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Abstract: This paper considers two special cases of correlation matrices, when k repeated observation on each
of the p — variatewere collected from entity j at time t(t = 1, 2, ..., k; p=1,2,3;j =1, 2, ..., n;;i = 1,2)have equal
correlation and auto correlation. Case 1 assumed constant equi-correlation matrix for all variables of both
populations with a common variance covariance matrix while case 2 assumed auto correlation matrix. Two
discriminant procedures (Regression Discriminant and elongated data discriminant) were employed in
constructing the sampled based discriminant function.Systolic and diastolic blood pressures and heart rate were

collected sequentially in time from two sampled population 7, (Survivors)and ., (nonsurvivors) of

hypertensive patients admitted at Jos University Teaching Hospital. Three techniques: re-substitution, leave-one
out and partition of samples were used toconstruct and evaluate the sample based discriminant function.
Probabilities of misclassification obtained from the computed confusion matrices of each procedure under the
two special cases of correlations (equi and auto correlations) were used to compare the performance of these
functions. From the analyses, the two discriminartfunctions compare favourably with each other and the
Fisher’s commonly used rule; though the Elongated Data Discriminant function outperform the Regression
Discriminant function having a lower probability of misclassification (0.308 when Pen Rose correlation is
assumed and 0.4083 when auto-correlation is assumed). For both cases (equi and auto correlations) the re-
substitution technique performs betterthan the other two techniques(leave — one out and partition of sample
techniques)with low probability of misclassification.

Keywords: Disciriminant Function, Elongated Data Discriminant, Regression Discriminant, Equicorrelation,
Autocoreelation

I.  Introduction
Suppose p- vector observation is collected k time on entity j of population 77; , then the n; x pkdata matrix
denoted Y; is:

yill yilz yilt yi~1k
yi~21 yi~22 int yi~2k

" Yin Yie 0 Yie o Vi

Yina Yinz = Yie 0 Yimk

Denote the ™ row which is the focus of the research binj = |:yij1 Yiz " Vi yijk} whose elements
are the p-vector of observation obtained at time t, on the j™ entity in population 7T; ; and the i"column by
Yi =[ym Yioe =0 Yie o ymik}whose elements are the p-vector of observation obtained at time t

collected from all sampled entities in population 77;i=1,2;t=1,2,... k.
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Let 7;~ N(,ui,Z) be two predetermined multivariate normal populations with mean p; and a

common variance covariance matrix >.. For known p;and >’ the discriminant function is

o so-{ i B s

The optimal classification rule (Rqy) based on the discriminant function is:
- mifu>0
Ropt): Classi Into . .23
(Repd) v Yo 7, otherwise

McLenchlan (1992)stated the sample analogue of u as

o< (50 5

Lanchenbruch (1975), Giri (1977) and McLenchlan (1992) obtained the error rates that will occur if u is used to
classify a given entity into one of 7z; i=1,2

Application to real life

In some practical situations repeated measurements are made on the entity to be classified. For instance
in medical practice, a patient may be recalled for further repetition of the same clinical variables with the
intention of providing a firmer basis for diagnosis or prognosis of his or her condition. These repeated
characteristics could be collected at an equally or unequally spaced fixed point in time. These repeated
characteristic have to be correlated. Two special cases of correlation were considered where in the multivariate
normal group — conditional densities, the means are equal and the uniform variance covariance structure is
The classification rules were evaluated and compared with one another under the following two special cases of
correlation matrices:

1 rr - r --- 1
rl1 r - r ---r
i) the Penrose structure (equicorrelation): R= :
r rr ---1 ---r
Lr r 1
1 r 0 -0 0 0]
rl 0 0O

ii)Nearneighbourcorrelation:|Q= oo0oo0--ril1r--0™09PM0

Il.  Review Of Literature
The study by Choi (1972) and subsequent ones by Gupta (1980) considered when the k repeated
characteristics of each P-dimensional continuous random variable are equicorrelated. The characteristic vector

Y is considered as a pk dimensional random variable. Basu and Odell (1974) distinguished between simple

equicorrelated and equicorrelated training data because they felt that the error rates of the sample linear
discriminant function were unaffected by simple equicorrelation. However, Mclachlan (1976) showed that the
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error rates do change in the presence of simple equicorrelation; indeed the error rates asymptotically increase in
size for positive correlation.

