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Abstract: In this paper, we propose a new technique, namely homotopy perturbation natural transform method 
(HPNTM) for solving fractional physical models. It consists of coupling the natural transform  method and the 
homotopy perturbation method. This  technique yields an analytical solution in terms of a rapidly convergent 
infinite power series with easily computable terms. The fractional derivatives are described in the Caputo sense. 
The results obtained reveal the efficiency, simplicity and applicability of the proposed method for solving other  
fractional physical models. 
Keywords: Natural transform, Homotopy perturbation natural transform method (HPNTM),Fractional Jau-
lent�Miodek system. 
 

I.  Introduction 
With the progress of science and engineering, nonlinear fractional differential equations had been used 

as the models to describe real physical phenomena in solid state physics, plasma waves, fluid mechanics, chemi-
cal physics and so forth. Thus, for the last few decades, huge attention has been focused for finding the solu-
tions(both analytical and numerical)of these problems, which is associated with energy-dependent Schrödinger 

potential[1-3].Systems of nonlinear partial differential equations [4,5] come up in lots of scientific physical 
models. In contemporary years, significant research has been done to study the classical Jaulent�Miodek equa-
tions. Various methods such as unified algebraic method [6], a domian decomposition method [7], tanh-sech 
method [8], and homotopy analysis method [9]had been implemented for solving of coupled Jaulent�Miodek 
equations, the comprehensive analysis of the nonlinear fractional order coupled Jaulent�Miodek equation is only 
an initiation. The purpose of this paper is to find an approximate solution for the system of fractional  physical-
Jaulent- Miodek  system  in novel form via natural transform. The natural transform, initially was defined by 
Waqar et al. [10] as the N - transform, which studied their properties and applications. Later, Belgacem et al. 
[11,12] defined its inverse and studied some additional fundamental properties of this integral transform and 
named it the natural transform. Applications of natural transform in the solution of differential and integral eq-
uations and for the distribution and Bohemians spaces can be found in [12, 13, 14, 15, 16, 17, 18]. Now, we 
mention the following basic definitions of natural transform and its properties as follows: 

 
Definition1.1[11]. 
Over the set of functions 

   ,0)1(,)(,0,,:)( /
21

jt tifMetfMtfA j  

The natural transform of )(tf is 0,0,)();()]([
0

 


 sudteutfusRtfN st

                                     

(1) 

where )]([ tfN is the natural transformation of the time function )(tf and the variables u and s are the natural trans-

form variables. 
 
Theorem1.2. We derives the relationship between natural and Laplace, Sumudu transform in successive theo-
rems as follow[11]: 

1- If ),( usR  is natural transform and )(sF is Laplace transform of function )(tf in A, )(uG is  

Sumudu transform then, 
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2.If ),( usR  is natural transform and )(sF is Laplace transform of function )(tf in A then, )(uG is Sumudu 

transform of function )(tf in A, then: 
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3- If )(tf n is the nth derivative of function )(tf then, its natural transform is given by: 
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4. If ),( usF , ),( usG are the natural transform of respective functions )(tf , )(tg both defined in set A then, 

),(),(]*[ usGusuFgfN                                                                                                                             (5) 

where gf * is convolution of two functions f and g  . 

5. If )]([ tfN   is the natural transform of the function )(tf , then the natural transform of fractional derivative 

of order  is defined as: 
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6. Let the function f (t) belongs to set A be multiplied with weight function te then, 

][)]([
us

s
R

us

s
tfeN t






                                                                                        
(7) 

7.  Let the function )(atf belongs to set A, where a is non-zero constant then, 
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8. If )(twn is given by dtdttftw
nt tn

 
0 0

))((....)( , then, the natural transform of )(twn is given by: 
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9. The natural transform of T-periodic function Atf )( such that ,...2,1,0),()(  ntfnTtf is given 

by: 
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10.The function )(tf in set A is multiplied with shift function
nt , then, 
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II. The basic idea of homotopy perturbation natural transform method(HPNTM). 
To illustrate the basic idea of HPNTM, we consider the following nonlinear fractional differential equation: 

),()),(()),((),( txqtxUFtxULtxUDt 

, 10,0  t                                                              (12) 
subject  to initial condition : 
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L is the linear differential operator, F is the nonlinear differential operator, and ),( txq is the source term. Now, 

applying the natural transform on both sides of (12) we have: 
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On simplifying 

0)]],([][][[)0(][ )(
1

0

)1(

 







txqNFUNLUN
s

u
U

u

s

s

u
UN k

k
k

k













                              (14)  

)()0,( xfxU 



Fractional Physical Models via Natural Transform 

DOI: 10.9790/5728-1203053137                          www.iosrjournals.org                                                    33 | Page 

Operating with natural inverse on both sides of (14): 
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where ),( txQ represents the term arising from the source term and the prescribed initial conditions. Now, ap-

plying the classical homotopy perturbation technique, the solution can be expressed as a power series in p  as 
given below: 
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where the homotopy parameter p  is considered as a small parameter [0,1]p  . 

We can decompose the nonlinear term as: 
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where nH  are He�s polynomials of ),(),....,,(),,(),,( 210 txUtxUtxUtxU n  and it can be calculated by the 

following formula: 
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By substituting (16) and (17) and using HPM we get: 
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This is coupling of natural transform and homotopy perturbation method using He�s polynomials. By equating 

the coefficients of corresponding power of p  on both sides, the following approximations are obtained as: 
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Proceeding in the same manner, the rest of the components ),( txU n  can be completely obtained, and the series 

solution is thus entirely determined. Finally, we approximate the solution ),( txU  by truncated series. 
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These series solutions generally converge very rapidly. 
3. An  application: 
Consider the time-fractional coupled Jaulent-Mdek (JM) equations: 
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with initial conditions [9]: 
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where λ is an arbitrary constant. For α=1,the exact solutions of Eqs.(25) and (26) are given by[9]: 
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Now, applying the natural transform on both sides of Eqs.(25) and (26)  we have: 
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On simplifying 
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  Operating with natural inverse on both sides of Eqs.(27) and (28)  we get: 
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where  nonlinear terms are: nnnnnnnn HGFEDCBA ,,,,,,,  and it can be calculated by the following formula: 
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Now, applying the classical homotopy perturbation technique, the solution can be expressed as a power series in 
p  as given below: 

 

where the homotopy parameter p  is considered as a small parameter [0,1]p  . 
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This is coupling of natural transform and homotopy perturbation method using He�s polynomials. By equating 
the coefficients of corresponding power of p on both sides, the following approximations are obtained as: 
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The series solutions are:
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 Fig 1: The approximate solution of second order of ),( txU of application 1 when (a) 75. , (b) 95. , 

(c) 1  which is the exact solution, and plot2D of second order of  ),( txU  versus  t at � =1, 5.0 for 

different values of �and comparison the results with the exact solution as shown in (d).                                     
 

  
   

Fig 2: The approximate solution of second order of ),( txV of application 1 when (a) 75.0 , (b) 

95.0 , (c) 1  which is the exact solution, and plot2D of second order of  ),( txV  versus  t at � =1, 

5.0 for different values of � and comparison the results with the exact solution as shown in (d).                   
                                                                                                                                        

III. Conclusion 
 In this paper, fractional Jaulent-Miodek system has been solved by HPNTM method. The obtained re-
sults are compared with  the exact solutions. The  application of the proposed method for solutions of fractional 
Jaulent-Miodek system are in excellent agreement with exact solution and can be applied easily for other frac-
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tional physical models .The obtained solutions are shown graphically by using the Mathematica Packages to 
calculate the functions obtained from the HPNTM. 
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