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. Introduction
The notion of ternary I'-Semiring has been introduced by D. Madhusudhana Rao and M. Sajani
Lavanya [5] in the year 2015. The notion of Strongly prime ring has been introduced by Handelman and
Lawrence [3]. The notion of TernarySemiring was introduced by T. K. Dutta and S. Kar [1] in the year 2003 as
a natural generalization of ternary ring which was introduced by W.G. Lister [4] in 1971. Some earlier works of
Ternary I'-Semiring may be found in [5, 6, 7, 8]. In 2007, T.K.Dutta and M.L. Das [2] introduced and studied
right strongly prime Semiring.

Il.  Preliminaries
Definition 2.1[5]:Let T and I' be two additive commutative semigroups. T is said to be a Ternary I'-Semiring

if there exist a mapping from T xI'x T xI'x T to T which maps (X, &, X,, P, X;) — [XlaXZﬂXS] satisfying
the conditions:

i) [[aabstlydse] = [aafbstyd] J] = [aabslcydde]]

ii)[(a + b)acAt] = [aacAt] + [bacs]

iil) [acx (b + ¢)pd] = [aab ] + [aacs]

iv) [aabsl(c + d)] = [aabst] + [aabsd] forall a, b, c,de Tand «, £, », JET.
Obviously, every ternary semiring T is a ternary I'-semiring. Let T be a ternary semiring and I" be a
commutative ternary semigroup. Define a mapping T xI'x T xI'x T — T by aahsgt =abc foralla,b,c €T
and «, Fel’. Then T is a ternary I"-semiring.

Definition 2.2[5]: An element Oof a ternary I'-semiring T is said to be an absorbing zero of T provided 0 + x = x
=x+ 0and 0asb = ac0pb = achp0 =0V a,b,x € T and «, eI

Note that a Ternary I'-Semiring may not contain an identity but there are certain ternary I'-semiring
which generate identities in the sense defined below:
Definition 2.3[5]: An element a of a ternary ['-semiring T is said to be an identity provided azast = teaga =
astpa=tVteT, a, fer.
Note 2.4[5]: An identity element of a ternary I'-semiring T is also called as unital element.
Definition 2.5[5]: Let T be ternary I'-semiring. A non empty subset ‘S’ is said to be a ternary subI'-semiring of
T if S is an additive sub-semigroup of T and acbste Sforall a, b, ce Sand «, €T
Note 2.6[5]: A non-empty subset S of a ternary I'-semiring T is a ternary subI'-semiring if and only if S+ Sc S
and ST'ST'S C S.

Definition 2.7[5]: A nonempty subset A of a ternary I'-semiring T is said to be left ternary I'-ideal of T if (1) a,
beAimpliesa+beA (2)b,c € T,a €A, o, fel implies bacsa € A.
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Note 2.8[5]: A non-empty subset A of a ternary I'-semiring T is a left ternaryl'-ideal of T if and only if A is
additive sub-semigroup of T and TTTTA C A.

Definition 11.9[5]: A nonempty subset of a ternary I'-semiring T is said to be a lateral ternary I'-ideal of T if (1)
a,beA=a+beA (2)b,ce T,a €A a fel=haast € A.

Note 2.10[5]: A nonempty subset of A of a ternary I'-semiring T is a lateral ternary I'-ideal of T if and only if A
is additive sub-semigroup of T and TTAI'T < A.

Definition 2.11[5]: A nonempty subset A of a ternary I'-semiring T is a right ternary I'-ideal of T if (1) a,b € A
a+beA (2 b,ce T acA a fel'=aachst € A

Note 2.12[5]: A nonempty subset A of a ternary I'-semiring T is a right ternary ['-ideal of T if and only if A is
additive sub-semigroup of T and ATTI'T < A.

Definition 2.13[5]: A nonempty subset A of a ternary I'-semiring T is said to be ternary I'-ideal of T if
(a,beA=a+bheA
(2)b,c e T,a €A, @ fEI'=bacac A baast € A aabpt € A.

Note 2.14[5]: A nonempty subset A of a ternary I'-semiring T is a ternaryl'-ideal of T if and only if it is left
ternaryl -ideal, lateral ternaryl'-ideal and right ternaryl'-ideal of T.

