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Abstract: Salem and Zygmund have studied the equi-summability problem of factored Fourier series and
conjugate  series the factor being n¥, 0 < y < 1. In the present work we study the rate of equi- summability of

same series forfunctions belonging to HIS“’) space ,p= 1.
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I.  Definition and Notation
Let f be 27z-periodic function and f € L,[0,27], p > 1. Let the Fourier series of f at x be given by

%ao + Yo q(a, cosnx + b, sinnx) = Y1 A, (x) (1.2)
The series conjugate to (1.1) is given by

Yo_i(a, sinnx — b, cosnx) = Y1 B, (x) (1.2)
We write

0 (x,t)= fx+t)+fix—1),
B(x,0)= 0°(x,t) — 2f (x)
YO =fx+8) - flx—1)
flx; €)= —%f: Py (t)%cot%tdt :
f(x) = lim_g+ f (x; €), whenever the limit exists.

f is said to be belong to (see Zygmund [8])lipa if |f(x +t) — f(x)| = o(t*) and to Lipa
iflf(x+)—f)|=0t")0<a<1

It was Prossdorf [5], who first studied the degree of approximation problems of Fourier series
inH, (0 < a < 1) space in the Hd Idermetric. Generalizing the H”™ older metric, Leindler [4] introduced the space
H® space replacing t*by an arbitrary function w which is given by
H? ={f € Cpr|w(8, ) = 0(w(a))}
where w is a modulus of continuity. The norm ||. ||, in H® is defined by

SUP |f ()~f o)l
WAl = WFlle *5 Dy X Y
In the case w(§) = 6%,0 < a < 1 the space H* reduces to H, space (the norm]|. ||, being replaced by
.1l introduced earlier by Prossdrof[5]. It is known that [4]
H,SHy SCpp , 0<B<a<1.
Das, Nath and Ray [3] have studied a further generalization of H* space which is defined as follows.
For f € L,[0,27],p = 1, we write

_sup IIFC+) = FO
A(f'w)—t:#o a)ltl :

wherew is a modulus of continuity. We say that f € Lip (w, p) if

IfC+8) = fFOll, = 0(w(®))

Define
H = {f €[0,27],p = 1]A(f, w) < o}.
and [I£1I5” = Ifll, + A(f, ).
It can be easily verified that ||f||z(,‘“) is a norm in Hé“’). Ifwe put w(t) =t%, 0 < a <1 then HIS“’)

reduces to H(a, p) space with the norm ||f||§f") replaced by [|f |l «p) introduced earlier by
Das, Ghosh and Ray [2]. If further p = oo ,then H(«, p) reduces to H, space introduced earlier

By Prossdorf.If @ — 0 ast — 0 then f°(x) exists and zero everywhere, and f is constant. Given
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w(t)

o) 1S Ton decreasing then

the space Hzgw)and H;”)if

H”cHYcL, p>1 (1.5)
sincel f1I$” < maxifit, “22) [|FIIS . If w(t) = t“and w() = t# then (1.5) reduces to the following

) ] v(2m)
Inclusion relation
Heopy CSHgpy €Ly, p21

I1.  Introduction
For0 <y <1 and0 < € < oo we write

1 oo Y(x,
I(x;€) =——T{y+1) cos%fg tﬁ? (2.1)
1 . o @(x,t
Jy(i€) ==-T'(y+1) sm%fg t(liy) (2.2)
We define
I, (x) = lime_ o4 I, (x; €)and/, (x) = lime_,o4 ], (x; €) (2.3)

when ever the limits exist.
Salem and Zygmund ([6],p.30) have studied he equi-summability of

Yn=11"B, (x) (2.4)
and
Yoin®A,(x),0<a<1 (2.5)

respectively with the integrals I, (x) and J, (x).
Let U, (r,x)and V, (r, x) respectively denote the Abel transforms of the series(2.4)and (2.5)that is

U,(r,x) = ZnVBn(x)r" O<r<li, 0<y<1

n=1
[oe]

V,(r,x) = ZnyAn(x)r" 0<r<i, 0<y<i1

n=1
Salem and Zygmund proved the following.
Theorem A([6],p-30)
Let the function f(x) be 2 —periodic and belong to lip y, where 0 < y < 1. Then the difference
L(x;1—7)—U,(r,x) (2.6) tends to zero uniformly inxasr - 1. If f € Lipy,0 <y < 1 the
above expression in (2.6) is
uniformly bounded.