The repeated measurements yj; are said to be equicorrelated if

Cov(yijtyijl) = F|1 :1, 2 ,_] :1, 2, ... nj, t, 1= 1, 2, ceey K

where,I'; is a symmetric matrix.

The same observations are said to be simply equicorrelated if I'; = p;%;,

where 0< p < 1 and X; is the common variance covariance matrix of the observation from population ;i = 1, 2,
Gupta (1986) has obtained expression for the error rates of the Bayes rule in the case of a single feature
variable (p=1). Gupta and Logan (1990) studied the case of multiple variables (p>1).
Weber and Baldessari (1988), studied the effect of correlated training data on the performance of sample normal
linear discriminant rule. Earlier, Basu and Odell (1974) studied the case when the usual assumption of
independent training data is violated. When evaluating the performance of the sample linear discriminant rule,
Basu and Odell (1974) observed that the actual error rates were higher than the theoretically anticipated values
under the assumption of independence. Basu and Odell (1974) investigated the effect of equicorrelated training
data that classified with respect to two populations n; and . Basu and Odell (1974) assumed the same variance
covariance structure within each group, where py = p, = p and — (k-1) < p < 1.

McLachlan (1992) stated that Tubbs (1980) investigated the effect of serially corrected training data on
the unconditional error rates of the sample normal linear discriminant rule under homoscedastic normal model
[y ~ N (w, £)]. He considered when n; training data y;; (i =1, 2 ; j =1, 2, .... n;) from population =; follow a
simple multivariate stationary autoregressive model of order one AR(1) where

cov (yijx Vi) =peZ t£1=1,2, ...,k
ford =|t-1] and 0 <py4< 1.

McLachlan (1992) added that Lawoko and McLachlan (1983, 1985, 1986, 1988 and 1989) considered
the effect of correlated training data on the simple normal linear discriminant rule under the homoscedestic
normal model. Lawoko and Mclachlan (1983) derived the asymptotic expansion of the group — specific
unconditional error rates of the sample normal linear discriminant rule based on some model considered by
Tubbs (1980). Lawoko and McLachlan (1983) demonstrated the magnitude of the increase in the unconditional
error rates for positively correlated training data by evaluating the asymptotic expansion for a univariate

stationary autoregressive process of order one, for which p, = p" where 0<p<l.

Lawoko and McLachlan (1988) according to McLachlan (1992) showed that the optimism of the plug-in method
of estimating the error rates is magnified by positively correlated training data following a stationary AR(1)
model. Early, Lawoko and Mclachlan (1986) showed asymptotically that the Z — statistic defined as ny / (n; +
n,) is preferable to the simple normal linear discriminant function for positively correlated univariate training
data following a stationary AR(1) process.Lawoko and McLachlan (1989) studied the effect of correlated
training data on the estimates of the mixing proportions obtained by an application of the sample normal linear
discriminant rule, as in area estimation via remote sensing.

I11.  The Model

This section constructs and evaluates sample based classification rules for two multivariate
populations. Here data on the three clinical variables (p = 3); systolic blood pressure (Y,), diastolic blood
pressure (Y,) and heart rate (Y3) obtain at k (k = 12) points in time (6 am and 6 pm) from n sampled (n = ny+ n,
=120) hypertensive patients of known survival status admitted at a Hospital were used to construct the sample
based classification rules. For each of the two procedures used in constructing the sample based classification
rules, confusion matrices and probabilities of misclassification were obtained. Two correlation structures ( Pen
Rose and near neighbour correlation matrices) were assumed.