Definition 2.15[6]: Let T be a ternary I'-semiring and a€T. Then
(i) principal left ternary I'-ideal generated by a is given by

n
<a>= {ZriaitiﬁiaJrna:r t €T, elandn ezo*}.
i=1

[ i

(it)principal lateral ternary T'-ideal generated by a is given by

<a >m={§ﬁ%aﬂiti +Jzn=; U;y;v;0,ag;p; x;q; +na r,t,u,v;p;q; €T,

a, B, Xi:0;,7;,€; €D andnez, '}

(iii) principal right ternary I'-ideal generated by a is given by
<a>, ={Zn:aairiﬂiti +na:r,teT,o,felandne zo*}
(iv) princi;lal two sided ternary I'-ideal generated by a is given by

n n
n riaisiﬂia+;aajtj,8juj +k2:‘lkockmkﬂka;/k P50, +na :

= =

i=1

<a> =
Sy t,uhme pde €T o BLa.8) a0 B0 vod, e andne Zy”
(v) principal ternary I'-ideal generated by a is given by

n n n n
<a>={ Z piaiqiﬂia+zaajrjﬂjsj +Ztkakaﬂkuk +ZV|0‘|W|ﬁ|a7|X|5| y,+ha
i1 j=1 k=1 =1

:piiqiarjisjatkiukiv|lvv|1x|y| ETlaiiﬂilaJ‘1ﬁj1akiﬂkla|iﬂ|i7/|lé] EF! nEZOJr}-

Where Z denotes a finite sum and ZO+ is the set of all positive integer with zero.

Definition 2.16: A ternary TI'-ideal 1 of a ternary T'-semiring T is called a Kk-ternary I-ideal if
a+bel;aeT,bel=acel.

Definition 2.17: A proper ternary I'-ideal P of a ternary I'-semiring T is said to be a prime ternary I'-ideal of T if
for any three ternary I'-ideal A, B, C of T, ATBI'C SP impliessAcCPorB<cPorCcP.

I11.  Right Strongly Prime Ternary I'-Semirings
Definition 3.1: A ternary I'-semiring T is said to be right strongly prime ternary I'-semiring provided for every 0
#xin T, there exist finite subsets Sy, S;, S; of T such that xI'S TS, I'S,a={0}=a=0forallaeT.
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Example 3.2: Let T ={rai/reR,a €Q,i’ =—1}and I' = Q, where R is the set of all real numbers and Q is the
set of all rational numbers. Then together with usual binary addition and ternary multiplication, T forms a ternary
I'-semiring. Let rai=0eT and S ={rai} then r[I'SI'STa=0implies thata =0 forall acT. Hence T isa
right strongly prime ternary I'-semiring.

Theorem 3.3: A ternary I'-semiring T is right strongly prime ternary (-semiring if and only if for every 0 [
x in T, there exist S of T such that xI'ST'SI'Sa={0}=a=0forallacT .

Proof: Suppose T is a right strongly prime ternary I'-semiring. Let 0 # x € T. Then there exist finite subsets S;,
Sy S3 of T such that xI'SIS,I'S,a={0}=>a=0forallacT. Let S=S S,NS,. ThenS<cS;,SES, SC
Sz and S is finite. Suppose that xI'STST'Sa={0} forall acT. Then xXI'ST'SI'Sa € xI'S,I'S,I'S,a ={0} for all

aeT. Therefore a=0forallaeT.
Converse part is obvious.

Definition 3.4: A ternary I'-semiring T is said to be a prime ternary I'-semiring provided the zero ternary I'-ideal
{0} is a prime ternary I'-ideal of T.

Theorem 3.5: Every right strongly prime ternary [l-semiring is a prime ternary [-semiring.
Proof: Suppose that T is a right strongly prime ternary I'-semiring. Let X, Y, Z be three ternary I'-ideals of T
such that XTYTZ ={0}. Suppose that X ={0} and Y ={0}. Since X ={0}, there exists x(=0)e X . Since T

is a right strongly prime ternary I'-semiring, by theorem 3.3, there exists a finite subset S of T such that
XLSTSTSTYy ={0}= y=0forall yeT .

Now XI'SISISI(YITI'Z) = (XI'SIS)I(STYIT)[Z < (XITIT)I(TIYIT)IZ < XI'YT'Z ={0}.