Theorem B([6],p.31)

Let the function f(x) be defined as in Theorem A. Then

Jy (61 =1) = (r,2) 27)

tends to zero uniformly inxasr = 17. If f € Lipy,0 < y < 1 the above expression in (2.7) is
uniformly bounded.

The object of the present paper is to obtain the degree at which the expression (2.6) and (2.7)

converges for functions in Hé“) space.

I1l.  Main Result
We prove the following theorems.

Theorems 1: Let v and w be moduli of continuity such that w /v is non-decreasing . If f € H,S“’),p >1
and,0 <y < 1then

||1y(.;1—r)—Uy(r,.)||§;):0(1)(1 iy 2y

-r 17(u)u2
Theorems 2: Let v and w be moduli of continuity such that w /v is non-decreasing . If f € H,S“’),p >1
and, 0 < y < 1 then
Uy G 1=n =% 00l =0 a - [, 2
RemarkSee([3], p.47) and ([1], p-25)where the authors have obtained the degree of approximationin
HIS‘“), (p = 1)space respectively for the partial sum and Rogosinski mean.

)
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IV.  We need following notations and lemmas for the proof of Theorem 1.
For 0 <y < 1,we write
B(r,x,t) = —Yo_q 2sinntB, (x)r", (4.1)

h(x,t) = B(r,x.t) — ¥(x,t) 4.2)

i t,uw) =¥k, t+u) —¥(,t—u)—2¥(x,t) (4.3)
jOot,w) =P, t+u) —¥Plx,t—u) (4.4)
P(r,u) = %+ Yo r" cosnu = %(ﬁ) (4.5)

fOx) =5+ T A (T (46)
We need the following lemmas for the proof of Theorem 1.

Lemma 1: letw(t) andv(t) be defined as in Theorem 1
Iff e H),p > 1, thenfor0 <u<n
(i) (.t +u) =¥, 0ll, = 0(ww)
(i) IPC.0) =¥(+y.0ll, = 0(w(y)
@iy ¢ twll, = 0(ww)
w(u)

) i, tw) —i¢+y,twl, = 0(1) {w(lyl)
VG ew = iCHy Ll = 0(v(ly) e
(vi) IiC, &, wll, = 0(w(w))

wi) G tw —jC+y b wll, = 0(1){5)(5;?)
wiii) G, 6w —jC+y, L wll, = 0)v(lyD 2

(u)
v(u)
Proof: We have

Yx.t+u)—-PYxt)=fx+t+uw)—fx—t—w)—fx+o)+flx—1t)
={fx+t+w) - fOx+}-{fx—t-w) - flx—-1)}
It follows from the Minkowski’s inequality for 0 < u < 7
P, t+w) —%C0ll, < IPC+Ht+w) —PC+O, + 1Pt —w) —¥(-Dll,
= 0(w(uw))
By using the fact that f € lip (w, p). It is easy to see that the result holds when ¥ (x.t + w) is replaced by
Y(x.t —u).
For the proof of (ii) , writing
Yx)-¥Yx+y)={fx+)-fx+y+D}-{fx-0) - fx—t—-y)}
and proceeding as above , we have
I¥C, 0 =¥(+y, Oll, = 0(w(yD).
Writing
i t,w) ={Fk.t+u) — ¥, )} +{Pl.t —uw) —¥(x,t)}
and applying Minkowski’s inequality and part(i) we obtain (iii). First part of (iv) follows from (iii).
We write
i, t,uw) —ilx+y,t,u)={¥xt+u) —¥x+yt+u}
HP(x,t—u)— ¥ +yt—u)}
2{P(x,t) —¥(x +y,t)}
from which the second part of (iv) follows by applying Minkowski’s inequality and (ii).
Now, by first part of (iv)
i, t,w) =i +y, t,wll, = 0(w@w)

