IOSR Journal of Mathematics (IOSR-JM)
e-1SSN: 2278-5728, p-1SSN: 2319-765X. Volume 12, Issue 3 Ver. V (May. - Jun. 2016), PP 31-37
www.iosrjournals.org

Fractional Physical Modelsvia Natural Transform

A.S. Abedl-Rady', S. Z. Rida', A. A. M. Arafa’, and H. R. Abedl-Rahim*

'Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.
Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said, Egypt.

Abstract: In this paper, we propose a new technique, namely homotopy perturbation natural transform method
(HPNTM) for solving fractional physical models. It consists of coupling the natural transform method and the
homotopy perturbation method. This technique yields an analytical solution in terms of a rapidly convergent
infinite power series with easily computable terms. The fractional derivatives are described in the Caputo sense.
The results obtained reveal the efficiency, simplicity and applicability of the proposed method for solving other
fractional physical models.
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I. Introduction

With the progress of science and engineering, nonlinear fractional differential equations had been used
as the models to describe real physical phenomenain solid state physics, plasma waves, fluid mechanics, chemi-
cal physics and so forth. Thus, for the last few decades, huge attention has been focused for finding the solu-
tions(both analytical and numerical)of these problems, which is associated with energy-dependent Schrodinger
potential[1-3].Systems of nonlinear partial differential equations [4,5] come up in lots of scientific physical
models. In contemporary years, significant research has been done to study the classical Jaulent-Miodek equa-
tions. Various methods such as unified algebraic method [6], a domian decomposition method [7], tanh-sech
method [8], and homotopy analysis method [9]had been implemented for solving of coupled Jaulent—-Miodek
equations, the comprehensive analysis of the nonlinear fractional order coupled Jaulent-Miodek equation isonly
an initiation. The purpose of this paper is to find an approximate solution for the system of fractional physical-
Jaulent- Miodek system in novel form via natural transform. The natural transform, initially was defined by
Wagar et a. [10] as the N - transform, which studied their properties and applications. Later, Belgacem et a.
[11,12] defined its inverse and studied some additional fundamental properties of this integral transform and
named it the natura transform. Applications of natura transform in the solution of differential and integral eg-
uations and for the distribution and Bohemians spaces can be found in [12, 13, 14, 15, 16, 17, 18]. Now, we
mention the following basic definitions of natural transform and its properties as follows:

Definition1.1[11].
Over the set of functions
A={T():IM, 7,7, >0 (1) [<Me"™, if te(-1) x[0,)]
The natural transformof f (t)isN[ f (t)] = R(s;u) = I f (ut)e*dt,u>0,s>0 )
0
where N[ f (t)]isthe natural transformation of the time function f (t) and the variablesU and S are the natural trans-
form variables.

Theoreml1.2. We derives the relationship between natural and Laplace, Sumudu transform in successive theo-
rems as follow[11]:

1- If R(S,u) isnatural transformand F (S)is Laplace transform of function f (t)in A, G(U)is
Sumudu transform then,

N[ f (t)] = R(su) :% [ e vt :%F(S) @

21f R(S,u) isnatural transform and F(S)is Laplace transform of function f (t)in A then, G(U)is Sumudu
transform of function f (t)in A, then:
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NLF ()] = R(ssu) = j f(Dedt=26() ©

3-1f f"(t) isthenth derivative of function f (t)then, its natural transform is given by:
n-1 n (k+1)

N[f"(t)] = R.(s, u)_—R(su) Z

4.1f F(s,u),G(S,U) are the natural transform of respective functions f (t) , g(t) both defined in set A then,
N[f* g] = uF(s,u)G(s,u) ®)
where f * gis convolution of two functions f and g .

