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I. Introduction 

The notion of ternary Γ-Semiring has been introduced by D. Madhusudhana Rao and M. Sajani 

Lavanya [5] in the year 2015. The notion of Strongly prime ring has been introduced by Handelman and 

Lawrence [3].  The notion of TernarySemiring was introduced by T. K. Dutta and S. Kar [1] in the year 2003 as 

a natural generalization of ternary ring which was introduced by W.G. Lister [4] in 1971.  Some earlier works of 

Ternary Γ-Semiring may be found in [5, 6, 7, 8].  In 2007, T.K.Dutta and M.L. Das [2] introduced and studied 

right strongly prime Semiring. 

. 

II. Preliminaries 

Definition 2.1[5]:Let T and Γ be two additive commutative semigroups.   T is said to be a Ternary 𝚪-Semiring 

if there exist a mapping from T ×Γ× T ×Γ× T to T which maps ( 1 2 3,  , ,  , x x x  )   1 2 3x x x  satisfying 

the conditions: 

i) [[a𝛼b𝛽c]γd𝛿e] = [a𝛼[b𝛽c𝛾d]𝛿e] = [a𝛼b𝛽[c𝛾d𝛿e]] 

ii)[(a + b)𝛼c𝛽d] = [a𝛼c𝛽d] + [b𝛼c𝛽d]   

iii) [a (b + c)βd] = [a𝛼b𝛽d] + [a𝛼c𝛽d] 

iv) [a𝛼b𝛽(c + d)] = [a𝛼b𝛽c] + [a𝛼b𝛽d] for all a, b, c, d∈ T and 𝛼, 𝛽, 𝛾, 𝛿∈ Γ. 

 Obviously, every ternary semiring T is a ternary Γ-semiring.  Let T be a ternary semiring and Γ be a 

commutative ternary semigroup.  Define a mapping T ×Γ× T ×Γ× T ⟶ T by a𝛼b𝛽c = abc for all a, b, c ∈ T 

and 𝛼, 𝛽∈Γ.  Then T is a ternary Γ-semiring. 

 

Definition 2.2[5]: An element 0of a ternary Γ-semiring T is said to be an absorbing zero of T provided 0 + x = x 

= x + 0and 0𝛼a𝛽b = a𝛼0βb = a𝛼b𝛽0 = 0 a, b, x   T and 𝛼, 𝛽∈Γ. 

Note that a Ternary Γ-Semiring may not contain an identity but there are certain ternary Γ-semiring 

which generate identities in the sense defined below: 

 

Definition 2.3[5]: An element a of a ternary Γ-semiring T is said to be an identity provided a𝛼a𝛽t = t𝛼a𝛽a = 

a𝛼t𝛽a = t tT, 𝛼, 𝛽∈Γ. 

Note 2.4[5]: An identity element of a ternary Γ-semiring T is also called as unital element. 

 

Definition 2.5[5]: Let T be ternary Γ-semiring. A non empty subset ‘S’ is said to be a ternary sub𝚪-semiring of 

T if S is an additive sub-semigroup of T and a𝛼b𝛽cS for all a, b, cS and 𝛼, 𝛽∈Γ. 

Note 2.6[5]: A non-empty subset S of a ternary Γ-semiring T is a ternary subΓ-semiring if and only if S + S ⊆ S 

and SΓSΓS   S. 

 

Definition 2.7[5]: A nonempty subset A of a ternary Γ-semiring T is said to be left ternary 𝚪-ideal of T if (1) a, 

b ∈ A implies a + b ∈ A.  (2) b, c   T, a A, 𝛼, 𝛽∈Γ implies b𝛼c𝛽a A. 
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Note 2.8[5]: A non-empty subset A of a ternary Γ-semiring T is a left ternaryΓ-ideal of T if and only if A is 

additive sub-semigroup of T and TΓTΓA   A. 

