
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 3 Ver. V (May. - Jun. 2016), PP 38-47 

www.iosrjournals.org 

DOI: 10.9790/5728-1203053847                            www.iosrjournals.org                                                  38 | Page 

 

On The Application of Linear Discriminant Functions for Equi 

and Auto Correlated Time Dependent Data 
 

HashimuBulus 
PhDDepartment of InsuranceFaculty of Management SciencesUniversity of Jos, Plateau State, Nigeria 

 

Abstract: This paper considers two special cases of correlation matrices, when k repeated observation on each 

of the p – variatewere collected from entity j at time t(t = 1, 2, …, k; p = 1,2,3; j = 1, 2, …, ni; i = 1,2)have equal 

correlation and auto correlation. Case 1 assumed constant equi-correlation matrix for all variables of both 

populations with a common variance covariance matrix while case 2 assumed auto correlation matrix. Two 

discriminant procedures (Regression Discriminant and elongated data discriminant) were employed in 

constructing the sampled based discriminant function.Systolic and diastolic blood pressures and heart rate were 

collected sequentially in time from two sampled population    rsnonsurvivoπandsurvivorsπ 21  of 

hypertensive patients admitted at Jos University Teaching Hospital.Three techniques: re-substitution, leave-one 

out and partition of samples were used toconstruct and evaluate the sample based discriminant function.  

Probabilities of misclassification obtained from the computed confusion matrices of each procedure under the 

two special cases of correlations (equi and auto correlations)   were used to compare the performance of these 

functions. From the analyses, the two discriminartfunctions compare favourably with each other and the 

Fisher’s commonly used rule; though the Elongated Data Discriminant function outperform the Regression 

Discriminant function having a lower probability of misclassification (0.308 when Pen Rose correlation is 

assumed and 0.4083 when auto-correlation is assumed). For both cases (equi and auto correlations) the re-

substitution technique performs betterthan the other two techniques(leave – one out and partition of sample 

techniques)with low probability of misclassification. 

Keywords: Disciriminant Function, Elongated Data Discriminant, Regression Discriminant, Equicorrelation, 

Autocoreelation 

 

I. Introduction 

Suppose p- vector observation is collected k time on entity j of population i , then the ni x pkdata matrix 

denoted Yi is: 
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collected from all sampled entities in population i i = 1,2; t = 1,2,…,k. 
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Let i ~ N 

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
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~
i be two predetermined multivariate normal populations with mean µi and a 

common variance covariance matrix ∑. For known µi and ∑ the discriminant function is  
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The optimal classification rule (Ropt) based on the discriminant function is: 
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McLenchlan (1992)stated the sample analogue of u as 
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Lanchenbruch (1975), Giri (1977) and McLenchlan (1992) obtained the error rates that will occur if u is used to 

classify a given entity into one of i  i = 1,2 

 

Application to real life  
In some practical situations repeated measurements are made on the entity to be classified. For instance 

in medical practice, a patient may be recalled for further repetition of the same clinical variables with the 

intention of providing a firmer basis for diagnosis or prognosis of his or her condition. These repeated 

characteristics could be collected at an equally or unequally spaced fixed point in time. These repeated 

characteristic have to be correlated. Two special cases of correlation were considered where in the multivariate 

normal group – conditional densities, the means are equal and the uniform variance covariance structure is  

The classification rules were evaluated and compared with one another under the following two special cases of 

correlation matrices: 

 i) the Penrose structure (equicorrelation): 
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 ii)Near neighbour correlation:
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II. Review Of Literature 
The study by Choi (1972) and subsequent ones by Gupta (1980) considered when the k repeated 

characteristics of each P-dimensional continuous random variable are equicorrelated. The characteristic vector 

~

y  is considered as a ρk dimensional random variable. Basu and Odell (1974) distinguished between simple 

equicorrelated and equicorrelated training data because they felt that the error rates of the sample linear 

discriminant function were unaffected by simple equicorrelation.  However, Mclachlan (1976) showed that the 
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error rates do change in the presence of simple equicorrelation; indeed the error rates asymptotically increase in 

size for positive correlation. 

