               45 | Page 

   

*

*

*

*

0
1

( )
1

Y

Y
C

Y

Y







  



 
  


 
 

    

 

   

0 0

0 0
O

 
  
 

 

Thus EJ


 evaluated is stable if and only if so are A  and .C The characteristic equations of the matrix A  is 

    

2

1 2 0h h    ,  

Where 

*

1 *
( ) ,

1 1

Y Y
h d d m pc

Y Y

 

 




    

 

*

2 *
[( )( ) ]

1

Y
h d m d pcd

Y
  


   


 

Here 
*1 0Y  when 

0 1,R  ( )( ) ,d m d pcd    
 
so when ( ) ,d m pc   

0( )( )  and 1d m d pcd R      1 2then  , 0h h   by the Hurwitz criterion. 

The characteristic roots of matrix A  have negative real parts.  

The characteristic equation of the matrix C  

    

 
*

*
0.

1

Y

Y


     



 
      

 
 

The characteristic roots of  C  are,  

*

*
, ( )

1

Y

Y


   


    


 

When 1,R   The characteristic roots of C  have negative real parts. 

So all characteristic roots of the Jacobian matrix  EJ


 have negative real parts if and only if 
0 1.R   Thus the 

endemic equilibrium E is locally asymptotically stable if 0 1.R   

Theorem 4.4 The endemic equilibrium E is globally asymptotically stable if
0 1.R  . 

Proof: Consider the Lyapunov function  

    

* *

2 * * * *
1 ln 1 ln

X X Y Y
L X Y

X X Y Y

   
        

   
 

Then

   

' * ' ' * '
' * *

2 * * * *
.

X X X Y Y Y
L X Y

X X X Y Y Y

   
      

   
 

    

* *
' ' '

2 1 1
X Y

L X Y
X Y

   
      
   

*

*
2 .

X X
C

X X

 
   

 
 

By the relationship of arithmetic mean and geometric mean. 

We know that  

    

*

*
2 0.

X X

X X
    

i.e.    
'

2 0,L   if and only if 
* * '

2( , ) ( , ), 0.X Y X Y L  Thus by LaSalle invariance principle 

* * * *( , , , )E X Y S I    is globally asymptotically stable. 

 

IV. Simulation and discussion 
  In this paper we have discussed the global stability of highly pathogenic avian influenza epidemic 

model with vertical transmission function in poultry. Vertical transmission function is taken to represent the 

interaction between susceptible and infected poultry. To illustrate the results numerically, choose 

2.5, 0.02, 0.05, 1.5,c d b    2, 1, 0.037,m     0.40, 
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0.06, 0.069, 0.015,p     (0), (0), (0), (0) (60,25,30,15).X Y S I   Then 0 0.91 1.R  

Figure 1(a) shows that ( )X t approaches to its steady-state value 50 while ( )Y t  tends to zero as time tends to 

infinity.    

 
Figure1(a).Here (0) 60, (0) 25, 2.5, .02, .05, 1.5, 2, 1,X Y c d b m        

0
.91 1..037, .40, .06, .069, .015,p R           

Figure 1(b) shows that ( )S t approaches to its steady-state value 21.73 while ( )I t  tends to zero as time tends to 

infinity. Thus the equilibrium  (0), (0), (0), (0) (60,25,30,15)X Y S I  approaches to disease-free 

equilibrium 0 (50,0,21.73,0)E that is disease dies out. 

Again we take the parameters 2.5, 0.02, 0.05, 1.5,c d b    2, 1, 1.22,m     0.40, 

0.06, 0.069, 0.015,p     Then 0 30.31 1.R   Therefore by theorem (4.4), E  is a globally 

asymptotically stable. 
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Figure 2 (a) and (b) show that the  ( ), ( ), ( ), ( )X t Y t S t I t approaches to endemic equilibrium  

 

Figure 2(a). Here 2.5, .02, .05, 1.5, 2, 1,c d b m      
0

30.31 1.1.22, .40, .06, .069, .015,p R           

(1.76,1.17,16.31,0.246)E   as time tends to infinity. Keeping other parameters fixes, if we change the 

value of ,p it is seen that ( )I t increases as p increases. It follows from Figure 3. 
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Figure 3 .The dependence of ( )I t on the parameters p keeping other parameters fixed. 
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