Definition II.9[5]: A nonempty subset of a ternary Γ-semiring T is said to be a lateral ternary 𝚪-ideal of T if (1) 

a, b ∈ A ⇒a + b ∈ A.  (2) b, c  T, a A, 𝛼, 𝛽∈Γ⇒b𝛼a𝛽c   A. 

Note 2.10[5]: A nonempty subset of A of a ternary Γ-semiring T is a lateral ternary Γ-ideal of T if and only if A 

is additive sub-semigroup of T and TΓAΓT   A. 

 

Definition 2.11[5]: A nonempty subset A of a ternary Γ-semiring T is a right ternary 𝚪-ideal of T if (1) a, b ∈ A 

⇒a + b ∈ A.  (2) b, c   T, a A, 𝛼, 𝛽∈Γ⇒a𝛼b𝛽c   A. 

Note 2.12[5]: A nonempty subset A of a ternary Γ-semiring T is a right ternary Γ-ideal of T if and only if A is 

additive sub-semigroup of T and AΓTΓT   A. 

 

Definition 2.13[5]: A nonempty subset A of a ternary Γ-semiring T is said to be ternary 𝚪-ideal of T if   

(1) a, b ∈ A ⇒a + b ∈ A 

(2) b, c   T, a  A, 𝛼, 𝛽∈Γ⇒b𝛼c𝛽aA, b𝛼a𝛽c   A, a𝛼b𝛽c   A. 

Note 2.14[5]: A nonempty subset A of a ternary Γ-semiring T is a ternaryΓ-ideal of T if and only if it is left 

ternaryΓ-ideal, lateral ternaryΓ-ideal and right ternaryΓ-ideal of T. 

 

Definition 2.15[6]: Let T be a ternary Γ-semiring and a∈T.  Then  

(i) principal left ternary 𝚪-ideal generated by a is given by  

<a>l= 0

1

: , , ,  and 
n

i i i i i i i i
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(iii) principal right ternary 𝚪-ideal generated by a is given by 

<a>r = 0

1

 : , , ,  and 
n

i i i i i i i i

i

a r t na r t T n z    



 
    

 
  

(iv) principal two sided ternary 𝚪-ideal generated by a is given by 

<a >t = 1 1

1

0

 : 

, , , , , , , , , , , , , ,  and 

n n

n
i i i i j j j j k k k k k k k k

j k

i

i i j j k k k k i i j j k k k k

r s a a t u l m a p q na

r s t u l m p q T n Z

       

       

 

 

 
   

 
    

 
  

(v) principal ternary 𝚪-ideal generated by a is given by 

<a>=

1 1 1 1

{ 
n n n n

i i i i j j j j k k k k l l l l l l l l

i j k l

p q a a r s t a u v w a x y na         
   

        

0: , , , , , , , , , , , , , , , , , , , }i i j j k k l l l l i i j j k k l l l lp q r s t u v w x y T n Z             . 

Where  denotes a finite sum and 0z 
is the set of all positive integer with zero. 

 

Definition 2.16: A ternary Γ-ideal I of a ternary Γ-semiring T is called a k-ternary Γ-ideal if 

; ,a b I a T b I a I      .  

Definition 2.17: A proper ternary Γ-ideal P of a ternary Γ-semiring T is said to be a prime ternary Γ-ideal of T if 

for any three ternary Γ-ideal A, B, C of T, AΓBΓC ⊆P implies A ⊆ P or B ⊆ P or C ⊆ P.  

 

III. Right Strongly Prime Ternary 𝚪-Semirings 
Definition 3.1: A ternary Γ-semiring T is said to be right strongly prime ternary Γ-semiring provided for every 0 

≠ x in T, there exist finite subsets S1, S2, S3 of T such that 
1 2 3 {0} 0 for all x S S S a a a T       .  
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Example 3.2: Let 2{ / , , 1}T r i r R Q i      and Γ = Q, where R is the set of all real numbers and Q is the 

set of all rational numbers.  Then together with usual binary addition and ternary multiplication, T forms a ternary 

Γ-semiring.  Let 0r i T    and { }S r i  then 0r i S S a     implies that a = 0 for all a T .  Hence T is a 

right strongly prime ternary Γ-semiring. 