This implies that YT'TT'Z ={0}. Again, since Y ={0}, there exists p(=0) €Y and for this p(= 0), there exists a
finite subset U of T such that pfUTUTUTzZ YT TITITIZ cYITIZ ={0}for z < Z. This implies that z = 0.

Since z is an arbitrary element of Z, we find that Z = {0}. This shows that {0} is a prime ternary I'-ideal of T and
hence T is a prime ternary I'-semiring.

Theorem 3.6: Let T be a ternary [J-semiring with identity element e’. Then the following are equivalent:

i) T is right strongly prime ternary [-semiring.

ii) if A is a non-zero ternary TI'-ideal of T, there exist finite subsets H of A and G of T such
that HITGIy ={0}=y=0 V yeT.

i) If x(=0) €T, there exist t €T and finite subsets H, G of T such that

XMTHTGTYy ={0}=>y=0 V yeT

Proof: (i) =(ii): Suppose that T is a right strongly prime ternary I'-semiring and A be a non-zero ternary I'-ideal

of T. Since A is a non-zero ternary I'-ideal of T, there exists x(=0) € A.Again since T is right strongly prime,

there exists a finite subset G of T such that XI'GI'GI'GI'y=0 = y=0VyeT. LetH=XxI'GI'G. Then H =

XI'GI'G CATGI'GEA i.e. H is a finite subset of A. Then there exist finite subsets H of A and G of T such that

HI'Gl'y = {0} implies that y = O for all yeT.

(i) =(iii): Suppose that A is a non-zero ternary I'-ideal of T, there exist finite subsets H of Aand G of T
suchthat HITGTy={0}=>y=0 V yeT .Let a(=0)eT. Then <a> is a non-zero ternary I'-ideal of T. Now by
condition (ii), there exists finite subsets H of <a> and Gof T such that HT'GI'y = {0} implies that y = O for all yeT.
If possible, let al' TTT= {0}. Then <a >I'TI'T= {0}. Since HI'Gl'ac<a >I'TI'T, we have H'Gl'a = {0}. This
implies that a = 0, a contradiction. Therefore, al' TT'T [{0}. Thus there exist r, x¢ T and «,f €I such that
aarfBx=0. Then A=<aarfx> is a non-zero ternary I'-ideal of T. By condition (ii), there exists a finite

subset | of A and a finite subset J of T such that ITJI'y = {0} implies that y = 0 for all yeT. Since | is a finite
subset of A, we find that

m | S t
| ={nralrIx+ Y arrTxIst + > p,Iq J.rarrrx+kZukrarrrxrvk +Y ¢ Id rarrTxe, f }; where n, m, I, s,
i= j=1 =1 w=1
t€ Z; ; si, ti, Pj, jy Ui Vie Cp, dp, €p, THE T.
m | s t
={nralrIx+ Y alrIxIst + > p,lq,rarrTx+ Y el (uralrIxIv, e+ » ¢ I'd I'alrIxIe, f }
i= j=1 k=1 w=1
Let H ={x,xas,ft,xyv, o, xyu,ov, :i=123,..mk=123,..5p=123..;msteZ}
and let al'rTHTJTY ={0}.Then JTITy ={0}. By condition (ii), we have y = 0.
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(iif) =(i): Suppose that If x(=0)eT, there exist teT and finite subsets H, G of T such that
XMTHIGIy ={0}=>y=0 V yeT. Let a(=0)eT. Now taking G, ={t},G,=H and G, =G we find that
there exists finite subset G,G,,G, of T such that al'GI'G,I'G,I'y ={0} = y=0. Hence T is right strongly
prime ternary I'-semiring.

Example 3.7: Let T and T be the set of all 2 x 2 matrices over Q, the set of rational numbers Define A + B =

usual addition and AaBpC = usual matrix product of A, a, B, £, C; forall A, B, C € T and for all «, #e T'. Then T
is a ternary I'-semiring. Let | be a non-zero ternary I'-ideal of T. Then I have a non-zero element, say (&;),,, -

