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Abstract: In this paper we are interested to the estimation of the mean € of a multivariate normal distribution
X ~ Np(H,O'ZI p) in NP, by a shrinkage estimators deduced from the empirical average estimator. We

study bounds and limits of risk ratios of some minimax shrinkage estimators in the both cases o? known and
unknown. We show that the limit of risk ratios of polynomial estimator, estimator proposed by T.F. Li and W.H.
Kuo [9] and the estimator proposed by D. Benmansour and T. Mourid, [3] to the maximum likelihood
estimator X tend to values less than one.
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I.  Introduction
Since paper of C. Stein [11], many studies were carried out in the direction of shrinkage estimators of the

mean 6 of a multivariate Gaussian random variable X ~ Np(9,62| p) in RP. In these works, one has

estimated the mean € of a multidimensional Gaussian distribution Np(9,0'2| p) in NP by shrinkage
estimators deduced from the empirical average which are better in quadratic loss than the empirical average.

More precisely, if X represents an observation or a sample of multidimensional Gaussian
law N b (9, ol b ) so the aim is to estimate @ by an estimator O relatively at the quadratic loss function :

L(5,0)=[o(X)-6[

where ||||p is the usual norm in RP . We associate his risk function :

R(5.0)-E,(L(5.60))

W. James and C. Stein [8] introduced a class of James-Stein estimators improving the maximum likelihood
estimator &, = X , when the dimension of the space of the observations p =3, noted :

p-—2

0 =|1- ||X||2 X inthe case where & is known
and
2
Oy = 1—([:)_—2)82 X in the case where & is unknown,
(n+2)|]

where S% ~ 0‘2;55 is the estimate of o7
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A.J. Baranchik [1] proposed the positive-part of James-Stein estimator dominating the James-Stein estimator
when p >3, noted :

-2
0, =max| 0, 1— P X in the case where o2 is known,

X[

2
0y =max| 0, l—% X in the case where o2 is unknown.
n+

G. Casella and J.T. Hwang [5] studied the case where o is known (02 :1) and showed that if the limit of

2
0
the ratio ﬁ , When P tends to infinity is a constant € > 0, then

p
_ R(6..60) . R0 c
plim, — >y =, Im =
R(X,6) R(X,0) 1+c
Thus they showed the stability of the dominating of James-Stein estimator and its positive-part, to the maximum
likelihood estimator, when the dimension of space parameter P tends to infinity.

Li. Sun [13] has considered the following model : (yij/ﬁj,02)~ N(Hj,az) i=1..n ,

j=1,...,mwhere E(yu): 6’j for the group | and var(yij) = o %is unknown. The James-Stein estimators
are written in this case

5% = (51JS’...15JS)' ’

-3)8% }_ o\ o .
where 5;5 :[1—((;\T+—2))_|_2J(yj - y)+ y, ]=1...,m,

where 82=ii(y"—7j)?T2=ni(7,-—7)2, y, =2 — y=22— N=(n-1m,
j=1

i=1 j=1 n m
5JS ’ 9
he has given a lower bound for the ratio %(X—@)) , which allows him to conclude that

R
R(=.0)_ . R(E*.0)_  q

mli—m>+oo m Il—m»+oo - 2!
R(X,0) R(X,6) Q+%

Z(‘gj _5)2
if ,lim 1= =(Q exists.

m
D. Benmansour and A. Hamdaoui [2] are interested the case where o’ is unknown. We showed that if

2
. 0
lim |—”2 = C(> 0), then the risk ratio of James-Stein estimator J; to the maximum likelihood estimator
po

p =+

2
— +cC
n+2

X, tends to the value
1+c

ol
po

when P tends to infinity and N is fixed. Under the same condition

namely p|i_m,+co—2 =C, authors showed that the risk ratio of James-Stein estimator J35 to the maximum
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C
likelihood estimator X , tends to the value 1— when N and P tend simultaneously to infinity. They also
+C

found the same results for the positive-part of James-Stein estimator.