3.1 Sample Based Descriminant Functions For Equi-Correlated Data (Pen Rose Correlation Structure)

This section considers first special case of correlation matrix, when the k repeated observations on each
of the p- variate have equal correlation. It assumes constant equi-correlation matrix for all variables of both
populations, with a common variance-covariance matrix. Confusion matrices and probabilities of
misclassification were obtained for each of the two procedures (regression discriminant and elonogated data
discriminant procedures) used in constructing the sample-based classification rules,.

1. Regression Discriminant Procedure: The sample based classification rules, confusion matrices and
probabilities of misclassification were obtained here using the re-substitution technique, Jackknife methods
of leave-one out and partitioning of samples.

i) Re-substitution technique: Here all sampled objects were use, in estimating the following the parameters.
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[5.509177 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 |
-0.672426 5.509177 -0.672426 -0.672426 -0.672426 -0.672426 - 0.672426 -0.672426 - 0.672426
-0.672426 -0.672426 5.509177 -0.672426 -0.672426 -0.672426 - 0.672426 -0.672426 - 0.672426
-0.672426 -0.672426 -0.672426 5.509177 -0.672426 -0.672426 - 0.672426 -0.672426 - 0.672426
R™%=| -0.672426 -0.672426 -0.672426 -0.672426 5.509177 -0.672426 - 0.672426 -0.672426 -0.672426
-0.672426 -0.672426 -0.672426 -0.672426 -0.672426 5.509177 -0.672426 -0.672426 -0.672426
-0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 5.509177 -0.672426 - 0.672426
-0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 - 0.672426 5.509177 -0.672426
| -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 -0.672426 5.509177
The regression coefficients are:

= [108.3508 79.39059 83.89045 } E {128.1?34 85.21008 79.89485 }

7| 0.2280981 0.128107 0.02061279 ? 0.1339035 0.1093184 0.09419183

!

7 =[108.3508 0.2280981 79.39059 0.128107  83.89045 0.02061279 ]

!

Vs =[128.1734 0.1339035 85.21008 0.1093184 79.89485 0.09419183 ]

1325.272000 654.206200 13.026930 0.001861 -0.002242 0.000012
S=| 654.206200 543.150400 12.395630 S =| -0.002242 0.004544 -0.000090
13.026930 12.395630 302.543900 0.000012 -0.000090 0.003308

Hence the discriminant function is:
!

{ﬁu_-118-2621 [-19.82267
By -0.1810008 . 10.09419461
. 0.001861 - 0.002242 0.000012

.| B, -82.30033 L -5.819489

o H'R™H ®| -0.002242 0.004544 -0.000000 | | '
Pozz -0.1187127 0.000012 -0.000090 0.003308 '
b, - 8180265 3.995508
] -0.07357904
| P -0.05740231 : :

This was then use in classifying a new object o( 7, ) into one the two predetermined population 7T, and T, as:
n, if T>0
7, otherwise

ii) When the leave-one out technique is use, the probability of misclassification obtained using its confusion
matrix was:

R®):classify o(yo)into{ .5

PMC = & = 0.5417
120

(iif) When half of the training sample (n;= n,=25) was used to computed the Drscriminant function and the
other half to validate, we get estimate of the following parameters as:
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[ 5.028993 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 |
-0.612137 5.028993 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137
-0.612137 -0.612137 5.028993 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137
-0.612137 -0.612137 -0.612137 5.028993 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137

R™ =] -0.612137 -0.612137 -0.612137 -0.612137 5.028993 -0.612137 -0.612137 -0.612137 -0.612137
-0.612137 -0.612137 -0.612137 -0.612137 -0.612137 5.028993 -0.612137 -0.612137 -0.612137
-0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 5.028993 -0.612137 -0.612137
-0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 5.028993 -0.612137

| -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 -0.612137 5.028993

The computed regression coefficients are:
N 116.6719 82.02781 81.6575 R
B B,

" | 0.1551614 0.07939636 0.04227237

1

124.837 86.49452 74.21841
0.1736604 0.08802477 0.1450099

So that,
yl=[116.6719 0.1551614 82.02781 0.07939636 81.6575  0.04227237 ]'