_ w@Y _ w(u)
=0 (v 2%) = 0 (v(yD %2)
foru < |y| as v is non-decreasing.
If u>=|yl|,then
w@ _ oy w@) . .
s Y it —
60 2 2D ( e LS non decreasmg) (4.7)
so that

liC., t,w) — i +y, t,Wll, = 0(w|yl)(by second part of (iv))
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=0 (vilyh %) (using (4.7))
This completes the proof of (v). Proceeding as above the estimates given in (vi) ,(vii) and (viii)
can be derived.

Lemma 2: Let B(r, x, t) and h(x, t)be defined as in (4.1) and (4.2). Then under the hypothesis of
Theoremlasr — 1~

(i) (. t) = h(+y, DI, = 0Wv(yDA —7) [ ru?:)uj du
(i) 1RGOl =0 -7 [, Dy
(i) 11AC, ) = h(+y, 0l = 0 =7 [, 25 d

Proof: Now from (4.1)
B(r,x,t) = =Y 1 2sinntB,(x)r*,0 <r <1
It can easily verify that

B(r,x,t) = Xpoa An(x + ) — X7-1 Ap(x — 1)
which by ((7)p.96) equal to

fr,x+t)—f(r,x—t)
=" fa+t+w) - flx—t+w}P(rwdu

= %fon{‘z”(x, t+u) —¥(x, t—wliP(r,uwdu (4.8)

where the Poisson’s kernel P is defined in (4.5). As
Jo P(r,w) du = m/2
from (4.2), we get
h(x,t) = B(r,x.t) —¥(x,t) =
%fon{ll’(x, t+u)+ ¥, t—u)—2¥(x, t)}P(r,u)du
1 ,m .,
= ;fo i(x,t,u)P(r,u) du
(4.9)
from which it follows that
1 pme. .
h(x,t) —h(x +y,t) = ;fo {itx,t,u) —i(x +y,t,w)}IP(r, u)du.
Applying generalised Minkowski’s inequality, we get forp > 1
llh(, ) = h(+y, Oll, < [ 1iC, tw) = i€ +y, 6, W, P(r, u)du

= (57 + 0T, )G 6w = iC+y, 6w, P udu (4.10)
We know ([7], Vol.I,p.96) thatfor0 <u <mand 0 <r <1
P(r,u) =0 (ﬁ)
(4.11)

P(r,u) =0 (%)
(4.12)
Now applying Lemma 1(v) and the estimates (4.11)and (4.12) respectively for the integrals fol_r and
Ji, in (4.10), we obtain
m||h(.,t) = h(.+y. D,

=0Wv(yD [+ (1 - 1) [, 21yl

(4.13) v(u) =7 v(uu?
4.1
As % is monotonic non -decreasing , we have
T w(u) w(l-r) k w(1-r)
fl—r v(u)u2 du 2 v(1-1) fl -r u2 = 1-r v(1-1) (414)

where Kk is some positive constant and hence Lemma2(i) follows from(4.13)and (4.14).
As f € Lip (w,p),p = 1, proceeding as above Lemma2(ii)can be proved. Lemma2(iii) is an immediate
consequence of (i) and (ii) of Lemmaz2 as by definition.

— W _ SUp (- (+y.Dllp
IR ) = h(+y, Oll," = hC. Ol +y 20— 0

Lemma 3: Let  B(r,x, t) be defined as in (4.1). Then under the hypothesis of Theorem 1, we have as
r->1forp>1
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W 5@ 0-Be.rym|| =omvayha-n T, 5

G [E@e.of =oma-n 7, La

@iy |00 -Be. +y,t)|| —o)(a-r [’ ru?:;;) du
Proof: Proceeding as in the proof of Lemma 2 and using the integral given in (4.6) for f(r,x), we get from
it