Theorem 3.3: A ternary 𝚪-semiring T is right strongly prime ternary Γ-semiring if and only if for every 0 Γ 

x in T, there exist S of T such that {0} 0 for all x S S Sa a a T       . 

Proof: Suppose T is a right strongly prime ternary Γ-semiring.  Let 0 ≠ x ∈ T.  Then there exist finite subsets S1, 

S2, S3 of T such that 
1 2 3 {0} 0 for all x S S S a a a T       .  Let 

1 2 3S S S S   .  Then S ⊆ S1, S ⊆ S2, S ⊆ 

S3 and S is finite.  Suppose that {0}x S S Sa     for all a T .  Then x S S Sa   ⊆
1 2 3 {0}x S S S a    for all 

a T .  Therefore 0 for all a a T  . 

 Converse part is obvious. 

 

Definition 3.4: A ternary Γ-semiring T is said to be a prime ternary Γ-semiring provided the zero ternary Γ-ideal 

{0} is a prime ternary Γ-ideal of T. 

 

Theorem 3.5: Every right strongly prime ternary Γ-semiring is a prime ternary Γ-semiring. 

Proof: Suppose that T is a right strongly prime ternary Γ-semiring.  Let X, Y, Z be three ternary Γ-ideals of T 

such that {0}X Y Z   .  Suppose that {0}X   and {0}Y  .  Since {0}X  , there exists ( 0)x X  .  Since T 

is a right strongly prime ternary Γ-semiring, by theorem 3.3, there exists a finite subset S of T such that 

{0} 0x S S S y y       for all y T .   

Now ( ) ( ) ( ) ( ) ( ) {0}x S S S Y T Z x S S S Y T Z X T T T Y T Z X Y Z                        .   

This implies that {0}.Y T Z     Again, since {0}Y  , there exists ( 0)p Y  and for this ( 0)p  , there exists a 

finite subset U of T such that {0}p U U U z Y T T T Z Y T Z             for z Z .  This implies that z = 0.  

Since z is an arbitrary element of Z, we find that Z = {0}.  This shows that {0} is a prime ternary Γ-ideal of T and 

hence T is a prime ternary Γ-semiring. 

 

Theorem 3.6: Let T be a ternary Γ-semiring with identity element e .  Then the following are equivalent: 

i) T is right strongly prime ternary Γ-semiring. 

ii) if A is a non-zero ternary Γ-ideal of T, there exist finite subsets H of A and G of T such  

that {0} 0    H G y y y T       . 

iii) If ( 0)x T  , there exist t T and finite subsets H, G of T such that 

{0} 0    x t H G y y y T          

Proof: (i) ⇒(ii): Suppose that T is a right strongly prime ternary Γ-semiring and A be a non-zero ternary Γ-ideal 

of T.  Since A is a non-zero ternary Γ-ideal of T, there exists ( 0)x A  .Again since T is right strongly prime, 

there exists a finite subset G of T such that 0  0  x G G G y y y T         .  Let H = xΓGΓG.  Then H = 

xΓGΓG ⊆AΓGΓG⊆A i.e. H is a finite subset of A.  Then there exist finite subsets H of A and G of T such that  

HΓGΓy = {0} implies that y = 0 for all y∈T. 

 (ii) ⇒(iii): Suppose that A is a non-zero ternary Γ-ideal of T, there exist finite subsets H of A and G of T 

such that {0} 0    H G y y y T       .Let ( 0)a T  .  Then <a> is a non-zero ternary Γ-ideal of T.  Now by 

condition (ii), there exists finite subsets H of <a> and Gof T such that HΓGΓy = {0} implies that y = 0 for all y∈T.  