Moreover, A. Hamdaoui and D. Benmansour [7] studied the behaviour of risk ratios of general class of
shrinkage  estimator  proposed by D. Benmansour and T. Mourid [3] given by

é‘l,ﬁfs,r//(x) =05, =0 +IW(SZ,HX2H)X , in the case where &”is unknown. Then, they showed that

2
: 0
if lim & =c(> 0), the risk ratio of general class of shrinkage estimator é'l , tend a value less then
po

N

1, when N and P tend simultaneously to infinity, provided the function y satisfies certain conditions.
When the dimension P is moderate, A.C. Brandwein and W.E. Strawderman [4] considered the following

model (X ,U ) ~ f(“X - 49”2 +||U ||2) where dim X =dimé@ = p and dim U =K. The classical example

p+k HX—HHZ
1
of this model is, of course, the normal model of density( J e 2 They showed that the estimator

N2ro

2
U
o=X+ % g(X) dominate X , so that & is minimax, provided the function ¢ satisfies certain
+

conditions.
Y. Maruyama [10] has also studied the minimaxity of shrinkage estimator when the dimension of

parameter’s space is moderate. Then he considered the following model : Z ~ N, (6, 1) and the so called = -

1
i=d o
norm given by : ||Z||p = {Z|Zi|p} , P> 0. He stydied the minimaxity of shrinkage estimators defined as
i=1

follows : 6, = (Gu--y,) with: &, =[1—g(12] ) /A2’ “[2.|" )b whereO < < (d ~2)/(d -D),
p>0.

In this paper, by taking the same model, namely X ~ N | (49, o?l o ) our aim is :

Firstly, when o’is known, we show the same results linked of risk ratios of James-Stein estimator, obtained in
G. Casella, and J.T. Hwang [5], for two classes of shrinkage estimators dominating the James-Stein estimator,
so the first class is polynomial estimators proposed by T.F. Li and W.H. Kuo [9] and the second is the class of
estimators proposed by D. Benmansour and T. Mourid [3].

Secondly, we give another proof different to that given in A. Hamdaoui and D. Benmansour [7], which shows
the stability of the minimaxity of two classes of estimators dominating the James-Stein estimator, when the
dimension P of the parameter space and the size N of the sample, tends simultaneously to infinity.

In Section 2, we recall two essential results obtained in the paper of D. Benmansour and A. Hamdaoui [2].

2
: 0
First, we shown that under the condition p"ﬂ.m & =C(> 0), the risk ratio of James-Stein estimator J ,
po
2
——+C
n+2

to the maximum likelihood estimator X , tends to the value when P tends to infinity and N fixed.

2
. 0
The second result indicates that under the same condition |, lim & =C(> 0), the risk ratio of James-Stein
po
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C
estimator O3 , to the maximum likelihood estimator X , tends to the value Tec' when N and P tend
+C

simultaneously to infinity.

In Section 3, we give main results. In the first part of this Section, we show the same results obtained
by G. Casella, and J.T. Hwang [5], (respectively by D. Benmansour and A. Hamdaoui [2]), according to the

case where o® known (respectively o’ unknown), for the class of polynomial estimators proposed by T.F. Li
and W.H. Kuo [9]. The same results are proved in the second part of this section, for the class of estimators
proposed by D. Benmansour and T. Mourid [3]. Thus, we give another proof different to that given in A.
Hamdaoui and D. Benmansour [7], which shown the stability of the minimaxity of both classes of estimators,
cited as above, when the dimension P of the parameter space and sample size N, tends simultaneously to

infinity.
In section 4, we give a graphic illustration of different risk ratios for various values of N and p. An
appendix is given at the end of this paper.

Il.  Preliminary

Let us recall that if X ~ Np(9,62| o), Where the parameter o? is unknown, the risk of the

maximum likelihood estimator X is pa2 , and the form of James-Stein estimator is

2
5% = 1_& X (2.1)

(n+2) x|’
where S% ~ Gzzﬁ is the estimate of o7
From R. Christian [6], the risk of the James-Stein estimator given in (2.1) is

S ) =op——"_(p—2?E| — 1
R(&s,@)—a{p (P2 E(p—2+2K]}’
ol
.