 The repeated measurements yijk are said to be equicorrelated if 

cov(yijtyijl) = ii =1, 2 ; j =1, 2, … ni, t, l = 1, 2, …, K 

where,i is a symmetric matrix. 

The same observations are said to be simply equicorrelated if i = ρiΣi, 

where 0< ρ < 1 and Σi is the common variance covariance matrix of the observation from population πii = 1, 2, 

         Gupta (1986) has obtained expression for the error rates of the Bayes rule in the case of a single feature 

variable (p=1). Gupta and Logan (1990) studied the case of multiple variables (p>1). 

Weber and Baldessari (1988), studied the effect of correlated training data on the performance of sample normal 

linear discriminant rule.  Earlier, Basu and Odell (1974) studied the case when the usual assumption of 

independent training data is violated.  When evaluating the performance of the sample linear discriminant rule, 

Basu and Odell (1974) observed that the actual error rates were higher than the theoretically anticipated values 

under the assumption of independence.  Basu and Odell (1974) investigated the effect of equicorrelated training 

data that classified with respect to two populations π1 and π2.  Basu and Odell (1974) assumed the same variance 

covariance structure within each group, where ρ1 = ρ2 = ρ and – (k-1)
-1

< ρ < 1. 

McLachlan (1992) stated that Tubbs (1980) investigated the effect of serially corrected training data on 

the unconditional error rates of the sample normal linear discriminant rule under homoscedastic normal model 

[y ~ N (μi, Σ)].  He considered when ni training data yij (i = 1, 2 ; j =1, 2, …. ni) from population πi follow a 

simple multivariate stationary autoregressive model of order one AR(1) where 

  cov (yij, yik) = ρdΣ  t ≠ l = 1, 2, …, k 

  for d = | t-l |  and 0 <ρd< 1. 

McLachlan (1992) added that Lawoko and McLachlan (1983, 1985, 1986, 1988 and 1989) considered 

the effect of correlated training data on the simple normal linear discriminant rule under the homoscedestic 

normal model.  Lawoko and Mclachlan (1983) derived the asymptotic expansion of the group – specific 

unconditional error rates of the sample normal linear discriminant rule based on some model considered by 

Tubbs (1980).  Lawoko and McLachlan (1983) demonstrated the magnitude of the increase in the unconditional 

error rates for positively correlated training data by evaluating the asymptotic expansion for a univariate 

stationary autoregressive process of order one, for which d  = ρ
d
  where  0<ρ<1. 

Lawoko and McLachlan (1988) according to McLachlan (1992) showed that the optimism of the plug-in method 

of estimating the error rates is magnified by positively correlated training data following a stationary AR(1) 

model.  Early, Lawoko and Mclachlan (1986) showed asymptotically that the Z – statistic defined as n1 / (n1 + 

n2) is preferable to the simple normal linear discriminant function for positively correlated univariate training 

data following a stationary AR(1) process.Lawoko and McLachlan (1989) studied the effect of correlated 

training data on the estimates of the mixing proportions obtained by an application of the sample normal linear 

discriminant rule, as in area estimation via remote sensing. 

 

III. The Model 
This section constructs and evaluates sample based classification rules for two multivariate 

populations. Here data on the three clinical variables (p = 3); systolic blood pressure (Y1), diastolic blood 

pressure (Y2) and heart rate (Y3) obtain at k (k = 12) points in time (6 am and 6 pm) from n sampled (n = n1+ n2 

=120) hypertensive patients of known survival status admitted at a Hospital were used to construct the sample 

based classification rules. For each of the two procedures used in constructing the sample based classification 

rules, confusion matrices and probabilities of misclassification were obtained. Two correlation structures ( Pen 

Rose and near neighbour correlation matrices) were assumed. 

 
3.1 Sample Based Descriminant Functions For Equi-Correlated Data (Pen Rose Correlation Structure)  

This section considers first special case of correlation matrix, when the k repeated observations on each 

of the p- variate have equal correlation. It assumes constant equi-correlation matrix for all variables of both 

populations, with a common variance-covariance matrix. Confusion matrices and probabilities of 

misclassification were obtained for each of the two procedures (regression discriminant and elonogated data 

discriminant procedures) used in constructing the sample-based classification rules,. 