1 T
B(r,x,t) = ;J- fW{P(r,u—x—1t)—P(r,u—x+t)}du
which on partial differentiation with resp_eTZ:t to t gives , after simplification ,
:—tB(r, x,t) = %ffn fW{-P'rru—x—t)—P'(r,u—x+t)}du
= _% Jo i e, t,w)P' (r,w)du

wherej(x, t,u) has been defined in (4.4)
Therefore

3] 1 (" ,
a{B(r'x; t) - B(T,x +V, t)} = _;f (j(x: t,u) —](X +}’.t;u))P (T,u)du
0
Applying generalized Minkowski’s inequality, we have forp > 1
|5 B0 = BE 4y 0} | < G 60 =64y, 6wl 1P 6 wldu

=[fy +J, G tw —j+y, tull,IP'(r,u)ldu  (4.15)
We know ([6],p.30)thatfor0 < u <mand 0 <r <1

—(1—r Z)rsinu

P'(ru) = R m—i (4.16)
P(ru)=0 ((:_rﬁ)

(4.17)
P(ru)=0 (lu;;)

(4.18)

Applying Lemma 1(viii) and the estimates (4.17) and (4.18) respectively for the integrals fol_r and
Ji, in (4.15)we obtain

=T uw(u) w(w)
||at{B(r,.,t) B 47,0} —0(1)v(|y|)[(1 T)gf G ) du +(1—T)f ORI du]
= 0yl [T+ (1 -y ]
= 0w(lyD [ - ) 1, 20

ici o)
as by the monotonicity of o

fﬂ o (u)du > K w(@-r)
1-r yud — A-r)2 v(1-r)
where K is some positive constant and this completes the proof of (i). As by the hypothesis f € Lip(w, p),
p = 1 proceeding as above part(ii) can be proved.
By definition

) sup |3eB@. . 0-B@. . t)”p
550, = [5Ee0f, +5 % D

and hence part (iii) follows from (i) and (||)

Remark: In what follows , in the proof of Theorem 1 we do not need part (iii) of Lemma 2 . However ,

part (iii) has been included for the sake of completeness of Lemma 2 . Similar remarks also applies to part (iii)

of Lemma 3.

V.  Proof of Theorem
From (4.1), we have for0 <y < 1
B(r,x,t) - sinnt N
tl—ﬂ/:—ZZH—HBn(x)r ,t#0
n=1
The above serieson the right is uniformly convergent for t > € > 0.Hence integrating term by term
over the interval (¢, T)and observing that (see[6] p.31)
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fsinntd 14y CX’sinntd C
Ltl—+yt<Cn€ ,fT t1+7’ t<T1+y
(where the constant C depending on y only,we obtain by integrating the series (5.1))
o B(rx,t) =) t
Jy tj “2dt = =237 B, (Or™ [ S;j‘fy dt (5.2)
It is known ([6], p.31) that
o sin nt n'r
fo t1+y F(y+1)cosny 0<y<l1
(5.3)
Using (5.3) in (5.2), we get after simple computation
—r'(y+1) cos L

fm q;ﬁ? dt = Yy n'B, (x)r"* = U, (r,x)
which ensures that

_r(y+1)cos% © l{l(xt)dt_

T 1-r tl+y Uy(r x)
I" 1 ©
v+ T)rcos {fol -r Birlicyt) dt + f B(r, x:1)+;p(x ,;t) dt}
By the notations of (2.1),(4.2)the above result takes the following form
r 1
L(x;1—7)=U,(r,x) = wD(r x)
(5.4)

where

D(r,x) = [ “EDar + [T Ear 0 <y <1 (5.5)
For the proof of Theorem 1, it is sufficient to show thatas r — 1~

IDGr,) = D@, AWl = 0 =)' [ 25 du (56)
Now

D(T’ x) D(T’ X+ y) — fl r B(rx, t)tlli(yr X4y,t) dt +f17r h(x, t)t1h+(;c+y ,t) dt
By generalised Minkowski’sinequality , we get for p > 1

1-r IB(r, . ,)-B(r, +yt)l|
IDr,.) = D@, 4+, < f; " 20l gy
m  h( )—h(+y.tll
L Tt
= 11 + 12 , Say
(5.7)
By Lemma2(i)
(w) o dt
L =0Wv(lyDA-n [ oozdu [ o
= 0((yD( - [ 2 du (58)

1-7 p(u)u?