2
0
where K ~ P u being the Poisson distribution of parameter ——
20 20

Theorem 1 (D. Benmansour and A. Hamdaoui [2]). If J_m

+o0

2
|||36_”2 =c(>0), we have
lo}

2
- C+———

PP R(X,0) e+l

2
. 0
Corollary 2 (D. Benmansour and A. Hamdaoui [2]). If lim & =c(>0), we have
po

L lim Rle5.0)_ e
P R(X,0) e+l

(2.3)

I11.  Main results
In the next we prove the main results of this paper. At first we show that the limit of risk ratio of

C
estimator proposed by T.F. Li and W.H. Kuo [9], tend to —1(< 1), when p tends to infinity in the case o’
C+

known and whenn and P tend simultaneously to infinity in the case o unknown. Secondly, we show the
same results for the class of estimator proposed by D. Benmansour and T. Mourid [3].
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3.1. Family of Tze Fen Li and Wen Hou Kuo

o known : Let X ~ N p(é’, I, ) and for all r (2 <r< p%zj , we consider the estimator
S, =8y +dX|X]| ", (3.1)
L r(p;rj
hered=(r—-2)22% ————~
where (r-2) (p_2r+2j
L el
2
We know that the risk of the estimator o, is
R(S,,60) = R(Sy5,6) - 2d (r —2)E X[ J+ d2E{X "} (32)

For the next we need the following lemma.

Lemma 3 1f X ~N p(ﬁ, | p) then, forall r (O<r<p): E(“X”*r) is a function strictly decreasing with

respect to ||l9||2 .
Proof.

x| )= lxF)7
o F(p+K—r)
—22E # ,

2

3.3)

lel

where 1 =-——.

The equality (3.3) comes from formula (5.2) lemma 10 in the appendix.

p r
r F( +k— j v 1
iEQ|X||’r)= 222#(_ ety k’l—e‘i}
oA k>0 r(p_i_ kj k! k!
2

e —_—
LR COR 2 K

B R P L ET S
223y et -Ei——— 2

K1
k420 F(p +k, +1j k! F(p + Kj
2 2

Y r Y r
o F[+k—) 1 F(+k—} ‘
_o2 Z 2 2 k/"t ) 2 2)A ot
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. F(S+K+1—;j r(;uK_Q
F(p+K+1j F(p+ Kj
2 2
L R0
=22E
F(p + K +1)
2

. F(E+K+l—£j
=_7r22E <0.
F(g+ K +1j

Then E(“X ||_r) is strictly decreasing with respect to ||l9||2 -

2
M =c(>0), then

Theorem 4 If | lim
— p

+00

- R(5,,0) ¢
P R(X,0) c+1
Proof. On the one hand, from T.F. Li and W.H. Kuo [9], we have

R(S,,0)<R(S,0) Vp=3and V|6|* >0.
Hence

T L) P ONY)
P R(X,0) TP T R(X,6)

. R(65.60) ¢
and from G. Casella and J.T. Hwang [5], we have b lim =

Mo RX,0) 1vc ™

R(6,.0)_ ¢

AL o R(X,0)  1+c

On the other hand, following the formula (3.2) we have

R(5,,6)> R(5,5,0)—2d(r —2E(X|").

According the formula (3.3), and the fact that E(“X”fr) is strictly decreasing with respect to ||49||2 (see lemma
3) we have

p_r
E(x|)<22 u . a4

Therefore
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R(5,,0) _ R(5,,0) (r—2Y {F(p;rj}z

R(X.60) -

R(X,0) r( p—22r +1}r(p} .