 

1. Regression Discriminant Procedure: The sample based classification rules, confusion matrices and 

probabilities of misclassification were obtained here using the re-substitution technique, Jackknife methods 

of leave-one out and partitioning of samples.  

i)  Re-substitution technique: Here all sampled objects were use, in estimating the following the parameters. 



On The Application Of Linear Discriminant Functions For Equi And Auto Correlated Time .. 

DOI: 10.9790/5728-1203053847                            www.iosrjournals.org                                                  41 | Page 





































5.509177  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  

0.672426-  5.509177  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  

0.672426-  0.672426-  5.509177  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  

0.672426-  0.672426-  0.672426-  5.509177  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  

0.672426-  0.672426-  0.672426-  0.672426-  5.509177  0.672426-  0.672426-  0.672426-  0.672426-  

0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  5.509177  0.672426-  0.672426-  0.672426-  

0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  5.509177  0.672426-  0.672426-  

0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  5.509177  0.672426-  

0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  0.672426-  5.509177

ˆ 1R
 

The regression coefficients are: 
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Hence the discriminant function is: 
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This was then use in classifying a new object o( o ) into one the two predetermined population   21 πandπ  as: 
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ii)  When the leave-one out technique is use, the probability of misclassification obtained using its confusion 

matrix was: 

PMC =  5417.0
120

65
  

(iii)  When half of the training sample (n1=  n2=25)  was used to computed  the Drscriminant function and the 

other half to validate, we get estimate of the following parameters as:   
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The computed regression coefficients are: 




















0.1450099  0.08802477  0.1736604  

74.21841     86.49452     124.837  
ˆ

0.04227237  0.07939636  0.1551614  

81.6575      82.02781    116.6719  
ˆ

21

 

So that,  

 

 




     0.145009974.21841    0.08802477 86.49452   0.1736604   124.837  

  0.04227237  81.6575      0.07939636  82.02781   0.1551614 116.6719  

2

1




 

 

Therefore the discriminant function is 





































































 

0.1027375- 

  7.439087

 0.08628406-

4.466713-

0,01849902-

 8.1651-

SHRH

0.09364112 -ˆ

77.93796 - ˆ

0.08371057-ˆ

84.26117 -ˆ

 0.1644109 -ˆ

120.7544 -ˆ

ˆ 11

o23

o13

o22

o12

o21

o11

 

The discriminating  rule is: 
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Again the probability of misclassification from the confusion matrix was: 

PMC =  4833.0
60

29
  

 

\When Pen Rose correlation was assumed the confusion matrices computed for each technique using 

Regression Discriminant Function was summarized in table 1 while the probability of misclassification obtained 

from these confusion matrices was presented in table 3 

 

Table 1: Confusion Matrices forThree Classification Techniques Using Regression Discriminant Function 
Allocate to 
Population 

Classification techniques 

Re-substitution Leave one out Partition of data 

Actual Population Total Actual Population Total Actual Population Total 

1  2  1  2  1  2  

1  
32 27 59 28 33 61 16 15 31 

2  
28 33 61 32 27 59 14 15 29 

Total 60 60 120 60 60 120 60 60 120 
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2. Elongated (Conbined) data Discriminant Procedure: The discriminant function obtained here used the 

elongated data discriminant without summary. 

i)  Re-substitution technique: Using all the sampled data to construct and evaluate the classification function, 

we have: 
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-0.081336 yo15 + 0.086531 yo16 - 0.077718 yo17 + 0.004061 yo18 + 0.000945 yo19 + 0.037812 yo20 + 0.045595 

yo21 + 0.045675yo22 - 0.014522 yo23 -0.068450 yo24 + 0.081725 yo25 - 0.070112 yo26 - 0.005356 yo27 + 

0.084241 yo28 + 0.026188 yo29 - 0.136745 yo30+ 1.784809 

Hence the classification rule is: 
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is a column vector consisting of the  observations on the three clinical variables (p = 3) obtain at ten points (k = 

12)  in time from the object to be classified. 