5.1f N[ f(t)] isthe natural transform of the function f (t), then the natural transform of fractional derivative
of order ¢ isdefined as:

f990),n>1 @

Sa n-1 Sa—(k+1)
N[ )] == Rs,u)- > %0 (6)
u —~ u
6. Let the function f (t) belongs to set A be multiplied with weight function e then,
+ S S
N[e* f ()] = ——R—1 (7)
S+u S+u
7. Let thefunction f (at) belongsto set A, where ais non-zero constant then,
1_s
N[ (at)] = —R—,u] (8)
a a

8.1f w"(t)isgivenbyw"(t) = J: I; f (t)(dt) dt, then, the natural transform of W" (t) is given by:

N[W" ()] = ‘;— R(s,u) ©

9. The natural transform of T-periodic function f (t) € Asuch that f (t+nT) = f(t),n=0,12,...is given
by:

—sT
N[f(®)]=RsU)=[1-ev ]*= I el f(t)dt (10)

10.Thefunction f (t)in set A is multiplied with shift functiont ", then,
N[t" f(t)]— - ddn u"R(s,u) (11)

[I. Thebasicidea of homotopy perturbation natural transform method(HPNTM).
Toillustrate the basic idea of HPNTM, we consider the following nonlinear fractional differential equation:

DAU(x,t)+ LU (X1)+FU(Xt)=q(xt) t>00<a<1
subject toinitial condition :

(12)

U (x,0) = f(X)

where D" = o isthe fractional Caputo derivative of the function U (x,t) ,

L isthelinear differential operator, F is the nonlinear differential operator, and q(X,t) is the source term. Now,

applying the natural transform on both sides of (12) we have:
a—(k+1)

u—N[U] ZS—U(")(O)+N[LU]+N[FU]—N[q(xt)] (13)
On simplifying
N[U]—Z—Zf%u(k’(OH :[N[LU]+N[FU]—N[q(x,t)]]:O (14)
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Operating with natural inverse on both sides of (14):
U (xt) =Q(x,t)— Nl[l;—: N[L(U (x,t))+ F U (x,t)]] .(15)

where Q(X,t) represents the term arising from the source term and the prescribed initial conditions. Now, ap-

plying the classical homotopy perturbation technique, the solution can be expressed as a power seriesin P as
given below:

Uxt) =3 p'U,(x1), (16)
n=0

where the homotopy parameter P is considered as a small parameter pe[01]

We can decompose the nonlinear term as:
FU(x,t)=> p"H, (U), 17)
n=0

whereH | are He’s polynomials ofU ,(X,t),U,(X,t),U,(Xt),....,U  (Xt) and it can be calculated by the
following formula:

Hy Ua(6Us (X .U, (6D, U (1) = aap [FQ PUL,.g 19

By substituting (16) and (17) and using HPM we get:

> U, (x) = Q) — PN T NIL(Y, U, (x 0) + (X PH, U O (19

This is coupling of natural transform and homotopy perturbation method using He’s polynomials. By equating
the coefficients of corresponding power of P on both sides, the following approximations are obtained as:

p° 1 U, (X t) = Q(x,t). (20)
priU(xt) = —(N‘1[:—: N[LUo (X, 1)) + (Ho (U (). (21
p*:U,(xt) = —(Nl[:—z N[LU,(x,1))+(H, U (D)D), (22)
p’:U,(xt) = —(Nl[:—: N[LU, (X)) + (H, U (t))]). (23)

Proceeding in the same manner, the rest of the componentsU , (X,t) can be completely obtained, and the series
solution is thus entirely determined. Finally, we approximate the solution U (Xx,t) by truncated series.

N
Ut =]im>. U.(xt) (24)
N—o n=0
These series solutions generally converge very rapidly.
3. An application:
Consider the time-fractional coupled Jaulent-Mdek (JM) equations:

3 9 3

,DU +UW+EWW+§VXVXX—6UUX—6UWX—EUXVZ:0, (25)
,DV +vw—wxv—wvx—1—25vxv2:o, O<a<l (26)

with initial conditions[9]:

U (x,0) = %/12[1— 4sec hz(%)],

V(x,0) =41 sech[%].
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where ) is an arbitrary constant. For a=1,the exact solutions of Egs.(25) and (26) are given by[9]:

U(xt) = %12[1— 4sec hz(%/l(x+ %ft)]

