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Abstract: The objective of this paper is to study the dynamical behavior of three species syn-ecological models. 

Type of three species mathematical model involving different types of ecological interactions is proposed and 

analyzed. In the model Holling type –II functional response is a doubted to describe the behavior of predation, 

for the model, the existence, uniqueness and boundedness of the solution are discussed. The existences and the 

stability analysis of all possible equilibrium points are studied. Suitable Lyapunov functions are used to study 

the global dynamics of the proposed model. Numerical simulations are also carried out to investigate the 

influence of parameters on the dynamical behavior of the model and to support the obtained analytical results of 

the model. 

Keywords: Equilibrium Point; Lyapunov Function. 

 

I. Introduction 

Food chains and food webs depict the network of feeding relationships within ecological communities. 

During the last few decades, a large number of food-chain and food-web systems have been proposed to 

describe the food transition patterns and processes [1-8]. The basic sequence of energy movement from 

producer to consumer to decomposer is a food chain. this concept is important in understanding the food and 

energy relationships of organisms but is much too simplistic to describe the cycling of food in an ecosystem. On 

the other hand the term food web is used to describe patterns of interlocking food chains. All the intricacies of 

food cycles cannot be shown on paper even by the most adept artist, even so, food web models offer a picture of 

the strands supporting the world around us.Living organisms enter into a variety of relationships, such as prey-

predator, competition, mutualism, commensalism and so on, among themselves according to the needs of 

individuals as well as those of species groups. Food webs are one example of interactions between organisms 

but there are other interactions that go beyond feeding relationships. Recently, number of researchers have been 

proposed and studied the dynamics of food webs involving some types of these relationships, see for example 

[9-12] and the references their in.In this paper however , an investigation is devoted to an analytical study of a 

food web consisting of three species Syn-Ecological system involving a general predator with Holling type-II 

functional response, in which 2N  is a general predator that preys upon the prey species 1N  and the host 3N , 

the host 3N  . The prey is a commensal to the host 3N . Further Fig.(1) shows the schematic sketch of the system 

under investigation. The model equations of the system constitute a set of three first order non-linear ordinary 

differential equations. 

 

II. The Mathematical Model: 
Consider the three species Syn-Ecosymbiosis system consisting of the following interactions prey-

predator including commensalisms. It is assumed that the model consists of a prey   (for example, Great Egret 

Bird) whose population density at time T  denoted by 1N , the predator (for example, Crocodile) whose 

population density at time T  denoted by 2N , the host (for example, Water Buffalo) whose population density 

at time T  denoted by 3N . Now in order to formulates the mathematical model of the above Syn-Ecosymbiosis 

system, the following assumptions are adopted: 

1. The predator species preys upon the prey, host according to Holling type-II functional response with 

maximum attack rate .2,10  iforai  and half saturation constant .2,10  iforbi . While, in the 

absence of the predator the prey species grows logistically with carrying capacity 01 k  and intrinsic 

growth rate 01 r . Moreover in the absence of the prey the predator decay exponential with natural death 

rate 01 d , however in the existence of prey the predator individuals competes each other with 

intraspecific competition constant rate 02 d . 

2. The existence of the host 3N  enhance the existence of the prey species 1N  with the commensal constant 

rate 0c , while the existence of 1N  do not affect (positively or negatively) the existence of 3N . 
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3. Finally the species 3N  growth logistically with intrinsic growth rates 0ir  for 2,1i  and carrying 

capacities 0ik  for 2,1i  respectively. 

Therefore the dynamics of the above proposed model can be represented by the following set of 

differential equations while the block diagram of this model system can be illustrated in Fig.(1): 
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Fig.( 1):The block diagram of system (1). 

 

Note that the above proposed model has thirteen parameters in all, which make the analysis difficult. 

So, in order to simplify the system, the number of parameters is reduced by using the following dimensionless 

variables and parameters: 
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Then the form of non-dimensional system of system (1) can be written as: 
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                                                                                         (2)       

with 0)0(,0)0(  yx  and 0)0( z . It is observed that the number of parameters have been reduced from 

thirteen in the system (1) to eleven in the system (2). Obviously the interaction functions of the system (2) are 

continuous and have continuous partial derivatives on the positive region 

 0)0(,0)0(,0)0(:),,( 33  zyxRzyxR . 
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Therefore these functions are Lipschitzian on 
3
R  , and hence the solution of the system (2) exists and 

is unique. Further, in the following theorem, the boundedness of the solution of the system (2) in 
3
R  is 

established. 