Vs :[124.837 0.1736604 86.49452 0.08802477 74.21841  0.1450099 ]’

Therefore the discriminant function is

[}on -120.7544 - 8.1651
Poz -0.1644109 -0,01849902
s B, -84.26117 HR - Hes | - 4466713

B.,, -0.08371057 -0.08628406
B, -77.93796 7.439087
A -0.1027375

Bz -0.09364112 | - .

The discriminating rule is:
R®):classify o(y,)into " i TZ(_) .6
7, otherwise

Augain the probability of misclassification from the confusion matrix was:

PMC = 2 _ 0.4833
60

\When Pen Rose correlation was assumed the confusion matrices computed for each technique using
Regression Discriminant Function was summarized in table 1 while the probability of misclassification obtained
from these confusion matrices was presented in table 3

Table 1: Confusion Matrices forThree Classification Techniques Using Regression Discriminant Function

Allocate to | Classification technigues
Population Re-substitution Leave one out Partition of data
Actual Population Total Actual Population Total Actual Population | Total
T T, T Ty 42 Ty
32 27 59 28 33 61 16 15 31
T
28 33 61 32 27 59 14 15 29
Ty
Total 60 60 120 60 60 120 60 60 120
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2. Elongated (Conbined) data Discriminant Procedure: The discriminant function obtained here used the
elongated data discriminant without summary.

i) Re-substitution technique: Using all the sampled data to construct and evaluate the classification function,
we have:

X =-0.012257y,, + 0.067051y,, - 0.018176 Y3 - 0.038290 Y, + 0.027579 y,s5 - 0.043416 yc + 0.033168 y,; +
0.012814 yog - 0.010160 Yy, - 0.026007 Y10 + 0.093093 y,11 - 0.133003 y,1, 0.027416 Yo13 + 0.047536 Yo14
-0.081336 Y15 + 0.086531 Y16 - 0.077718 Yo7 + 0.004061 y,1 + 0.000945 y,19 + 0.037812 Y00 + 0.045595
Voor + 0.045675y0 - 0.014522 g0 -0.068450 You + 0.081725 Yoo5 - 0.070112 ygp - 0.005356 Yo7 +
0.084241 y,0g + 0.026188 Y09 - 0.136745 yq30+ 1.784809

Hence the classification rule is:

. . . if X>0
R® : classify o(y;j into { " _ .7
- n, otherwise
where
Yo :|:y:)1 y:)2 y;a}
=[ oll Yoi2 o Yoo You Yoz Yoot Yosi. Yoz ¢ yoBlO]

is a column vector consisting of the observations on the three clinical variables (p = 3) obtain at ten points (k =
12) in time from the object to be classified.

(i) Technique of leave-one out:

(iii) When half of the training sample (n; = n, =30) to compute the classification rule and the remaining to

evaluate, we obtained the discriminant function A as:

A =0.070154y, + 0.060172 y,, - 0.025645 yo3 - 0.029440 Yo + 0.003717 yos - 0.073324 46 +
0.079218 y,7 - 0.010908 y,5 + 0.038892 yoq - 0.124846 Y410 + 0.086198 y,y5 - 0.022818 y,,, + 0.019232
Yo13 - 0.024001 Yo14 -0.070115 Yo15 + 0.098787 Yoi16 - 0.247972 Yo17 t 0.051866 Yo18 - 0.104802 Yo19 t
0.216457 Yoo + 0.053348 Yy, + 0.098384 yy, + 0.063102 yq3 -0.012679 Ygp4 - 0.092118 g5 -
0.115671 Yygos + 0.075021 ygp7 + 0.159265 Y08 - 0.051068 Y20 - 0.181996 Y30 + 0.07860756.
Therefore the sample based classification rule, confusion matrix and the corresponding probability of
misclassification are respectively obtain as:

. if A>
R® : classify o(yo) into | ™ 1T A _9
- n, otherwise

Similarly, the confusion matrices computed for each technique under this procedure assuming the Pen
Rose type of correlation was presented in table 2and the probability of misclassification obtained from the
confusion matrices was summarized in table 3

Table 2: Confusion Matrices for Three Classification Techniques Using Elongated Data Discriminant Function

Allocate to | Classification techniques
Population Re-substitution Leave one out Partition of data
Actual population Total | Actual population Total | Actual population Total
Ty 7T, Ty 7T, 7Ty Ty
43 20 63 34 33 67 15 13 28
T
17 40 57 26 27 53 15 17 32
Ty
Total 60 60 120 60 60 120 30 30 60

Comparison of Procedures by Techniques for Equi-correlated Data
From the confusion matrix, the empirical estimate of the corresponding probability of misclassification refer to
as error rates for the two procedures were presented in table 1

Table 3:Probabilities Of Misclassification Assuming Pen Rose Correlatiom Structure (Equicorrelation)

Classification Evaluation techniques

Procedures Re-substitution Leave- one out Partition of samples
Regression discriminant 0.4583 0.5417 0.4833

Combined data disciminant 0.308 0.4917 0.4667
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From tablel it can be observed that when Pen Rose correlation structure (equicorrelation) is assumed,
the elongated data discriminant procedure performs better for all the three techniques. The re-substitution
technique for instance indicates that the probability of misclassification of the combined data discriminant
procedure is 0.308.This is better than the regression discriminant procedure with probability of misclassification
0.4583.

3.2 Sample Based Classification Rules Assuming Near Neighbour Correlation
This section considers the second special case of correlation matrix (near neighbour correlation structure) given
in section 1 as:

1 for h=0
| Py | =317 1<1  for h=+1 =12,k
0 elswhere

Here the near neighbor correlation matrix is assumed to be constant for all variables of both populations.
Base on this structure of the correlation matrix, sample based discriminant function for two multivariate normal
populations are constructed and evaluated using the following discriminant procedures.

1. Regression Discriminant Procedure: Sample based discriminant function was obtained when using all
sampled entities, and the same entities were employed to construct the confusion matrices that producedthe
probabilities of misclassification.

[9.510392 -10.152820 2.576874 7.117750 -10.921680 5.783354 4.076608 -10.762080 8.918080
-10.152820 12.112210 -3.074186 -8.491408 13.029460 -6.899486 - 4.863355 12.839050 -10.639180
2.576874 -3.074186 1.080144 2.983534 -4.578022 2.424198 1.708784 -4.511119 3.738175
7.117750 -8.491407 2.983535 4.972946 - 7.630633 4.040645 2.848196 -7.519120 6.230779

R =| -10.921680 13.029460 -4.578022 -7.630633 13.511490 - 7.154733 -5.043274 13.314040 -11.032780

5.783353 -6.899485 2.424198 4.040645 -7.154732 4.418312 3.114408 -8.221910 6.813151

4.076608 - 4.863354 1.708785 2.848197 -5.043275 3.114409 1.350487 -3.565230 2.954357

-10.762080 12.839050 -4.511120 -7.519120 13.314040 -8.221910 - 3.565230 12.603620 -10.444090

| 8.918079 -10.639180 3.738176 6.230779 -11.032780 6.813151 2.954356 -10.444090 9.654582

The regression coefficients are

- {154.1501 58.8903 88.53336 }

vs)

7| -0.1026616 0.2977844 - 0.00596293

vs)

~ |106.7337 123.839 -84.8001
2 10.1286151 -0.2381343 2.03119

Now let
V1 :[154.1501 -0.1026616 58.8903 0.2977844 88.53336 -0.00596293 ]'

v, =[106.7337 0.1286151  123.839 -0.2381343 -84.8001 2.03119 |

1325.272000 654.206200 13.026930 0.001861 -0.002242 0.000012
S=| 654.206200 543.150400 12.395630 S =| -0.002242 0.004544 -0.000090
13.026930 12.395630 302.543900 0.000012 -0.000090 0.003308

The regression discriminant function is
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!