Then (&;),, has at least one non-zero element, say a,. Since I is a ternary T-ideal of T,
Ena B, (8y) 50 (B)) 00 EqagEy €1, Where E o, are the 2x2 matrices whose (r,s)" element is 1 and all
others elements are zero. This shows that | has an element, say f, whose (1,1)" element is non-zero and all other
elements are zero. Similarly, we can get an element, say f,in | whose (2,2)" element is non-zero and all others

elements are zero. Let f; ={[g gj/aeQ}, f, ={[8 Sj/beQ}. Let F = {f,, f,} and G = {g,,9,} where

c O 0 0 a;, ap
g, {(0 0j/c € Q}, g, {[0 dj/ de Q} uppose tha where z {an azzj e en

froglz=fIg,lz=fIglz=0. This implies that aacpfa, =aacpa, =bydda, =bydda,, =0. Since
abcdeQand ¢, f,7,6 €T, wemust have a,, =a,, =a, =a,, =0. Consequently, z=0 and hence T is a right
strongly prime ternary I'-semiring.

Definition 3.8: Let X be a non-empty subset of a ternary I'-semiring T. Then the right I'-annihilator of X with
respect to Y(ST) is T, denoted by r, (X,Y) and is denoted by r, (X,Y) ={t T/ XT YTt ={0}} .

Theorem 3.9: The right annihilator of a subset X with respect to a subset Y of a ternary [-semiringT is a
right ternary [-ideal of T.
Proof: We note that Oer, (X,Y), Since XI'YTO={0}. So r,(X,Y)is non-empty. Lets, ter,(X,Y). Then

XTYTs=XIYTt={0}. Now XTYT(s+t)=XIYI's+XTYTt={0}+{0}={0} implies that s+ter (X,Y).
Again, XTYID(sIXIy)=(XTYIs)[X[y=0rxI'y=0 for all x,yeT implies that sIxI'y —r,(X,Y). Hence
r,(X,Y) is a right ternary I'-ideal of T.

Theorem 3.10: The right annihilator of a subset X with respect to a right ternary I'-ideal B of a ternary I'-
semiring T with identity element e is a ternary I'-ideal of T.
Proof: from theorem 3.9, it follows that r,(X,Y) is a right ternary I'-ideal of T. Therefore, it is enough to show

that r,(X,Y) is a left ternary I'-ideal as well as right ternary I'-ideal of T. Let ser, (X,Y). Then XI'YI's={0}.

Now since Y is a right ternary I'-ideal of T, we find that
XTYT(XTYI'S) = XT'(YIXTY)I's ¢ XT'(YI'TI'T)I's € XI'YI's ={0} for all x,y € T implies that

xI'yI's < r,(X,Y) . Thisimplies that r,(X,Y) is a left ternary I'-ideal of T.

Again, since Y is a right ternary I'-ideal of T, we find that

XTYD(XI'sI'y) = XTYT'(eI'xI'e)I"(el'sT'e)['y = XT'(YT'eI'x)["(el'el'sT'el'y) € XT'(YI'TIT)I'(el'el'sI'y) —

XTY (elel'sI'y) = XT'(YTele)['(sTel'y) c XT'(YTTIT)['(sT'el'y) ¢ XTYT(s'el'y) =

(XTYTIs)lel'y ={0}el'y ={0}for all x,yeT implies that XI'sI'y cr,(X,Y). This implies that r,(X,Y) isa
lateral ternary T'-ideal of T. Therefore, r,(X,Y) is a ternary I'-ideal of T.

Definition 3.11: Let A be a proper ternary I'-ideal of a ternary I'-semiring T. Then the congruence of T, denoted
by p, and defined by sp,s’ if and only if s+a, =s'+a, for some a,,a, € A, is called the Bourne congruence

on T defined by the ternary I'-ideal A.
We denote the Bourne congruence ( p,) class of an element r of T by r/ p, or simply by r/A and denote

the set of all such congruence classes of T by T/ p, or simply by T/A.
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Definition 3.12: For any proper ternary I'-ideal A of a ternary I'-semiring T if the Bourne congruence p, , defined
by A, is proper i.e. 0/ A=T /A, then we define the addition and ternary multiplication of T/A by a/A + b/A = (a
+ b)/A and (&/A)I'(b/A)I'(c/A) = (aI'bI'c)/A forall a,b,ceT.

With reference these two operations T/A forms a ternary I'-semiring and is called the Bourne factor
ternary I'-semiring or simply the factor ternary I'-semiring.

Definition 3.13: A ternary I'-ideal A of a ternary I'-semiring T is called a right strongly prime ternary I'-ideal if
the factor ternary I'-semiring T/A is right strongly prime.