 

Theorem (1): All the solutions of system (2) which initiate in 
3
R  are uniformly bounded. 

Proof: 

       Let )),(),(),(( tztytx  be any solution of system (2) with non-negative initial condition ),( 0,00 zyx . Now 

according to the third equation of system (2) we have 

         zuzu
dt

dz
87 1  

So, by using the comparison theorem [11] with the initial point 0)0( zz   we get: 
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Finally, according to the first equation of system (2) we have 
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Now define the function: )()()()( tztytxtM  , and then take the time derivative of  )(tM  along the 

solution of the system (2) we get 
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Again by solving this differential inequality for the initial value 0)0( MM  , we get: 
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bounded and therefore we have finished the proof.  

 

III. The Existence Of Equilibrium Points 
In this paper, the existence of all possible equilibrium points of system (2) is discussed. It is observed 

that, system (2) has five equilibrium points, which are mentioned in the following: 

The equilibrium points,  0,0,00 E  known as the washout point always exist. The first two species equilibrium 

point  0,,1 yxE   exists uniquely in 
2. RInt  of planexy   if there is a positive solution to the following set of 

equations: 
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From equation (3a) we have, 
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By substituting (4) in (3b) and then simplifying the resulting term we obtain that 
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Not that Eq.(5) has a unique positive root, namely x , provided that the following condition : 
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The third two species equilibrium point  zyE ˆ,ˆ,03   exists uniquely in the 
2. RInt of planeyz   if there is a 

positive solution to the following set of equations: 
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From equation (8b) we have, 
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By substituting (9) in (8a) and then simplifying the resulting term we obtain that 
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Not that Eq.(10) has a unique positive root, namely ẑ , provided that the following condition : 
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Finally the positive (coexistence) equilibrium point   zyxE ,,4  exists in the 
3. RInt  if and only if there is 

a positive solution of the following set of algebraic equations: 
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From (14) we obtain that  
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0z  provided that  
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Then by using (15) in (12) and (13) yield the following two isoclines. 
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Now from (17) we notice that , when 0y  then x  represent a positive root of the following second order 

polynomial equation : 
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Straight forward computation shows that eq.(19) has a unique positive root namely 
1

x  if and only if the 

following condition hold: 
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Further, from eq.(18) we notice that , when 0y  , then  
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The conditions occur provided that:- 
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Then the two isoclines (17) & (18) inters at a unique positive point *)*,( yx  in the 
2. RInt  of planexy  . 

Substituting the value of 
*y  in eq.(15) yield that 

** )( zyz   which is positive order condition (16) accordingly , 

the positive equilibrium point  ***
4 ,, zyxE   exists uniquely in the 

3. RInt  , if in addition to conditions (16) , 

(20) , (22) and (24), the isocline    0,1 yxf   intersect the axisx   at the positive value namely 1x  . 

 

IV. The Stability Analysis 
In this section the stability analysis of all feasible equilibrium points of system (2) is studied analytical 

with the help of linearization method. 

Notation iziyix and  ,  represent the eigenvalues of )( iEJ  that describe the dynamics in the 

x direction, y direction and z direction respectively  .4,3,2,1,0iwhere  
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Note that it is easy to verify that the Jacobian matrix of system (2) at the trivial equilibrium point )0,0,0(0 E  

can be written in the form: 
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(unstable). 
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So, 1E  is locally asymptotically stable. However, it is a saddle point otherwise. 
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can be written as: 
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Hence the characteristic equation of )( 2EJ  is given by:- 
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









  

So, either 

 0 x


 

Which give the eigenvalue of )( 2EJ  by: 

 02  xx


  

Or  

 021
2  BB   

Which gives the other two eigenvalues of )( 2EJ  with respect to zy and 22   provided that the following 

conditions are satisfied:- 

 5
4

32

2

11 u
zu

zue

xu

xue













                                                                                                                             (27)              

So, 2E  is locally asymptotically stable. However, it is a saddle point otherwise. 