If possible, let aΓTΓT= {0}.  Then <a >ΓTΓT= {0}.  Since HΓGΓa⊆<a >ΓTΓT, we have HΓGΓa = {0}.  This 

implies that a = 0, a contradiction.  Therefore, aΓTΓT Γ{0}.  Thus there exist r, x∈ T and ,    such that 

0a r x   .  Then A a r x    is a non-zero ternary Γ-ideal of T.  By condition (ii), there exists a finite 

subset I of A and a finite subset J of T such that IΓJΓy = {0} implies that y = 0 for all y∈T.  Since I is a finite 

subset of A, we find that  

1 1 1

{ }
m l s t

i i j j k k p p p p

i j k w

I n a r x a r x s t p q a r x u a r x v c d a r x e f
   

                           ; where n, m, l, s, 

t∈
0Z  ; si, ti, pj, qj, uk, vk, cp, dp, ep, fp∈ T. 

1 1 1

{ ( ) }
m l s t

i i j j k k p p p p

i j k w

n a r x a r x s t p q a r x e u a r x v e c d a r x e f
   

                              

Let 0{ , , , : 1,2,3,..... ; 1,2,3,..... ; 1,2,3,..... ; , , }i i k p pH x x s t x v e x u v i m k s p t m s t Z            

and let {0}.a r H J y     Then {0}J I y   .  By condition (ii), we have y = 0. 
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 (iii) ⇒(i): Suppose that If ( 0)x T  , there exist t T and finite subsets H, G of T such that  

{0} 0    x t H G y y y T         .  Let  ( 0)a T  .  Now taking 
1 2 3{ },  and G t G H G G     we find that 

there exists finite subset 
1 2 3, ,G G G  of T such that 

1 2 3 {0} 0a G G G y y       .  Hence T is right strongly 

prime ternary Γ-semiring. 

Example 3.7: Let T and Γ be the set of all 2 × 2 matrices over Q, the set of rational numbers Define A + B = 

usual addition and AαBβC = usual matrix product of A, α, B, 𝛽, C; for all A, B, C ∈ T and for all α, 𝛽∈ Γ.  Then T 

is a ternary Γ-semiring.  Let I be a non-zero ternary Γ-ideal of T.  Then I have a non-zero element, say 2 2( )ija  .  

Then 2 2( )ija   has at least one non-zero element, say 
rsa .  Since I is a ternary Γ-ideal of T, 

11 11 1 1 2 2 2 2 1 1 11( ) ( )r r ij ij s sE E a E E I      , where ,rs rsE   are the 2×2 matrices whose ( , )thr s  element is 1 and all 

others elements are zero.  This shows that I has an element, say
1f  whose (1,1)th element is non-zero and all other 

elements are zero.  Similarly, we can get an element, say 
2f in I whose (2,2)th  element is non-zero and all others 

elements are zero.  Let 
1 2

0 0 0
/ ,   /

0 0 0

a
f a Q f b Q

b

         
         
         

.  Let F = 
1 2{ , }f f  and G = 

1 2{ , }g g  where 

1 2

0 0 0
/ ,   g /

0 0 0

c
g c Q d Q

d

         
         
         

.  Suppose that 0,F G z    where 
11 12

21 22

a a
z T

a a

 
  
 

.  Then 

1 1 2 2 2 1 0f g z f g z f g z         .  This implies that 
11 12 21 22 0a c a a c a b d a b d a           .  Since 

11 12 21 22, , ,  and , , , ,  we must have 0a b c d Q a a a a         .  Consequently, z = 0 and hence T is a right 

strongly prime ternary Γ-semiring. 

 

Definition 3.8: Let X be a non-empty subset of a ternary Γ-semiring T.  Then the right Γ-annihilator of X with 

respect to Y(⊆T) is T, denoted by ( , )ar X Y  and is denoted by ( , ) { / {0}}ar X Y t T X Y t     .  

 

Theorem 3.9: The right annihilator of a subset X with respect to a subset Y of a ternary Γ-semiringT is a 

right ternary Γ-ideal of T. 

Proof: We note that 0 ( , )ar X Y , Since 0 {0}X Y   .  So ( , )ar X Y is non-empty.  Let s, t∈ ( , )ar X Y .  Then 

{0}X Y s X Y t      .  Now ( ) {0} {0} {0}X Y s t X Y s X Y t              implies that ( , )as t r X Y  .  