2
Using the Stirling formula (, lim F(y +1) =1), we have

R@G.0), iy Rl0s.0)

P R(X,60) P T R(X,6)

P @(p—z 2r](pfr]+ie(p;r) \/E( b j(gljie[gl}'

where €' is the exponential function. Thus

l > i -
pm+ (X 9) p I_.+oo R( ) P —+x p2
> im RUs.0)_ c
P R(X,0)  1+c
2e(r - 2f

o unknown : Let X ~ Np(é?,o-zlp), Y:£~ Np(£,|pjand for all r(2<r< p+2j’ e
o o 2
consider

57 =55 +9(S2 XX, (35)

oo o)
2 (n+2)1“(n+22r}r( p—22r+2j'

We know that the risk of the estimator o, is

where g =

r F(j r+2r
o — o 2 2 _r) 2 _ p_2 2
R(57,0)=R(5%,0)+ 0% 2g| 22(p ) (n} b2 (nj
! !
2 2
r[n+22rj
o Z e ) @9
2)
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Theorem 5 If  lim ” ” =c(>0), then

- R[s7.0)_ ¢
n,p Il—m>+oo
R(X 0) c+1
Proof. On the one hand, from T.F. Li and W.H. Kuo [9], it is clear that

R(67,0)<R(6%.60) vp=3, vn>1landV|6]* >0.

Then ( ) ( )

. R, ,0 . Rlo%. 60
olim ROX.0) <, lim R()J(Sﬁ)
and

oo lim R§U'9)£n lim R(5j‘s,<9)l
P R(X,0) """ 7 R(X,0)
Thus, from formulas (2.2) and (2.3) we have

2
c +C
im_ R67.0)_n+2
P== R(X,0) ~  1+c

and

. Rlo,0 c
n,p Il—m>+oo ( y ) S :
' R(X,0) " 1+c
On the other hand, from the formula (3.6) we have

R(57,0) _R%.0) ., (p+2) =2 r(m;”j )
R(X.0)Z R(x.0) Opir2)” WEQM' )
2
_R(sz.6
" R(X,0)

Leanen 1) 12 oo™ %)
2 p(n+2)r(n+2rjr(p—2r+2}(n+2) F(g} F(g)

2 2

the inequality (3.7) comes from the Lemma 3 and the formula (3.3). Hence
R(57,0)  R(6%.0)
R(X,8)  R(X,0)

_ofr_2)0+ PXp- a%t?j Fﬁ;ﬂz %tf”)l_
T 1

Using the Stirling formula, we have

- R(7,0) R(6%.6)
ol R 0) e M (X, 0)
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( nJer j{ \/ﬁ( n-+ ; - Zj(mgz*ge(”;z)}z

“n Ii—m-+oo 2e(r - 2)

2 2 n+2r-2 1 Ne2r— n-2.1 n—
R = I ER
. 2e(r — Z{Mj

> lim,, M_n lim 22
PTER(X,0) T (n+2)

o im R(6%.6)_ c
P R(X,0) 1+c

2¢(r —2)(nJ2rrj
because , lim =0.m

* (h+2)
3.2. Family of Djamel Benmansour and Tahar Mourid

o known : Let the family of estimators
2
Orssw = Ors, = Ous +|‘//(“X|| )X , (38)
where |is a positive parameter and y is a function with support [O,b], b<p-2, strictly positive and

OSW(U)SIZ[pT‘Z_l}or al u<[ob].

The risk of the estimator 0 5 is

RS, ,60)= R(5JS,9)+TIu l//(U){'!//(U)-i— 2—2(pT_2)};(§(/1;du)

b
- 2|/1J.V/(U)Z§+z(/1;du) ou 2=6. (3.9)
0

2
Theorem 6 If | lim @ =c(>0), then
im R 8)_ e
PT R(X,0) e+l

Proof. On the one hand, from D. Benmansour and T. Mourid [3], we have

R6Ls, ) RE.0) 5 g el >0,
R(X,8) ~ R(X,0)
hence
lim Mg lim M
P R(X,0) TP R(X,0)
From G. Casella and J.T. Hwang [5], we have  lim R(5J5’0)= ¢ , thus
P R(X,0) c+1
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Rlo, 5 .6

lim__ 6l 0) o

P R(X,6) T e+l

On the other hand, according to the formula (3.9) we have

b b

R(6,.5,0)> R(8.,0)—2(p—2) [yr(u)2 (2 du) - 202 [y ()2, (4;du)
0 0

and from the formula (5.1) of Iemma 9 in the appendix, we have

_ZAIW Zp+2(ﬂ’ dU J.UW Zp 2(2 dU)