The Jacobian matrix of system (2) at the third two species equilibrium point  zyE ˆ,ˆ,03   can be written as: 

 
 

  





































2
4

9
87

4

9

2
4

432
62

4

211

4

1

3

ˆ

ˆˆ
ˆ

ˆ

ˆ
0

ˆ

ˆ
ˆ

ˆ

00ˆ
ˆ

1

)(

zu

zyu
zuu

zu

zu

zu

yuue
yu

u

yuue

z
u

yu

EJ  

Hence the characteristic equation of )( 3EJ  is given by:- 

   0ˆ
ˆ

1 21
2

2

1 









 CCz

u

yu
  

Where  

 

 
 

   34

9432

2
4

9
8762

2
4

9
8761

ˆ

ˆˆ

ˆ

ˆˆ
ˆˆ

ˆ

ˆˆ
ˆˆ

zu

zyuuue

zu

zyu
zuuyuC

zu

zyu
zuuyuC


































 

So, either  

 0ˆ
ˆ

1
2

1  z
u

yu
 

Which give the eigenvalue of )( 3EJ  by: 

 
2

1
3

ˆ
ˆ1

u

yu
zx                                                                        

Or  
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 021
2  CC   

Which gives the other two eigenvalues of )( 3EJ  with respect to zy and 33   provided that the following 

conditions are satisfied:- 

 
 zu

zyu
zuuyu

ˆ

ˆˆ
ˆˆ

4

9
876


                                                                                                                          (28)                      

 
 24

9
87

ˆ

ˆˆ
ˆ

zu

zyu
zuu


                                                                                                                                  (29)                      

 
2

1 ˆ
ˆ1

u

yu
z                                                                                                                                             (30)                      

So, 3E  is locally asymptotically stable. However, it is a saddle point otherwise. 

   Finely the Jacobian matrix of system (2) at the positive equilibrium point 4E  can be written as: 

 

 

   

  
















































































2*
4

*
9

87
*

*
4

*
9

2*
4

*
432*

62*
2

*
211

*

*
2

*
1

2*
2

*
1*

4

0

1

)(

zu

yu
uuz

zu

zu

zu

zuue
yu

xu

yuue

x
xu

xu

xu

yu
x

EJ  

Thus the characteristic equation of )( 4EJ  is given by: 

032
2

1
3  KKK                                                                                                                    (31)              

Where  

 
    



































 *
6

*
872*

2

**
1

2*
4

**
9*

1 yuzuu

xu

yxu

zu

zyu
xK  

 

   

   

   3*
4

2*
9432

2*
4

*
9

87
**

6

2*
4

*
9

872*
2

*
1**

3*
2

**
2

2
11

2*
2

*
1**

62

)(

1

1

zu

zuuue

zu

yu
uuzyu

zu

yu
uu

xu

yu
zx

xu

yxuue

xu

yu
yxuK














































































 

 
     

     3*
2

***
9211

2*
4

*
9

873*
2

***
2

2
11

3*
4

2*
9432

2*
4

*
9

872*
2

*
1***

63

)(
1

xu

zyxuuue

zu

yu
uu

xu

zyxuue

zu

zuuue

zu

yu
uu

xu

yu
zyxuK













































































 

So using Routh-Hawirtiz criterion equation (31) has roots (eigenvalues) with negative real parts if and only if 

00,0 32131  KKKandKK  

01 K  If the following conditions satisfy: 

 
 

1
2*

2

*
1 
 xu

yu
                                                                                                                                        (32)                           

 2*
4

*
9

87

zu

yu
uu


                                                                                                                                         (33) 
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03 K  Always satisfy. 

Now direct computation gives that: 

54321 SSSSS   

 

Where  

 

     

     

       

   

   *
2

2*
2

***
9211

5

2*
4

59
872*

2

*
1***

64

*
4

*
9

87
*

2*
2

*
1*

2*
4

*
9

872*
2

*
1**

3

2*
4

*
9

87
**

63*
4

*
432

2*
4

*
9

87
**

62

3*
2

*
2

2
11

2*
2

*
1**

6
*

62*
2

*
1*

1

12

11

11

zuxu

zyxuuue
S

zu

yu
uu

xu

yu
zyxuS

zu

yu
uuz

xu

yu
x

zu

yu
uu

xu

yu
zxS

zu

yu
uuzyu

zu

zuue

zu

yu
uuzyuS

xu

xuue

xu

yu
xyuyu

xu

yu
xS





































































































































































































































































  

So, 0  under the following condition: 

 54321 SSSSS                                                                                                                            (34)                    

So, 4E  is locally asymptotically stable if and only if conditions (32), (33) and (34) are hold. However, it is a 

saddle point otherwise. 