V(x,t) = Asec h[% A(X+ %;th)]
Now applying the natural transform on both sides of Egs.(25) and (26) we have:

a(k+l)
—N[U] Z—U (0)+N[U, SBw vy —euu —euw, —3u V% =0
2 XXX 2 X7 XX X X 2 X

a

g (k+D)
N[V]- Z — V¥(0) + N[V, —6U V — BUV, -%vv 1=0

On simplifyi ng

N[U] = é/lz[l— 4sech2(%)] —l;—: N[U,, + gWXXX +gVXVXX -6UU, o
—6UWX—2UXV2],

N[V]:%/lsech(%)—l;—:N[V -6U .V -6UV, —%VV 1. (28)
Operating with natural inverse on both sides of Eqs.(27) and (28) we get:

U= %/12[1— 4%Ch2(i;)] - N_l[LSJ—: N[U,,, +§ A +% B,-6C, —-6D, —g E.ll (29)
V:isech(%)—Nl[l:—:N[\/ —-6F, - 6G, —1—25H 11 (30)

where nonlinear termsare: A, B,,C,,,D,,, E,, F,,,G,, H,, and it can be calculated by the following formula:

n’' n’

ABy.Cru Dy Ey iy Gy Hy (Ug (XU (1), Uy (11) = = [F(ZDU)]p_o, (3D

I a " i=0
Now, applying the classical homotopy perturbation technique, the solution can be expressed as a power seriesin
P as given below:

Uxt) =3 pU,(xt)

where the homotopy parameter P is considered as asmall parameter pe[01]

ip“Un=%/12[1—4 sech (}“ZX)] N‘l[—N[z U 3 Ah+ B. —6C, —6D, ——E N
_ n=0

S pV, = lsech(—) N‘l[l;—aN[i PV —6F —6G, —%H 1

n=0 n=0

This is coupling of natural transform and homotopy perturbation method using He’s polynomials. By equating
the coefficients of corresponding power of P on both sides, the following approximations are obtained as:

0° U (x,0) = %12[1— Asec hz(%)], 32
p°:V(x,0) = lsech(%), (33)

4 u” 3 9 3
p:U,=-N 1[':_“ N[U o +§A, +§BO—6C0—6D0 —EEO]],
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e u” 15
pl :Vl =-N l[s_a N[VOxxx _6F0 _GGO _?Ho]]a
t” 3 9 3
U1 == F(a N 1) [U oxe T EVOVOxxx + EVOXVOXX -6U oU ox 6U 0V0V0x - EU OxV02]7
t” 15
V1 == F(a N 1) [V0xxx - 6UOXVO —-6U OVOx - ?VOXVOZ]i
Hence,
U, = 24> ——cosech’[Ax]sinh"[—X], (34
INa+1 2
4 ta 2 . 3 ﬂa
V,=-4 cosech’[Ax] sinh’[— X], (35)
IN'a+1) 2
2 3 3 9 9

u 2= _m[u o T EV1V0><><X + Elexxvo + EVJ.XVOXX + EVIXXVOX —-6U oU x 6U 0xU1 - 6U1V0V0x
3
—-6U OV1V0x —-6U 0V0V1x - E U 1xVo2 -3 0xVoV1] 1

t2a 15
V2 B _m[\/lxxx -6 0><V1 - 6U 1><Vo —-6u Ole - 6U1V0>< B ?levo2 - 15V0><V0V1] !

Hence,
1 g t3 arh
U,=-——41 sech”[— X] (-2 + cosh[ 1X]),
16 T'(a+D)Ir'(2a+1) 2
3a
V, _ Ly t
32 T(x+DI'(2a+1)
The series solutions are:
U=U,+U,+U,+..,
V=V, +V,+V, +....
Then,

(36)

sech’[2 X](=3+ cosh[ Ax]).
2 (37)

a

t
IN'a+2)
sech“[% X](=2+ cosh[AX]) +..., (38)

U(x,t) = %,12[1— 4sech? (’I—ZX)] +22° cosech’[Ax]si nh“[% X]

_iﬂg tStx
16 T(a+)Ir'(2a+1)

Y cosech?Ax]sinh’[Z x] +
IN'a+1 2

Vzlsech(%)—/l“

iﬂj t3a
32 T(a+)hI'(2a +1)

sech3[i X](~=3+ cosh[AxX]) + ...
2 (39)
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Fig 1: The approximate solution of second order of U (X,1) of application 1 when (a) o =.75, (b) o =.95,

(¢) o =1 which is the exact solution, and plot2D of second order of U (X,t) versus tat x =1, 4 =0.5for
different values of aand comparison the results with the exact solution as shown in (d).
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Fig 2: The approximate solution of second order of V(X,t) of application 1 when () o =0.75, (b)
a =0.95, (¢) a =1 which is the exact solution, and plot2D of second order of V(X,t) versus t at x =1,
A =0.5for different values of a and comparison the results with the exact solution as shown in (d).