 (ii)  Technique of leave-one out:  

(iii)  When half of the training sample (n1 = n2 =30) to compute the classification rule and the remaining to 

evaluate, we obtained the discriminant function ̂  as: 

̂   = 0.070154yo1 + 0.060172 yo2 - 0.025645 yo3 - 0.029440 yo4 + 0.003717 yo5 - 0.073324 o6 + 

0.079218 yo7 - 0.010908 yo8 + 0.038892 yo9 - 0.124846 yo10 + 0.086198 yo11 - 0.022818 yo12 + 0.019232 

yo13 - 0.024001 yo14 -0.070115 yo15 + 0.098787 yo16 - 0.247972 yo17 + 0.051866 yo18 - 0.104802 yo19 + 

0.216457 yo20 + 0.053348 yo21 + 0.098384 yo22 + 0.063102 yo23 -0.012679 yo24 - 0.092118 yo25 - 

0.115671 Yyo26 + 0.075021 yo27 + 0.159265 yo28 - 0.051068 yo29 - 0.181996 yo30 + 0.07860756. 

Therefore the sample based classification rule, confusion matrix and the corresponding probability of 

misclassification are respectively obtain as: 


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
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otherwise
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~
o

)p(

sd     … 8 

Similarly, the confusion matrices computed for each technique under this procedure assuming the Pen 

Rose type of correlation was presented in table 2and the probability of misclassification obtained from the 

confusion matrices was summarized in table 3 

 

Table 2: Confusion Matrices for Three Classification Techniques Using Elongated Data Discriminant Function 
Allocate to 

Population 

Classification techniques 

Re-substitution Leave one out Partition of data 

Actual population Total Actual population Total Actual population Total 

1  2  1  2  1  2  

1  
43 20 63 34 33 67 15 13 28 

2  
17 40 57 26 27 53 15 17 32 

Total 60 60 120 60 60 120 30 30 60 

 

Comparison of Procedures by Techniques for Equi-correlated Data 

From the confusion matrix, the empirical estimate of the corresponding probability of misclassification refer to 

as error rates for the two procedures were presented in table 1 

Table 3:Probabilities Of Misclassification Assuming Pen Rose Correlatiom Structure (Equicorrelation) 
Classification  

Procedures 

Evaluation techniques 

Re-substitution Leave- one out Partition of samples 

Regression discriminant 0.4583 0.5417 0.4833 

Combined data disciminant 0.308 0.4917 0.4667 
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From table1 it can be observed that when Pen Rose correlation structure (equicorrelation) is assumed, 

the elongated data discriminant procedure performs better for all the three techniques. The re-substitution 

technique for instance indicates that the probability of misclassification of the combined data discriminant 

procedure is 0.308.This is better than the regression discriminant procedure with probability of misclassification 

0.4583. 

 

3.2 Sample Based Classification Rules Assuming Near Neighbour Correlation 

This section considers the second special case of correlation matrix (near neighbour correlation structure) given 

in section 1 as:  















elswhere

hforr

hfor

htt

0

11||

01

|| )(         t = 1,2,…,k 

Here the near neighbor correlation matrix is assumed to be constant for all variables of both populations. 

Base on this structure of the correlation matrix, sample based discriminant function for two multivariate normal 

populations are constructed and evaluated using the following discriminant procedures.  

 

1.  Regression Discriminant Procedure:  Sample based discriminant function was obtained when using all 

sampled entities, and the same entities were employed to construct the confusion matrices that producedthe 

probabilities of misclassification. 

 






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
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
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









9.654582  10.444090-  2.954356  6.813151  11.032780-  6.230779  3.738176  10.639180-  8.918079  

10.444090-  12.603620  3.565230-  8.221910-  13.314040  7.519120-  4.511120-  12.839050  10.762080-  

2.954357  3.565230-  1.350487  3.114409  5.043275-  2.848197  1.708785  4.863354-  4.076608  

6.813151  8.221910-  3.114408  4.418312  7.154732-  4.040645  2.424198  6.899485-  5.783353  

11.032780-  13.314040  5.043274-  7.154733-  13.511490  7.630633-  4.578022-  13.029460  10.921680-  

6.230779  7.519120-  2.848196  4.040645  7.630633-  4.972946  2.983535  8.491407-  7.117750  