 

V. Global Stability Analysis 
In this section the global stability analysis of the equilibrium points, which are locally asymptotically 

stable of system (2) is studied analytically with the help of Lyapunov method as shown in the following 

theorems 

 

Theorem (2): Assume that, the equilibrium point  0,,1 yxE   of system (2) is locally asymptotically stable 

and the following conditions hold   

 
  

1
22

1 
 xuxu

yu
                                                                                                                             (35a)               

 
  
     


















xuxu

yu
u

xuxu

uxue

22

1
6

22

121 14
1

                                                                                    (35b)             

x
u

uue

zu

yue
x 




9

732

4

31                                                                                                                       (35c)           

Then the equilibrium point 1E  of system (2) is globally asymptotically stable in the 
3
R . 

Proof: Consider the following function  

  z
y

y
yyy

x

x
xxxzyxV 

















 lnln,,1  

Clearly RRV 
3

1 :  is a 1C positive definite function. Now by differentiating 1V  with respect to time t  and 

doing some algebraic manipulation, gives that: 

  
    

  
  

 

 
  2

87
4

9
7

4

32

2
6

22

1
21

2

22

11 11

zuu
zu

yzu
zu

zu

zyyue
zxx

yyu
xuxu

yyxxu
xuexx

xuxu

yu

dt

dV



























  

So by using the conditions (35a),(35b) and(35c) we obtain that  
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  
    z

u

uue

zu

yue
xxyyuxx

xuxu

yu

dt

dV































9

732

4

32

2

6
22

11 1   

Then  
dt

dV1  is negative definite and hence 1V  is a Lyapunov function. Thus 1E  is a globally asymptotically stable 

and the proof is complete.                                                                                                                                                       

 

Theorem (3): Assume that, the equilibrium point  zxE


,0,2    of system (2) is locally asymptotically stable 

and the following conditions hold   

 8741 uu                                                                                                                                          (36a)                  

 5
4

9

4

32

2

11

2

1 u
zu

zu

zu

zue

xu

xue

xu

xu














                                                                                              (36b)                  

Then the equilibrium point 2E  of system (2) is globally asymptotically stable in the 
3
R . 

Proof: Consider the following function  

  


















z

z
zzzy

x

x
xxxzyxV 





lnln,,2  

Clearly RRV 
3

2 :  is a 1C  positive definite function. Now by differentiating 2V  with respect to time t  and 

doing       some algebraic manipulation, gives that:   

      

zu

zyu

zu

yzu
yuyu

zu

yzue

xu

xyue

xu

yxu

xu

xyu

zzuuzzxxxx
dt

dV





















4

9

4

92
65

4

32

2

11

2

1

2

1

2
87

22





 

So by using the conditions (36a) and (36b) we obtain that  

      y
zu

zu

zu

zue

xu

xue

xu

xu
uzzuuxx

dt

dV




































4

9

4

32

2

11

2

1
5

2

87
2




 

    Then  
dt

dV2  is negative definite and hence 2V  is a Lyapunov function. Thus 2E  is a globally asymptotically 

stable and the proof is complete.                                                                                                                                                 

                                                                                                 

Theorem (4): Assume that, the equilibrium point  zyE ˆ,ˆ,03   of system (2) is locally asymptotically stable 

and the following conditions hold   

 
   876

2

44

32 4
ˆ

uuu
zuzu

ue













                                                                                                            (37a)                    

 
xu

yue
z

xu

yue




 2

11

2

11
ˆ

1                                                                                                                        (37b)                

 
     zuzu

zu

xu

xu

zuzu

zu

ˆˆ

ˆ

44

9

2

1

44

9








                                                                                       (37c)               

 zz ˆ                                                                                                                                                     (37d)             

Then the equilibrium point 3E  of system (2) is globally asymptotically stable in the 
3
R . 

Proof: Consider the following function  

  


















z

z
zzz

y

y
yyyxzyxV

ˆ
lnˆ

ˆ
lnˆˆ,,3


 

Clearly RRV 
3

3 :  is a 1C  positive definite function. Now by differentiating 3V  with respect to time t  and 

doing some algebraic manipulation, gives that: 
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    
  

 

  

        zuzu

zyu

zuzu

zyu

zuzu

zyu

zuzu

yzu

xu

yxue

xu

xyue
xz

xu

xyu

xxzzuu
zuzu

ue
zzyyyyu

dt

dV

ˆ

ˆ

ˆ

ˆ

ˆ

ˆˆ

ˆ

ˆ

ˆ
ˆ

ˆˆˆ

44

9

44

9

44

9

44

9

2

11

2

11

2

1

22
87

44

322
6

3



























 

So by using the conditions (37a), (37b), (37c) and (37d) we obtain that  

 

    