AsB(r,x,0) =0 = B(r,x +vy,0),by Mean value Theorem we have for some 6 with 0 < 6 < 1.
B(r,x,t) —B(r,x +y,t) =t [;—t{B (r,x,t) —B(r,x +y, t)}]tzg
Hence by Lemma3
(B (r,..t) = BG4y, O, = t | =B (.. ) = B(r,. 4y, t)}”p t=0

= oWty —r) [ 2 a

-7 pu)ud

(5.9
Using (5.9), we get
11 — fl—r IBGr, . ,t)=B(r, +y.0llp dt

0 t1+y
w(u 1-r dt
=0wlyD - [, 2% du [} 55
= 0(V)v(ly))(1 — )2~ ROy (5.10)

1-r y(u)us
Collecting the results from (5.7),(5.8) and (5.10), we obtain
IDGr,.) = DG, 43l = 0wy =)t [, 25 du+ (1 —7) [ 28 du

=7 v(u)u? -7 p(u)ud

= 0(Wv(yDA - ' [ 2 g

-1 v(u)u?
(5.11)
from which it follows that
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Su’p [IDGr, )-D(r, -+y)”p _ 1—y w(u)
y#0 vy =000 =)' [T, Sz )
(5.12)
As f € Lip(w,p),p = 1 by the hypothesis, proceeding as above it can be proved that
DG, )llp= 0@ =) [ 2 du
(5.13)
From (5.12) and (5.13), it follows that
ID(r,.) = D, 4)lIy” = o)A =)' [

and this completes the proof of Theorem 1.

w(u)

=7 v(u)u?

VI.  Additional notations and Lemmas for the proof of Theorem 2
We know ([7], Vol.I,p.50) that
@ (x, t)~2 Y7 i cosnt A, (x)
(6.1)
Let A(r, x, t)denote the Abel mean of the series
-2Y5_1(1 —cosnt) A, (x)

(6.2)
that is ;
A(r,x,t) = =2Y7 (1 —cosnt) A, (x)r",0<r <1
(6.3)
We write
H(x,t) = A(r,x,t) — 0(x, t)
(6.4)
10, t,u) =00t +u) +0(x, t —u) — 20(x,u) —
20(x, t) (6.5)
J(x, t,u) = OC,t+u)—0(x, t —u) (6.6)
A = [ T de+ [T X de 0 <y < 1 6.7)

We need the following Lemmas for the proof of Theorem2.
Lemma 4 Letw(t) and v(t) be defined as in Theorem 2 . If f € H,S“’),p >1thenforO<u<m
@ N2C M, = 0(w(w))
(i) loC, t+w) =2, Oll, = 0(ww)
(i) |12C., 8) = @ +y, Dll, = 0(w(lyD)
(iv) ¢, e wll, = 0(w(w)) W
wu
) MGt =1+ twll, = 0{ o)

Vi) 11C, e, w) = IC+y, t,wll, = 0(W)v(lyD -
Vil ¢ e wll, = 0(ww)

w(u)

w(u)

i) ¢ 6w —JCH+ytwll, = 0@ @D

@)
o(lyh =

We omit the proof of Lemma 4 as its proof is similar to Lemmal.