[11. Conclusion
In this paper, fractional Jaulent-Miodek system has been solved by HPNTM method. The obtained re-
sults are compared with the exact solutions. The application of the proposed method for solutions of fractional
Jaulent-Miodek system are in excellent agreement with exact solution and can be applied easily for other frac-
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tional physical models .The obtained solutions are shown graphically by using the Mathematica Packages to
calculate the functions obtained from the HPNTM.

(1.
[2.
3.
[4].
[5].
[6].
[7].
(8.
9.

[10].
[11].
[12).
[13].
[14].
[19].
[16].

[17].

[18].

References

H. T. Ozer, S. Sdlihoglu, Nonlinear Schrodinger equations and n=1 super conformal algebra, Chao Soliton. Fract,
33(2007),1417-1423.

S. Y. Lou, A direct perturbation method: nonlinear Schrodinger egquation withloss,Chin.Phys.Lett,16 (1999),659-
661.
A. Atangana, D. Baleanu, Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations with Sumudu transform, Abstr.
Appl. Anal, 8(2013), ID160681.
A. M. Wazwaz, Partial differential equations and solitary waves theory, Higher Education Press, Beijing and Springer-Verlag
,Berlin,(2009).

L. Debnath, Nonlinear partial differential equations for scientists and engineers Birkhauser, Springer, Ne-
wY ork,(2012).

E. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics,
Chaos ,Soliton.Fract,16(2003),819-839.

D. Kaya, S. M. El-Sayed, A numerical method for solving Jaulent-Miodek equation, Phys. Lett, 318(2003),345-
353.

A. M. Wazwaz, The tanh-coth and the sech methods for exact solutions of the Jaulent-Miodek equation, Phys.
Lett, 366(2007),85-90.

M. M. Rashidi, G. Domairry, S. Dinarvand, The homotopy analysis method for explicit analytical solutions of
Jaulent— Miodek equations, Numer. Meth. Partial Differ,2(2009),430-439.
A. Wagar, H. Zafarand Khan, N- transform - properties and applications, NUST J. Eng. Sci,1 (2008), 127-133.
F. B. M. Belgacem, and R. Silambarasan, Theory of natural transform, Math. Eng, Sci. Aerospace (MESA), 3 (2012), 99-124.
R. Silambarasan, and F. B. M. Belgacem, Applications of the natural transform to Maxwell's equations, Prog. Electromagnetic
Research Symposium Proc. Suzhou, China, (2011), 899 - 902.
S. K. Q. Al-Omari, On the applications of natural transform, International Journal of Pure and applied Mathematics, 85 (2013), 729
— 744,
H. Bulut, H. M. Baskonus, and F. B. M.Belgacem, The analytical solution of some fractional ordinary differential equations by the
Sumudu transform method, Abstract and Applied Analysis, 1-6 (2013).
Loonker, Deshna and P. K. Banerji, Natural transform for distribution and Boehmian spaces, Math. Eng. Sci. Aerospace,4 (2013),
69 - 76.
Loonker, Deshna and P. K. Banerji, Natural transform and solution of integral equations for distribution spaces, Amer. J. Math.
Sci, (2013).
Loonker, Deshnaand P. K. Banerji, Applications of natural transform to differential equations, J. Indian Acad. Math,35 (2013),151
-158.

G. M.Mittag-Leffer,Surlanouvelle function E, (1) ,C. R. Acad. Sci.,Paris(Ser.I1),137(1903),554-558.

DOI: 10.9790/5728-1203053137 Www.iosrjournals.org 37 | Page