     

  
 zz

zuz

yu

zuz

zu

zuz

zu

xu

xu
y

z
xu

yue

xu

yue
xzzuuyy

dt

dV






















































ˆ
ˆu

ˆ

ˆu

ˆ

ˆu

1
ˆ

ˆˆ6

44

9

44

9

44

9

2

1

2

11

2

11
2

87
3

 

 Then  
dt

dV3  is negative definite and hence 3V  is a Lyapunov function. Thus 3E  is a globally asymptotically 

stable and the proof is complete.                                                                                                                                                 

Theorem (5): Assume that, the equilibrium point  ***
4 ,, zyxE   of system (2) is locally asymptotically 

stable and the following conditions hold   
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** , zzyy                                                                                                                            (38d)                      

Then the equilibrium point 4E  of system (2) is globally asymptotically stable in the 
3
R . 

Proof: Consider the following function 
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Clearly RRV 
3

4 :  is a 1C  positive definite function. Now by differentiating 4V  with respect to time t  and 

doing some algebraic manipulation, gives that: 
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So, by using the conditions (38a), (38b),(38c) and (38d) we obtain  
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Then  
dt

dV4  is negative definite and hence 4V  is a Lyapunov function. Thus 4E  is a globally asymptotically 

stable in the 
3
R  and the proof is complete.                                                                                                                                    

 

VI. Numerical Simulation 
In this paper the dynamical behavior of system (2) is studied numerically for different sets of 

parameters and different sets of initial points. The objectives of this study are: first investigate the effect of 

varying the value of each parameter on the dynamical behavior of system (2) and second confirm our obtained 

analytical results. It is observed that, for the following set of hypothetical parameters that satisfies stability 

conditions of positive equilibrium point, system (2) has a globally asymptotically stable positive equilibrium 

point as shown in Fig. (2). 

Note that, from now onward the blue, green and red colors are used to describing the trajectories of 

the prey x , the predator y and the Host z . 
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Fig. (2): Time series of the solution of system (2) that started from two different initial points (0.8, 0.7, 

0.6) and   (0.9, 0.3, 0.1) for the data given by Eq. (39).  (a) trajectories of x  as a function of time, (b) trajectories 

of y  as a function of time, (c) trajectories of z  as a function of time. 

Clearly, Fig.(2) shows that system (2) has a globally asymptotically stable point as the solution of 

system (2) approaches asymptotically to the positive equilibrium point *)*,*,(5 zyxE   starting from two 

different initial points and this is confirming our obtained analytical results.  

Now in order to discuss the effect of the parameters values of system (2) on the dynamical behavior of 

the system, the system is solved numerically for the data given in Eq. (39) with varying one or more parameter 

each time. It is observed that for the data as given in Eq. (39) with 1.01 u , the solution of system (2) 

approaches asymptotically to ),0,(2 zxE


  in the xz  plane as shown in Fig. (3) 
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Fig.(3): Time series of the solution of system (2) for the data given by Eq.(39) with 1.01 u , which 

approaches to )33.1,0,33.2(  in xz  plane 
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For the parameters values given in Eq. (39) with 5.12.0 1  u , it is observed that the solution of 

system (2) approaches asymptotically to *)*,*,(4 zyxE   in the xyz space as shown in Fig. (4) 
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Fig.(4): Time series of the solution of system (2) for the data given by Eq.(39) with 5.12.0 1  u , 

which approaches to )87.0,79.0,93.0(  in xyz space. 

For the parameters values given in Eq. (39) with 8.85 1  u , it is observed that, the solution of system 

(2) approaches asymptotically to )ˆ,ˆ,0(3 zyE   in the yz plane as shown in Fig. (5). 
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Fig.(5): Time series of the solution of system (2) for the data given by Eq.(39) with 8.85 1  u , which 

approaches to   6.0,77.0,0  in yz plane. 

\ 

For the parameters values given in Eq. (39) with 01.05 u , it is observed that the solution of system 

(2) approaches asymptotically to )0,,(1 yxE   in the xy plane as shown in Fig. (6). 
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Fig.(6): Time series of the solution of system (2) for the data given by Eq.(39) with 01.05 u , which 

approaches to )0,71.1,34.0(  in xy plane. 

 

Keeping the above in view we will summarize our obtained numerical results in the form of table as 

shown below. 
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Table (1): numerical behavior of system (2) as changing in a specific parameter keeping other parameters fixed 

as in Eq.(39) 
Parameters varied in system (2) Numerical behavior of system (2) 

9.46.1 1  u  

9.81 u  

Approaches to periodic. 