Again, ( ) ( ) 0 0X Y s x y X Y s x y x y              for all ,x y T  implies that ( , )as x y r X Y   .  Hence 

( , )ar X Y is a right ternary Γ-ideal of T. 

 

Theorem 3.10: The right annihilator of a subset X with respect to a right ternary 𝚪-ideal B of a ternary 𝚪-

semiring T with identity element e is a ternary 𝚪-ideal of T. 

Proof: from theorem 3.9, it follows that ( , )ar X Y  is a right ternary 𝚪-ideal of T. Therefore, it is enough to show 

that ( , )ar X Y  is a left ternary Γ-ideal as well as right ternary Γ-ideal of T.  Let ( , )as r X Y .  Then {0}X Y s   .  

 Now since Y is a right ternary 𝚪-ideal of T, we find that 

( ) ( ) ( ) {0} for all ,X Y x y s X Y x y s X Y T T s X Y s x y T                   implies that  

x y s   ( , )ar X Y .  This implies that ( , )ar X Y is a left ternary 𝚪-ideal of T.  

 Again, since Y is a right ternary 𝚪-ideal of T, we find that  

( ) ( ) ( ) ( ) ( )X Y x s y X Y e x e e s e y X Y e x e e s e y                      ⊆ ( ) ( )X Y T T e e s y       

( ) ( ) ( ) ( ) ( ) ( )X Y e e s y X Y e e s e y X Y T T s e y X Y s e y                       = 

( ) {0} {0}X Y s e y e y        for all ,x y T  implies that ( , )ax s y r X Y   .  This implies that ( , )ar X Y  is a 

lateral ternary 𝚪-ideal of T.   Therefore, ( , )ar X Y is a ternary 𝚪-ideal of T. 

 

Definition 3.11: Let A be a proper ternary Γ-ideal of a ternary Γ-semiring T.  Then the congruence of T, denoted 

by A  and defined by As s   if and only if 1 2s a s a    for some 1 2,a a A , is called the Bourne congruence 

on T defined by the ternary Γ-ideal A.  

 We denote the Bourne congruence ( A ) class of an element r of T by r/ A  or simply by r/A and denote 

the set of all such congruence classes of T by T/ A  or simply by T/A. 
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Definition 3.12: For any proper ternary Γ-ideal A of a ternary Γ-semiring T if the Bourne congruence 
A , defined 

by A, is proper i.e. 0 / /A T A , then we define the addition and ternary multiplication of T/A by a/A + b/A = (a 

+ b)/A and (a/A)Γ(b/A)Γ(c/A) = (aΓbΓc)/A for all , ,a b c T .   

 With reference these two operations T/A forms a ternary Γ-semiring and is called the Bourne factor 

ternary Γ-semiring or simply the factor ternary Γ-semiring. 

 

Definition 3.13: A ternary Γ-ideal A of a ternary Γ-semiring T is called a right strongly prime ternary Γ-ideal if 

the factor ternary Γ-semiring T/A is right strongly prime. 

 

Definition 3.14: A ternary Γ-ideal A of a ternary Γ-semiring T is said to be k-ternary 𝚪-ideal or subtractive 

provided for any two elements a∈ A and x∈ T such that a + x∈ A ⇒x∈ A. 

 

Theorem 3.15: Let Q be a k-ternary 𝚪-ideal of a ternary 𝚪-semiring T.  Then Q is a right strongly prime 

ternary 𝚪-ideal of T if and only if for every ternary 𝚪-ideal I of T not contained in Q, there exist finite 

subsets H  of I and G of T such that H G y Q    implies that y Q  for all y T .  

Proof: Let Q be a right strongly prime ternary 𝚪-ideal of T.  Then the factor ternary Γ-semiring T/Q is right 

strongly prime.  Let I be a ternary Γ-ideal of T not contained in Q.  Then (I+Q)/Q is a non-zero ternary Γ-ideal of 

the right strongly prime factor ternary Γ-semiring T/Q.   