Lemma5 Let A(rxt) and H(x,t) be defined as in section 3. Let w(t) and v(t) be defined as in Theorem 2.
If f € H,E“’),p > 1thenr > 1~

(i) IH(,t) = HC+y,Dll, = oWv(lyD@ -1 [ Z)&)z i
@) IHC DI, =0 -7 f7 “%au
(i) IHC, O~ HC+, 0l = 0 =) [, 2%

Proof : We have
A(r,x,t) = =27 1(1 —cosnt) 4,,(x) r"
=Yn=1[An(x + 1) + 4, (x — ) — A, (O] 7"
=frx+t)+f(r,x—t)—f(r,x)
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=L [T AF G+ W) + (= £+ u) = 2f (x + w)IP(r, wdu]

(6.8)
using (4.6), adopting the argument used in deriving the integral representation of B(r, x, t) in section 3,
It can be shown that

Ar,x,t) = %[fon{(b(x, t+u)+ 0(x, t —u) — 200, u)}P(r, u)du]
(6.9)
A(r,x,t) — 0(x, t) = %fonl(x, t,u)P(r,u)du
(6.10)

The remaining part of the proof of the Lemma is similar to the proof of Lemma2.
Lemma 6 Let A(r, x, t) be defined as in section 5. Let w(t) and v(t) be defined as in Theorem 2.

Iff e Hrg“’),p > 1thenr > 1~

0 [ae 0 -Ae 40} = ompiyha -n 7, 25
i | A(r..,t)” =01 -7 )f” (2 gy
i) [[5e.0 - ac o " =oma-n 7, e

Proof: We know that
Alr,x,t) =f(r,x+t)+ f(r,x —t) — 2f (r, x).
Using (4.6) we get after simple computation
;—tA(r, x,t) = ;—t %ffnf(u){P(r,u —x—t)+Pr,u—x+t)—2P(r,u— x)}du]

= %f_nn f@{-P'(r,u—x—t)+P'(r,u—x+t)du

= —%fon[q)(x, t+u)—0(x,t—uwlP'(r,u)du

= —%fonj(x, t,u)P (r,u)du
which has similarity with j(x,t,u) replaced by J(x,t,u) replaced by J(x,t,u)the integral representation of
;TB(T’ x,t) in the proof of Lemma 3 and hence proceeding as in the proof of Lemma 3the results of Lemma 6
can be established.

Proof of Theorem 2
Proceeding as in Theorem 1 and making use of the fact that ([6],p.32)

. gant
oo SIn“—- n¥Ym
2 0<y<1l
fo t1+y 41’(y+1)smny' Y

We have
—Ir'(y+1) sinZ

fOOA(T”) dt =Yy n' A, (x)r" =V, (r,x)

t1+y
which further ensures that(using the notatlon given |n(2 2), (6.4)and (6.7))
e, 1=1) =V, (r,x) —mA( T, X) (7.0)
For the proof of Theorem 2, it is enough to show that asr —» 1~
1AGr,.) = G, AN = o)A =)' [ 28 gy (72)

=7 v(u)u?

Using Lemma5 and Lemma6 (in place of Lemma2 and Lemma3) and adopting the technique used in
proving(5.6)
(see proof of Theorem 1) the validity of (7.2) can be established and this completes the proof of Theorem 2

VII.  Corollaries
By taking w(t) =t%andv(t) =tF,0< B <a <1, in Theorem 1, we obtain the following
corollaries:
Corollary 1
IffeH(ap,p=10<pB<a<land0<y<1then
A-r*=FM o0<p<pf+y<a<li
=o){ A-nN"¢M 0<p<p+y<a=1

I, (1= —U,(r; :
(11—t log—, B=0,a=10<y<1

')”(ﬁ.p)
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Putting p = o ,in Corollary 1 , we get

Corollary 2
IffeH, 0<f<a<1,and0 <y < 1then
A-r)*Fm, 0<p<p+y<a<i

|Iy(-21—7”)—Un(7”;-)|ﬁ =0(1) (1—r)1—(ﬁ+y)1, 0<f<pf+y<a=1
(1—r)1_Vlog: ,B=0a=10<y<1

Corollary 3 Iff € Lipa,0 <a <1land 0 <y < 1then

aQ-nr, 0<y<a<l1
|G 1= = U0 )| = 0(1){

(1—r)1_ylogi, f=0a=10<y<1

In the case @« =y,0 <y <1, Corollary 3 reduces to the second part of Theorem A due to Salem and
Zygmund.
Analogous results can be obtained for Theorem 2.
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