3.738175  4.511119-  1.708784  2.424198  4.578022-  2.983534  1.080144  3.074186-  2.576874  

10.639180-  12.839050  4.863355-  6.899486-  13.029460  8.491408-  3.074186-  12.112210  10.152820-  

8.918080  10.762080-  4.076608  5.783354  10.921680-  7.117750  2.576874  10.152820-  9.510392

1R

The regression coefficients are 
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2.03119  0.2381343-  0.1286151

84.8001-     123.839      106.7337
ˆ

  0.00596293-  0.2977844  0.1026616- 

88.53336      58.8903      154.1501 
ˆ
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Now let 

 
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


   2.03119 84.8001-   0.2381343-  123.839      0.1286151106.7337

    0.00596293- 88.53336       0.297784458.8903      0.1026616- 154.1501 
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0.003308  0.000090-  0.000012  

0.000090-  0.004544  0.002242-  

0.000012  0.002242-  0.001861  

302.543900  12.395630  13.026930  

12.395630  543.150400  654.206200  

13.026930  654.206200  01325.27200  
1SS

 

 

The regression discriminant function is : 



On The Application Of Linear Discriminant Functions For Equi And Auto Correlated Time .. 

DOI: 10.9790/5728-1203053847                            www.iosrjournals.org                                                  45 | Page 







































































 

2.037153-

     173.3335 

 0.5359187

 64.94874-

0.2312767-

 47.41635

SHRH

1.012613  -ˆ

  1.866631 -ˆ

 0.02982505-ˆ

91.36467-ˆ

  0.01297672 -ˆ

130.4419-ˆ

ˆ 11

o23

o13

o22

o12

o21

o11

 

Hence the discriminating rule is 



 

otherwise

if
ooclassifyR o

p

rd

2

1

~

)( 0ˆ
int)(:ˆ




     … 9 

where 

  

 











23o113o22o112o21o11o

~
3o

~
2o

~
1o

~
o

ˆˆˆˆˆˆ

ˆˆˆ

 

is a pk = 6 _ dimensional column vector consisting of the regression coefficients of the object to be classified.  

ii)  The leave-one out technique:  

iii)    Using half of the training sample (n1=  n2=30) we computed  the  

 discriminantfunction and the other half to validate, we got:   
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3.889982  3.658428-  0.722660  2.739158  3.959728-  1.995913  1.573971  3.953484-  3.252652  

3.658428-  4.631205  0.914815-  3.467501-  5.012620  2.526626-  1.992491-  5.004716  4.117533-  

0.722660  0.914815-  0.424500  1.609020  2.325999-  1.172427  0.924573  2.322331-  1.910653  

2.739158  3.467501-  1.609020  1.466998  2.120693-  1.068942  0.842964  2.117348-  1.742007  

3.959728-  5.012619  2.325999-  2.120693-  4.784369  2.411576-  1.901762-  4.776825  3.930040-  

1.995912  2.526626-  1.172427  1.068941  2.411576-  1.823146  1.437728  3.611269-  2.971101  

1.573971  1.992491-  0.924573  0.842964  1.901762-  1.437728  0.170913  0.429298-  0.353197  

3.953484-  5.004716  2.322331-  2.117349-  4.776826  3.611269-  0.429298-  4.173184  3.433407-  

3.252652  4.117533-  1.910653  1.742008  3.930041-  2.971102  0.353197  3.433407-  3.824769  

 R 1-
 

The regression coefficients are: 
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The regression, discriminant function computed here is: 
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Therefore the discriminant rule is: 
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is a pk = 6 _ dimensional column vector consisting of the regression coefficients of the object to be classified. 

For the Near Neighbour type of correlation, the confusion matrices computed using the three different 

techniques was presented in table 4 while the probability of misclassification obtained was summarized in table 

5 

 

Table 4:Confusion Matrices for Three Classification Techniques Using Regression Discriminant Function 
Allocate to 
Population 

Classification techniques 

Re-substitution Leave one out Partition of data 

Actual population Total Actual population Total Actual population Total 

1  2  1  2  1  2  

1  
48 46 94 11 12 23 1 3 4 

2  
12 14 26 49 48 97 29 28 57 

Total 60 60 120 60 60 120 30 30 60 

 

2). Combined DataDiscriminant Procedure: The classification rules obtained here use the elongated data 

discriminant procedure. 