_(p_—Z — j , We obtain
| u

b1 b
R(615..0)2 R(05.,0)-4(p - 2F [ 22 (3u)-2(p -2 22, (1:du).
0 0

According to the formula (5.1) of lemma 9 in the appendix, we have

b

1

~(p-2)] - 7z (4idu)2 ~P(z; ,(2)<b),

0

where P(;(;_z(l) < b) indicate the probability of the set {;(ﬁ_z(l) < b}.
The fact that b < p—2, we have

~(p- 2] ?(4;du)> —P(z? (1)< p-2),

then R(é],ﬁJs "9)2 R(5Js , 9)_ 6(p - Z)P(Zi—z(ﬁ) sp- 2)’

and the fact that 0 < w(u) <

hence

_ R6,.0)_ RS0 ..
P"—m>+ooﬁ Zp lim R(()J:ﬂ))_6p"ﬂ+wp(ls—z(l)5 p—2).

From G. Casella, and J.T. Hwang. [5], we have pli_m,mP(;(f)fz(/t)
As pm+w R(5JS’0) _

R(X,0) c+1

lim REs,.0) > lim R(3:5.0)

PT= R(X,0) P T R(X,0)

p—2)=0.

IA

, thus we find

o unknown : Let the family of estimators
57 =87 =57 +1y(X|F.s?)x. (3.10)

165w 1,6% 3%

where | is a positive parameter, and l//(., SZ) is a function with support [O,b], b < p-2, strictly positive

n+2 u >
n+2 u

2
with 0<y(u,5?)< | (p—zs——lJl[pzszm]forall uelo,b] and $?>0.
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Where : |
: :

-25°
j indicates the indicating function of the set {—2— -1> 0] .
n+

Proposition 7 The risk function of the estimator 5,655 is
@IS

R, ,.0)-Rloc, o)+ | T'uw(u,sz%lw(u,szﬁZ—Kp—?%}xﬁ(o;dsz)xﬁ(z;du)
ou

n+
~ 2020 (2,,(2),52)), (311)
2
where a:p—_z and l=@.
n+2 o

Proof. According immediately to the following equality
Elx. o x| 5 )= 0B} (2)57)

and of the independence of two random variables X and S°. =

Theorem 8 If | lim

+00

2
|F|J9_”2 =c(>0), then
(o2

o7 0) 25t

l =
Ao R(X,0) c+1

and

I' R(éf-é'gs ’0) c
n m e’e] - "
P OR(X,6) e+l

2(p-25°
Proof. On the one hand, it is clear from the condition 0 < l//(u, SZ)S T( P=<o —1} I[

Rls”.,0)<R(6%,0) Vp=3and vn=1,

o 1
1,6%

hence

Rlo°.. .0 ‘ o )
M+ (|,5j'5 )S Iier R53319
P OR(X,0) TP T R(X,0)
and
Rlo°.. ,0 o
lim Mgn lim R5JS’9_
P OR(X,8) TP T R(X,0)
Therefore, according to the formulas (2.2) and (2.3), we find

R(s.0) 2 ke

li 1,63 < n+2
P R(X,0) c+1
and

Rlo°. .0
Iim ( 1,6% )< C

mPTET R(X,0) T e+l
On the other hand, from to the proposition 7, we have
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Rls70)=R(s7,0)-2P=2)

16%w '

T Tl/f(u $2)8242(0;d52 )2 (4;du)

~ 2020 (2,,(2),52)).
According to the formula (5.1) of Ilemma 9 in the appendix and the fact that

0<l//(US) I(p 282—lJl[pzszmj,weobtain

n+2 u

+2u

Rlo7,. .0)= R(5;‘S,9)—4(p_§))22 Z

+

f(S:)Z 22(0:d5% )2 (2 du)

+
8

2200008 % ) 5 (2:du)

|

Sy
=)

-
T
AN

N—

9

N
O e T

wn

'O

I\)

~—

N
Ot T Q | & ey

N +

8

° o
T
8

) 0as?)zesan)

>R(0%,0)-4 .

—_
>
+
N

S~

N

np+2 02”3 2(0;dS2 )2 , (4 du).