Definition 3.14: A ternary I'-ideal A of a ternary I'-semiring T is said to be k-ternary T-ideal or subtractive
provided for any two elements a€ A and xe T such that a + xe A =xe A.

Theorem 3.15: Let Q be a k-ternary I'-ideal of a ternary I'-semiring T. Then Q is a right strongly prime
ternary I-ideal of T if and only if for every ternary I-ideal | of T not contained in Q, there exist finite
subsets H of I and G of T such that HI'GT'y < Q impliesthat yeQ forall yeT .

Proof: Let Q be a right strongly prime ternary I'-ideal of T. Then the factor ternary I'-semiring T/Q is right
strongly prime. Let I be a ternary I'-ideal of T not contained in Q. Then (1+Q)/Q is a non-zero ternary I'-ideal of
the right strongly prime factor ternary I'-semiring T/Q.
Thus there exist finite subsets J ={(i, +¢,)/Q, (i, +a,)/Q,.....>I, +q,)/ Q}of (I + Q)/Q and G/Q of T/Q such
that JT'(G/Q)I'(y/Q)=0/Q implies that y/Q = 0/Q for all y/QeT/Q. LetH = {i,i,.....i,}. Then H is a finite
subset of I. Let ieH. Then i/Q=((i+q)/Q, Since ig,(i+q) as i+q=(i+q)+0, whereqeQ. Let
HIGIycQ.
Then (H/Q)I'(G/Q)'(y/Q)=0/Q i.e.T(G/QI(y/Q)=0/Q=y/Q=0/Q V y/QeT/Q.
Since Q is a k-ternary I'-ideal of T, ye Q forall yeT .

Conversely, let I/Q be a non-zero ternary I'-ideal of T/Q. Then I is a ternary I'-ideal of T not contained in
Q. Then by the statement there exist finite subsets H and G of | and T respectively such that HI'GI'y c Q
implies that yeQ for all yeT. Since H is a finite subset of I, H/Q is a finite subset of 1/Q. Let
(H/QI(G/Q)I(y/Q)=0/Q. Then HIGI'ycQ and hence ye Q i.e. y/Q=0/Q. Thus T/Q is right
strongly prime ternary I"-semiring. Hence Q is a right strongly prime ternary I'-ideal of T.

Corollary 3.16: A k-ternary [I-ideal A of a ternary [-semiring T is a right strongly prime ternary [-idealif
for a¢ A, there exist finite subsets H of <a>and G of T such that HT'GT'b < Aimplies the b e A.

Proof: Since a ¢ A, <a> is not properly contained in A. Then by above theorem 3.15, there exist finite subsets H
and G of <a>and T respectively such that HT'GI'b < Aimplies that b e A.

Definition 3.17: A nonempty subset A of a ternary I"-semiring T is said to be an m-system provided for any a,
b,ce Aimpliesthat TTTTal'T ITTBITTTTCcITTT n A =J.

We now prove a necessary and sufficient condition for a ternary I'-ideal to be a prime ternary I'-ideal in
a ternary I'-semiring.

Theorem 3.18: A ternary [-ideal A of a ternary [J-semiring T is a prime ternary [J-ideal of T if and only
if T\A is an m-system of T or empty.

Proof: Suppose that A is a prime ternary I'-ideal of a ternary I'-semiring T and T\A = & .
Leta,b,ceT\A. Thenag A, bgAandcgA.

Suppose if possible TTTTal'T TTTbITTTTCITTT N T\A =&

=>TTTTal'T ITTOITTTTCcITTT'C A. Since A is prime, eitherac Aorbe AorceA.
It is a contradiction. Therefore, TTT'Tal’T I'TTOI'TTTTcITTT' N TWA =J.

Hence T\A is an m-system.

Conversely suppose that T\A is either an m-system of Tor VA= .

If VA= J, then T = A and hence A is a prime ternary I'-ideal of T.

Assume that T\A is an m-system of T. Let a, b, ce T and <a>I'< b>I'<c>c A.

Suppose if possible ag A, b Aand c¢ A. Then a, b, ce T\A. Sine T\A is an m-system,

STTTTalT ITTOITTTTCITTT' M TWA @ = TTTTal'T ITTbITTTTcITTT' €A
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= <a>I'<b>I'<c>ZA. Itisa contradiction.
Therefore,ac Aorbe Aorce A. Hence A is a ternary I'-ideal of T.