Thus there exist finite subsets 
1 1 2 2{( ) / ,  (i ) / ,......( ) / }n nJ i q Q q Q i q Q    of (I + Q)/Q and G/Q of T/Q such 

that JΓ(G/Q)Γ(y/Q)=0/Q implies that y/Q = 0/Q for all / /y Q T Q .  Let H = 
1 2{ , ...... }ni i i .  Then H is a finite 

subset of I.  Let i H .  Then / (( ) /i Q i q Q  , Since ( )Qiq i q  as ( ) 0i q i q    , where q Q .  Let 

H G y Q   .   

Then ( / ) ( / ) ( / ) 0 /H Q G Q y Q Q    i.e. ( / ) ( / ) 0 /G Q y Q Q   / 0 /  y Q Q     / /y Q T Q  .   

Since Q is a k-ternary Γ-ideal of T, y Q  for all y T .   

 Conversely, let I/Q be a non-zero ternary Γ-ideal of T/Q.  Then I is a ternary Γ-ideal of T not contained in 

Q.  Then by the statement there exist finite subsets H and G of I and T respectively such that H G y Q    

implies that y Q  for all y T .  Since H is a finite subset of I, H/Q is a finite subset of I/Q.  Let 

( / ) ( / ) ( / ) 0 /H Q G Q y Q Q   .  Then H G y Q    and hence  y∈ Q i.e. / 0 /y Q Q .  Thus T/Q is right 

strongly prime ternary Γ-semiring.  Hence Q is a right strongly prime ternary Γ-ideal of T.   

 

Corollary 3.16: A k-ternary Γ-ideal A of a ternary Γ-semiring T is a right strongly prime ternary Γ-idealif 

for a A , there exist finite subsets H of <a> and G of T such that H G b A   implies the b A . 

Proof: Since a A , <a> is not properly contained in A.  Then by above theorem 3.15, there exist finite subsets H 

and G of <a> and T respectively such that H G b A   implies that b A . 

 

Definition 3.17: A nonempty subset A of a ternary Γ-semiring T is said to be an m-system provided for any a, 

b, cA implies that   T T a T T b T T c T T A                  . 

 We now prove a necessary and sufficient condition for a ternary Γ-ideal to be a prime ternary Γ-ideal in 

a ternary Γ-semiring. 

 

Theorem 3.18: A ternary Γ-ideal A of a ternary Γ-semiring T is a prime ternary Γ-ideal of T if and only 

if T\A is an m-system of T or empty. 

Proof: Suppose that A is a prime ternary Γ-ideal of a ternary Γ-semiring T and T\A    . 

Let a, b, cT\A. Then aA, bA and cA.   

Suppose if possible  T\  =T T a T T b T T c T T A                  

⇒T T a T T b T T c T T               ⊆ A. Since A is prime, either aA or bA or cA. 

It is a contradiction. Therefore,  T\  T T a T T b T T c T T A                  . 

Hence T\A is an m-system.  

Conversely suppose that T\A is either an m-system of T or T\A = .   

If T\A =  , then T = A and hence A is a prime ternary Γ-ideal of T.   

Assume that T\A is an m-system of T. Let a, b, cT and <a>Γ< b>Γ<c>⊆ A. 

Suppose if possible aA, bA and cA. Then a, b, cT\A.  Sine T\A is an m-system, 

⇒  T\  T T a T T b T T c T T A                   T T a T T b T T c T T               ⊈A  
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<a>Γ< b>Γ<c>⊈A.  It is a contradiction.  

Therefore,aA or bA or cA. Hence A is a ternary Γ-ideal of T. 

 A similar type of result we obtain for right strongly prime ternary Γ-semiring.  For this we introduce 

the following notion. 

 

Definition 3.19: A non-empty subset G of a ternary Γ-semiring T is called an sp-system if for any g G  there 

is a finite subset 
1F g   and a finite subset 

2F of T such that
1 2  F F z G   for all z G .   