Using the Lemma 9 in the appendix, the independence of two random variables X and Sz, and the fact
that — P(;(ﬁfz (1)< b)Z —P(;(ﬁfz (A)<p- 2), we have

R( 05 9)2 R(5%.60)- 6(p—2)$04p(;(§2(/1)£ p-2),

hence

Rlor,; .0) R(5%.0) 6(p—2)nc*

fim 1B s 5:9)_ i  APZENT iz (3)<p o2
plm ., R(X,6) p IM R(X,6) p IM po*(n+2) (Zp—z( )<p )
From G. Casella and J.T. Hwang [5], we have

pliﬂmP(;(s 2( )S p—2):0 and by using formulas (2.2) and (2.3), we have

Rl6° . ,0 o
i, ),y R0
R(X,0) ° R(X,0)
2
——+C
s Nn+2
¢+l
and
Rl6° ., ,0 o
n,pliM, ("‘5” )-n lim RVis.0
PT R(X,0) P T R(X,0)
> ¢
¢+l
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IV.  Simulation results
R(52.0) R(s',0) . R(é’.‘;gs 0)
R(X,0) " R(X,0) R(X,0)

]and different values of N and p .

We illustrate graphically in what follows the risk ratios: as function

2
of 1 =||:_;”2,when W(u’sz):(p_—28_2_1]|(

1 ' = Maximom Kelhood estimaior

08y _ P Sipin eofimainE
]! =— BenmansourDand Mound T estinainr
0.75 Tze Fen Li and Wen Hou Fuo estimeator

ITTE R % A B W
1

R(52.0) R(s7,6) . Rl57,, 0)
R(X,0) R(X,8) " R(X,0)
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V.  Appendix
Lemma 9 (G. Casella and J.T. Hwang [5]). For any real function h such as E{h(;(j (/1)))55 (ﬂ,)} exist, we
have

Eth(z: (A))r2 (W)= aElhlze.. (D) + 22E (22, (1) 51)

Lemma 10 (D. Benmansour and T. Mourid [3]). Let a random variableU ~ ;(FZ,(/I) fors>0,r > —g,

1 At
t= and K a random variable of Poisson’s law P| — |, we have
1+2s 2

o Alt-1) F(S+K+r)
EUe™)= ri2e s gl2 )
F[p+Kj
2

VI.  Conclusion
In context of study of asymptotic behaviour of the risk ratios of shrinkage estimator of the mean 6 of a

(5.2)

multivariate Gaussian random N p(6’,0'2| p)in RP. G. Casella and J.T. Hwang [5], studied the case where

lel”
Y

= C(> 0) then the risk ratios w and
R(X,0)
R\95.0

X 0) tend to —1 D. Benmansour and A. Hamdaoui [2] have taking the same model, namely

p(ﬁ, ) with o unknown and estimated by the statistic S? ~ g? ;(n independent of X . They
tend to

R(X,0) R(X,6) c+1
when P tends to inflnlty and N fixed in the one hand, and in the other hand, they showed that in the same

2
. 0 Rlow,0 RO, 0 c
condition, namely lim & =c¢(>0), the risk ratios JL) and JJS—> tend to —— when
po R(X,0) R(X,0) c+1
p and Ntend simultaneously to infinity, without assuming any order relation or functional relation between p

and nN.
In our work by taking the same model X ~ N | (9, o’l o ) we study the asymptotic behaviour of the risk

o’is known (o2 =1), they showed that if lim

2
o o+ ——F+C
= ¢(> 0) then the risk ratios R(5JS’0) and R(5JS ’6) n+2

showed that if pIi

ratios of some minimaxs shrinkage estimators, then we show that the limit of risk ratios of polynomial
estimator, estimator proposed by T.F. Li and W.H. Kuo [9] and the estimator proposed by D. Benmansour and
T. Mourid [3], to the maximum likelihood estimator, tend to values less than one.

An idea would be to see whether one can obtain similar results of the asymptotic behaviour of risk
ratios in the general case of the symmetrical spherical model, for general classes of shrinkage estimators.
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