B, -130.4419 | o 4163
By -0.01297672 -0.2312767
o Boio -91.36467 HRH®S - 64.94874
Bz -0.02982505 0.5359187
B oy, -1.866631 173.3335
Boss - 1.012613 | [-2.037153 |
Hence the discriminating rule is
R®:classify o(y,)into {ﬂl if © 29 o
- 7, otherwise

where
’

olB B Bl

A

= [Boll BOZl BollZ BOZZ BollS BOZS:I/

is a pk = 6 _ dimensional column vector consisting of the regression coefficients of the object to be classified.
i) The leave-one out technique:
iii) Using half of the training sample (n;= n,=30) we computed the
discriminantfunction and the other half to validate, we got:
[ 3.824769 -3.433407 0.353197 2.971102 -3.930041 1.742008 1.910653 - 4.117533 3.252652

-3.433407 4.173184 -0.429298 -3.611269 4.776826 -2.117349 -2.322331 5.004716 -3.953484
0.353197 -0.429298 0.170913 1.437728 -1.901762 0.842964 0.924573 -1.992491 1.573971
2.971101 -3.611269 1.437728 1.823146 -2.411576 1.068941 1.172427 - 2.526626 1.995912
-3.930040 4.776825 -1.901762 -2.411576 4.784369 -2.120693 - 2.325999 5.012619 -3.959728
1.742007 -2.117348 0.842964 1.068942 -2.120693 1.466998 1.609020 -3.467501 2.739158
1.910653 -2.322331 0.924573 1.172427 -2.325999 1.609020 0.424500 - 0.914815 0.722660
-4.117533 5.004716 -1.992491 - 2.526626 5.012620 -3.467501 - 0.914815 4.631205 - 3.658428
| 3.252652 -3.953484 1.573971 1.995913 - 3.959728 2.739158 0.722660 -3.658428 3.889982 |
The regression coefficients are:
~ [ 690.7573  152.3043  806.7698 8 - 146.2521 81.41943  95.45372
[-3.539114 -0.456894 -7.167589 } 2 { 0.09190734 0.2690378 -0.05815665
Again, let i
7,=[690.7573 -3.539114 152.3043 -0.456894  806.7698 -7.167589 ]

AN

R

1

7, =[146.2521 009190734  81.41943 0.2690378  95.45372 -0.05815665 |

The regression, discriminant function computed here is:
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!

AB"“ - 418.5047 614 5051
By +1.723603 -3.631021
B, -116.8619 70.8849
'&;: ?012 H'R71H®S’1

By +0.0939281 -0.7259318
B, - 451.1118 711.316
R -7.109432

B +3.612873 : |

Therefore the discriminant rule is:

R classify o(y.)intod * it & =0 0

. y O 7, Otherwise

where

’

o|B B Bl

= [Boll BoZl BollZ BOZZ BollS BOZS:I/
is a pk = 6 _ dimensional column vector consisting of the regression coefficients of the object to be classified.
For the Near Neighbour type of correlation, the confusion matrices computed using the three different
techniques was presented in table 4 while the probability of misclassification obtained was summarized in table
5

Table 4:Confusion Matrices for Three Classification Technigues Using Regression Discriminant Function

Allocate to | Classification technigues
Population Re-substitution Leave one out Partition of data
Actual population | Total Actual population Total | Actual population Total
42 7, 42 T, 42 &
48 46 94 11 12 23 1 3 4
T
12 14 26 49 48 97 29 28 57
T,
Total 60 60 120 60 60 120 30 30 60

2). Combined DataDiscriminant Procedure: The classification rules obtained here use the elongated data
discriminant procedure.