 

(i)  Using all the sampled data to construct and evaluate the classification rule we have: 

̂  = 0.062399yo1 + 0.062996 yo2 + 0.071829 yo3 + 0.084921 yo4 + 0.099286 yo5  + 0.108923yo6 + 0.116898 yo7 

+ 0.120664 yo8 + 0.132692 yo9 + 0.144199yo10 + 0.060459 yo11 + 0.054826 yo12 + 0.051885 yo13 + 0.047535 

yo14 + 0.036833 yo15 + 0.037052 yo16 + 0.030294 yo17 + 0.029386 yo18 + 0.024724 yo19 + 0.023284yo20 + 

0.023495 yo21 + 0.023463 yo22 + 0.023476 yo23 + 0.023508yo24 + 0.023497 yo25 + 0.023536 yo26 + 0.023554 

yo27 + 0.023543 yo28 + 0.023563 yo29 + 0.023662 yo30   -1.009459 

The classification rule for classifying a given hypertensive patient with vector of clinical data 
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ii)  Jackknife technique of leave-one out:  

iii) Using half of the training sample (n1=  n2=30)   to compute  the classification function and remaining to 

evaluate, we obtained the following : 
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̂  - 0.003022yo1 - 0.000049 yo2 - 0.001714 yo3 - 0.014467 yo4 + 0.002380 yo5 - 0.001001 yo6 - 

0.023375 yo7 + 0.027053 yo8 - 0.024456 yo9 - 0.004978 yo10  - 0.000891 yo11 + 0.014365 yo12 - 0.016446 

yo13 + 0.011393 yo14 + 0.002279 yo15 - 0.020153 yo16 + 0.037502 yo17 - 0.055022 yo18 + 0.040116 yo19 - 

0.005597 yo20 + 0.013196 yo21 - 0.012703 yo22 + 0.009388 yo23  + 0.004931 yo24 - 0.021810 yo25 + 

0.004592 yo26 - 0.003596 yo27 + 0.004851 yo28 + 0.014194 yo29  - 0.034960 yo30 + 7.792888 

Hence a given hypertensive patient with vector of clinical data 
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Similarly, the confusion matrices computed for each technique under Elongated Discriminant procedure was 

presented in table 5 with the probability of misclassification obtained from the confusion matrices in table 6.. 

 

Table 5:Confusion Matrices for Three Classification TechniquesUsing Elongated Data Discriminant Function 
Allocate to 

Population 

Classification techniques 

Re-substitution Leave one out Partition of data 

Actual population Total Actual population Total Actual population Total 

1  2  1  2  1  2  

1  
36 25 61 33 25 58 17 15 32 

2  
24 35 59 27 35 62 13 15 28 

Total 60 60 120 60 60 120 30 30 60 

 

Comparison Procedures by Techniques for Near Neighbour Procedure 

Again the confusion matrix produced the probability of misclassification (error rates) in table 6. These error 

rates were used to compare the performances of the two procedures and three Techniques used.   

 

Table 6:Probabilities of Misclassification when Near Neighbour Correlation (autocorrelation) is Assumed 
Classification  
Procedures 

Evaluation techniques 

Re-substitution Leave- one out Partition of samples 

Regression discriminant 0.4833 0.5083 0.5167 

Combined data disciminant 0.4083 0.4333 0.4667 

 

From table 2, the three techniques indicate that the combined data discriminant procedure is better than 

the regression discriminant with lower probabilities of misclassification. The probabilities of misclassification 

show that the re-substitution technique is a better estimator of the apparent error rate. 

 

IV. Conclusion 

 From the analyses it can be observed that whichever technique is employed to construct and evaluate 

the sample based discriminant function, the elongated discriminant function performs better than the regression 

disciminant function. In both procedures the Re-substitution technique was discovered to be the most 

appropriate technique of estimating the apparent error rate (APERA), as this gives a lower probability of 

misclassification. 
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