Theorem 3.20: A proper ternary 𝚪-ideal I of a ternary Γ-semiring T is a right strongly prime if and only 

if T\I is an sp-system. 

Proof: Suppose that I is a right strongly prime ternary 𝚪-ideal of a ternary Γ-semiring T.Let \g T I .  Then 

g I .  Therefore, there exist finite subsets H of <g> and G of T such that H G b I   implies that b I , by 

using corollary 3.16, this implies that ( / )H G z T I   for all ( \ )z T I .  Hence \T I  is an sp-system. 

 Conversely, suppose that \T I  is an sp-system.  Let a I .  Then \a T I .  Therefore, there exist a 

finite subset H of <a> and G of T such that ( \ )H G z T I   for all \z T I .  Let H G b I   .  Then 

( \ )H G b T I   .  If possible, let b I .  Then \b T I  which implies that ( \ )H G b T I   ,  

a contradiction.  Hence b I  and therefore I is a right strongly prime ternary Γ-ideal of T. 

 

Definition 3.21: A pair of subsets (G, H), where H is a ternary Γ-ideal of a ternary Γ-semiring T and G is a non-

empty subset of T is said to be a supper sp-systemof T provided G H contain no non-zero elements of T and 

for any g G , there exist a finite subset F of <g> and a finite subset I of T such that 

 for all F I z G z H     .   

 

Theorem 3.22: A ternary Γ-ideal I of a ternary Γ-semiring T is right strongly prime if and only if (T\I, I) 

is a supper sp-system of T. 

Proof: Let I be a right strongly prime ternary Γ-ideal of a ternary Γ-semiring T.  So T\I is an sp-system by 

theorem 3.20.  Thus for any \g T I , there exists a finite subset F of <g> and a finite subset F of T such that 

( \ )  for all F F z T I z I    .  Also \T I I  contains no non-zero elements T.  Thus the pair (T\I, I) is a 

upper sp-system of T.  Converse follows from the definition. 

 

Theorem 3.23: For any ternary Γ-semiring T, ( ) {SP T x T  : whenever (G, H) is a super sp-system for 

some ternary Γ-ideal H of T and ,x G then 0 }G .  

Proof: Let ( )x SP T , if possible, let (G, H) be a super sp-system with x G  and 0 G .  Then G H   .  

By Zorn’s lemma, choose a ternary Γ-ideal Q with H Q  and Q is a maximal with respect to G Q  .  We 

now prove that Q is a right strongly prime ternary Γ-ideal of T.  Let a Q .  Then there exists g G  such that 

g Q a     .  Since (G, H) is a supper sp-system, there exists a finite subset 1 2 3{ , ,..... }F f f f g   and 

a finite subset F  of T such that F z G    for all z H .(1) 

Since F g Q a      each 
if  is of the form 

i if q a   for some  and i iq Q a a   .  Let 

1 2{ , ,..... }kA a a a then F a  .  Let z T be such that F A z Q   .  Now if z Q , then z H so from 

(1) we have F F z G    ; but  

( )i i i i if F z q a F z q F z a F z Q A F z Q Q Q                      for all {1,2,..... }i k . So 

F F z Q   .  Hence G Q  , a contradiction.  Hence z Q .  So Q is a right strongly prime ternary Γ-

ideal of T.  Now as SP(T) ⊆Q, so x Q .  But by assumption x G , a contradiction.  Hence 0 G . 

Conversely, suppose that K= {x T : whenever (G, H) is a super sp-system for some ternary Γ-ideal H 

of T and ,x G  then 0 }G . Let x K .  If possible let ( )x SP T .  Then there exist a right strongly prime 

ternary Γ-ideal I of T such that x I .  Then (T\I, I) is a supper sp-system, where \x T I but 0 \T I , a 

contradiction.  Hence the converse part is proved. 

 

IV. Conclusion 

In this paper mainly we studied about right strongly prime ternary Γ-semiring. 
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