A similar type of result we obtain for right strongly prime ternary I'-semiring. For this we introduce
the following notion.

Definition 3.19: A non-empty subset G of a ternary I'-semiring T is called an sp-system if for any g € G there
is a finite subset F, =< g > and a finite subset F, of T such that ETF,IzNG = forall zeG.

Theorem 3.20: A proper ternary I-ideal | of a ternary [J-semiring T is a right strongly prime if and only
if T\l is an sp-system.
Proof: Suppose that | is a right strongly prime ternary I-ideal of a ternary I'-semiring T.Let g T\l . Then

g ¢ | . Therefore, there exist finite subsets H of <g> and G of T such that HT'GI'b < | implies that be |, by
using corollary 3.16, this implies that HT'GI'z(\(T /1) = forall ze(T\1). Hence T\ is an sp-system.
Conversely, suppose that T\ is an sp-system. Let a¢l. Then aeT\I . Therefore, there exist a
finite subset H of <a> and G of T such that HTGI'zN(T\l)=Jforall zeT\l. Let HTGI'bc 1. Then
HI'GIbNO(T\I)=9. If possible, let bel. Then beT\Il which implies that HT'GI'bN(T\1) = J,

a contradiction. Hence b e | and therefore 1 is a right strongly prime ternary I'-ideal of T.

Definition 3.21: A pair of subsets (G, H), where H is a ternary I'-ideal of a ternary I'-semiring T and G is a non-
empty subset of T is said to be a supper sp-systemof T provided G H contain no non-zero elements of T and
for any geG, there exist a finite subset F of <g> and a finite subset I of T such that

FrirzNG=gforallzg H .

Theorem 3.22: A ternary [-ideal I of a ternary [-semiring T is right strongly prime if and only if (T\I, I)
is a supper sp-system of T.

Proof: Let I be a right strongly prime ternary I'-ideal of a ternary I'-semiring T. So T\l is an sp-system by
theorem 3.20. Thus for any g e T\, there exists a finite subset F of <g> and a finite subset F’of T such that

FITFTzNT\I) = forallzel. Also T\IN1 contains no non-zero elements T. Thus the pair (T\I, 1) is a
upper sp-system of T. Converse follows from the definition.

Theorem 3.23: For any ternary [-semiring T, SP(T) ={x eT : whenever (G, H) is a super sp-system for
some ternary [-ideal H of Tand x G, then0eG}.
Proof: Let x e SP(T), if possible, let (G, H) be a super sp-system with xeG and 0¢G. Then GNH =9,
By Zormn’s lemma, choose a ternary I'-ideal Q with H < Q and Q is a maximal with respectto GNQ=C. We
now prove that Q is a right strongly prime ternary I'-ideal of T. Let a ¢ Q. Then there exists g € G such that
<g>cQ+<a>. Since (G, H) is a supper sp-system, there exists a finite subset F ={f,, f,,.....f,} =< g >and
a finite subset F' of Tsuchthat FTzNG =< forall ze¢ H .(1)

Since F c<g>cQ+<a> each f, is of the form f =q +a for some g eQanda e<a>. Let
A={a ,a,,...a tthen Fc<a>. Let zeTbe such that FTA[ZzcQ. Now if z¢Q, then z¢H so from
(1) we have FTFTzNG =< ; but

fIFTz=(q+a)FTz=qI'FTz+alFTzcQ+Al'FzcQ+Q=Qfor all iefL2,..k}. So
FITFTzcQ. Hence GNQ =, a contradiction. Hence zeQ. So Q is a right strongly prime ternary I'-
ideal of T. Now as SP(T) €Q, so x € Q. But by assumption x € G, a contradiction. Hence 0 G .

Conversely, suppose that K= {x e T : whenever (G, H) is a super sp-system for some ternary I'-ideal H
of Tand xeG, then 0eG}. Let xe K. If possible let x ¢ SP(T). Then there exist a right strongly prime

ternary I'-ideal | of T such that xg 1. Then (T\I, I) is a supper sp-system, where xeT\l but 0gT\I, a
contradiction. Hence the converse part is proved.

IV.  Conclusion
In this paper mainly we studied about right strongly prime ternary I'-semiring.
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