Approaches to stable point in 
3. RInt . 

601.0 2  u  

72 u  

Approaches to stable point in 
3. RInt . 

Approaches to stable point in .planexz   

5.301.0 3  u  

8.46.3 3  u  

129.4 3  u  

1.123 u  

Approaches to stable point in planexz  . 

Approaches to stable point in 
3. RInt . 

Approaches to periodic. 

Approaches to stable point in planexy  . 

01.04 u  

2.002.0 4  u  

3.04 u  

Approaches to stable point in planexz  . 

Approaches to stable point in 
3. RInt . 

Approaches to stable point in planexz . 

5.15.0 5  u  

1.26.1 5  u  

2.25 u  

Approaches to periodic. 

Approaches to stable point in 
3. RInt . 

Approaches to stable point in planexz . 

6.1301.0 6  u  

7.136 u  

Approaches to stable point in 
3. RInt . 

Approaches to stable point in planexz  . 

4.003.0 7  u  

41.07 u  

Approaches to stable point in planexz  . 

Approaches to stable point in 
3. RInt . 

01.08 u  

8.202.0 8  u  

9.28 u  

Approaches to stable point in planexz . 

Approaches to stable point in 
3. RInt . 

Approaches to stable point in planexz  . 

2.201.0 9  u  

43.2 9  u  

1.49 u  

Approaches to stable point in 
3. RInt . 

Approaches to stable point in planexz  . 

Approaches to stable point in planexy   

1.001.0 1  e  

12.0 1  e  

Approaches to stable point in planexz  . 

Approaches to stable point in 
3. RInt . 

4.001.0 2  e  

6.05.0 2  e  

17.0 2  e  

Approaches to stable point in planexz  . 

Approaches to stable point in 
3. RInt . 

Approaches to periodic. 

 

VII. Conclusion And Discussion 
In this paper however, an investigation is devoted to an analytical study of a food web consisting of 

three species Syn-Ecological system involving a general predator with Holling type-II functional response. 

The existence, uniqueness and boundedness of the solution of the system are discussed. The existence 

of all possible equilibrium points is studied. The local and global dynamical behaviors of the system are studied 

analytically as well as numerically. Finally to understand the effect of varying each parameter on the global 

dynamics of system (2) and to confirm our obtained analytical results, system (2) has been solved numerically 

for a biological feasible set of hypothetical parameters values and the following results are obtained: 

1. For the set of hypothetical parameters values given Eq. (39), the system (2) approaches asymptotically to 

globally stable positive equilibrium point. 

2. For the set of data by Eq.(39), system(2) has a globally asymptotically stable positive point in the 
3. RInt  . 

However as the attack rate 1u  decreases then the predator species will faces extinction and the solution of 

system (2) approaches to  zxE


,0,2   in the first quadrant planexz   .while increasing 1u  will causes 
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destabilizing of system (2) and the point in the 
3. RInt .it is observed that the conversion rate parameter 1e  

and the intrinsic growth rate. 

3. As the half saturation rate 2u  decreases keeping the rest of parameters as in Eq. (39) then again the solution 

of system(2) approaches asymptotically stable positive point in the 
3. RInt . Otherwise the systems still have 

approaches to ),0,(2 zxE


  in the first quadrant planexz . It is observed that the half saturation rate 

parameter 4u  and the carrying capacity rate 8u . 

4. As the attack rate 3u  decreases keeping the rest of parameters as in Eq. (39) then again the solution of 

system (2) approaches to ),0,(2 zxE


  the fist quadrant planexz  . Otherwise the systems still have 

approaches to )0,,(1 yxE   in the first quadrant planexy  . 

5. As the natural death 5u  decreases keeping the rest of parameters as in Eq. (39) then again the solution of 

system (2) approaches to )0,,(1 yxE   the fist quadrant planexy  . Otherwise the systems still have 

approaches to ),0,(2 zxE


  in the first quadrant planexz  . 

6. As the attack rate 9u  decreases keeping the rest of parameters as in Eq. (39) then again the solution of 

system(2) approaches asymptotically stable positive point in the 
3. RInt . Otherwise the systems still have 

approaches to )0,,(1 yxE   in the first quadrant planexy  . 

7. As the conversion rate 2e  decreases keeping the rest of parameters as in Eq. (39) then again the solution of 

system (2) approaches to ),0,(2 zxE


  the fist quadrant planexz  . While increasing 2e  will causes 

destabilizing of system (2) and the solution approaches to a limit cycle in 
3. RInt . 
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