(i) Using all the sampled data to construct and evaluate the classification rule we have:

T =0.062399y,; + 0.062996 y,, + 0.071829 y,3 + 0.084921 y 4 + 0.099286 y,s + 0.108923y,s + 0.116898 y,;
+ 0.120664 y,g + 0.132692 yq9 + 0.144199y,1o + 0.060459 y,1; + 0.054826 y,1, + 0.051885 413 + 0.047535
Yo1s + 0.036833 Y15 + 0.037052 yg16 + 0.030294 y,17 + 0.029386 Y,15 + 0.024724 yo19 + 0.023284yp0 +
0.023495 yqp; + 0.023463 Yo, + 0.023476 Y03 + 0.023508Y,4 + 0.023497 405 + 0.023536 Yo + 0.023554
Yoz7 + 0.023543 yqpg + 0.023563 Y09 + 0.023662 Y,30 -1.009459

The classification rule for classifying a given hypertensive patient with vector of clinical data

!

Yo :I:y;l Yoo ygs} is
. if T>
R® : classify o(yojinto ™ It T_O_

- n, otherwise

i) Jackknife technique of leave-one out:
iii) Using half of the training sample (n;= n,=30) to compute the classification function and remaining to
evaluate, we obtained the following :
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A = -0.003022y,; - 0.000049 y,, - 0.001714 y;5 - 0.014467 y,4 + 0.002380 yos - 0.001001 yoe -
0.023375 y,7 + 0.027053 y,5 - 0.024456 Yy, - 0.004978 Yoy - 0.000891 y,;1 + 0.014365 y,1, - 0.016446
Yo1z + 0.011393 y,14 + 0.002279 y15 - 0.020153 Y16 + 0.037502 Y417 - 0.055022 Yy + 0.040116 Yoq9 -
0.005597 yq0 + 0.013196 Yygp1 - 0.012703 ygp + 0.009388 o3 + 0.004931 ygo4 - 0.021810 Y05 +
0.004592 Y406 - 0.003596 Y7 + 0.004851 Yypg + 0.014194 yype - 0.034960 Yoz + 7.792888

Hence a given hypertensive patient with vector of clinical data

!

Yo = [Ygl Y., Y&} is classify as follows:

n if A>0
n, otherwise

Similarly, the confusion matrices computed for each technique under Elongated Discriminant procedure was
presented in table 5 with the probability of misclassification obtained from the confusion matrices in table 6..

R® : classify o(yoj into 12

Table 5:Confusion Matrices for Three Classification TechniquesUsing Elongated Data Discriminant Function

Allocate to | Classification techniques
Population Re-substitution Leave one out Partition of data
Actual population | Total | Actual population | Total Actual population Total
42 7, 42 7y 7y iz
36 25 61 33 25 58 17 15 32
42
24 35 59 27 35 62 13 15 28
Ty
Total 60 60 120 60 60 120 30 30 60

Comparison Procedures by Techniques for Near Neighbour Procedure
Again the confusion matrix produced the probability of misclassification (error rates) in table 6. These error
rates were used to compare the performances of the two procedures and three Techniques used.

Table 6:Probabilities of Misclassification when Near Neighbour Correlation (autocorrelation) is Assumed

Classification
Procedures

Evaluation techniques

Re-substitution

Leave- one out

Partition of samples

Regression discriminant

0.4833

0.5083

0.5167

Combined data disciminant

0.4083

0.4333

0.4667

From table 2, the three techniques indicate that the combined data discriminant procedure is better than
the regression discriminant with lower probabilities of misclassification. The probabilities of misclassification
show that the re-substitution technique is a better estimator of the apparent error rate.

IV.  Conclusion
From the analyses it can be observed that whichever technique is employed to construct and evaluate
the sample based discriminant function, the elongated discriminant function performs better than the regression
disciminant function. In both procedures the Re-substitution technique was discovered to be the most
appropriate technique of estimating the apparent error rate (APERA), as this gives a lower probability of
misclassification.
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