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Abstract: In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly 2K -weakly
compatible maps in complex valued b -metric spaces.We also give an example to illustrate our main theorem.
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I.  Introduction and Preliminaries
There are several generalizations of the Banach contraction principle in literature on fixed point theory.

Presic [1] generalized the Banach contraction principle as follows. Throughout this paper N and C denote the
set of all positive integers and complex numbers respectively.

Theorem 1.1.([1]) Let (X,d) be a complete metric space, K be a positive integer and T : X — X bea
mapping satisfying

k
(1.1.1) d (T(Xl, X2,' cey Xk),T(Xza X3! T Xk+1)) < Zq|d (Xi ’ Xi+1)
i=1

K

for all X, Xy, **, X, X,y € X, where ¢, >0 and Zqi <1. Then there exists a unique point X € X such
i=1

that T (X, X,...., X) = X. Moreover, if X, X,,-*, X,,; are arbitrary pointsin X and for NN,

Xook = T (X5 Xa107 s Xux1) » then the sequence {X, } is convergent

and lim X, =T (limx_, limx,,...limx;) .
n—o

Inspired by the Theorem 1.1, Ciric and Presic [2] proved following theorem.

Theorem 1.2. ([2]) Let (X,d) be a complete metric space, K a positive integer and T : X* — X be a
mapping satisfying
d(T (6% X T (G, X+, %)) S A madd (X, X)) :1< i <k}
for all X;,X,,*+, X, X,y in X, where A €[0,1). Then there exists a point X € X such that
X =T(X,X,....,X). Moreover, if X,X,,-*-,X,,, are arbitrary points in X and for neN,
Xoe = T Xy Xoigs s X q ) then the sequence {x.} is convergent and

lim X, =T (limx,,limx,...1imx_ ). 1f in addition, we suppose that on diagonal Ac X*,

n—oo
d(T (u,u,...,u), T(v,v,...,v)) <d(u,Vv) holds for u,ve X with U=V, then x is the unique fixed point
satisfying X =T (X, X,..., X).

Recently Rao et al.[3,4] obtained some Presic type theorems for two and three maps in metric
spaces.Now we give the following definition of [3,4] .

Definition 1.3. Let X be a non empty setand T : X? — X and f : X — X .The pair (f,T) is said to
be 2K -weakly compatible if f(T(X,X,...,X)) =T(fX, fX,..., fX) whenever X & X such that
fX=T(X, X,..,X).
Using this definition, Rao et al. [3] proved the following

DOI: 10.9790/5728-1203055461 www.iosrjournals.org 54 | Page



Presic Type Common Fixed Point Theorem for Four Maps in Complex Valued b -Metric Spaces

Theorem 1.4 .([3]) Let (X,d) be a metric space, K a positive integer and S,T:X%* — X,
f : X — X be mappings satisfying
(L42) (SO X1 X ). T (g X - X)) < AEX{A (6, F,,) 1151 < 2K
forall X, Xy, =+, Xp s Xpp g IN X,

(1.4.2) d(T (Y1 Yoo Yar)s S(Vas Yoo Yara)) < Amax{d (fy;, fy;,,) :1<i <2k}
forall Vi, Yo, s Yors Yoruy in X, where 0 <A <1,
(1.4.3) d(S(u,---,u), T(v,---,v)) <d(fu, fv), forall u,ve X with u=Vv.
(1.4.4) Suppose that f(X) is complete and either (f,S) or (f,T) is a 2k — weakly compatible
pair.
Then there exists a unique point p e X suchthat fp=p=S(p,---,p)=T(p,---, P)-

Azam et al.[5] introduced the concept of complex valued metric spaces and obtained sufficient
conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition.
Later several authors for example,refer [6-14] proved fixed and common fixed point theorems in the setting of
complex valued metric spaces.

In this paper, we obtain a common fixed point theorem of Presic type for four mappings in complex

valued D -metric spaces.We present one example to illustrate our main theorem. We also obtain some
corollaries. To begin with, we recall some basic definitions, notations and results.

Let z,,Z, € C. Define a partial order < on C follows:

2,3 zifand only if Re(z,) < Re(z,), Im(z,) < Im(z,).
Thus z; < z, if one of the following holds:
(1) Re(z,) = Re(z,) and Im(z,) = Im(z,),
2) Re(z,) < Re(z,) and Im(z,) = Im(z,),
(3)Re(z,) = Re(z,) and Im(z,) < Im(z,),
(4)Re(z,) < Re(z,) and Im(z,) < Im(z,).

Clearly z; S 2, = |Zl| < |22| .

We will write z; 5z, if Z; # Z, and one of (2), (3) and (4) is satisfied. Also we will write Z, < Z, if
only (4) is satisfied.

Definition 1.5. ([5]) Let X be a non empty set. A function d : X x X — C is called a complex valued metric
on X ifforall X,y,z € X the following conditions are satisfied:

(i) 0= d(X,y) and d(X,y) =0 ifand only if X =y;
(i) d(x,y) =d(y, x);
(ind(x,y)sd(x,z) +d(z, V).
The pair (X, d) is called a complex valued metric space.

Now, we briefly recall the definitions and lemmas about complex valued b -metric spaces introduced
by Rao et al.[15].

Definition 1.6.([15]) Let X be anonempty setand S >1. A function d : X x X — C s called a complex
valued b - metricon X if for all X, y,Z € X the following conditions are satisfied:

(i)0=3d(X,y) and d(x,y) =0 ifand only if X =Y;

(i) d(x,y) =d(y,x);

i) d(x, y) = s[d(x,z) +d(z,y)]

The pair (X,d) is called a complex valued b - metric space.
Note. If Z, =a+ib and z, = @ +if then we define max{z,, z,} = max{a, a}+i max{b, 5}.
Definition 1.7.([15]) Let (X,d) be a complex valued b -metric space.
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1. A point X€ X s called interior point of a set A< X whenever there exists 0 <1 € C such that
B(x,r)={ye X:d(x,y)<r}c A.
2. A point X€ X is called a limit point of a set A< X whenever there exists 0 <1 € C such that
B(X,r)n(X —A) #4¢.
. Asubset B < X is called open whenever each point of B is an interior point of B .
. Asubset B < X is called closed whenever each limit point of B isin B .
The family F ={B(x,r):xe X and 0<r} is a sub basis for a topology on X . We denote this

o~ w

complex topology by 7. Indeed, the topology 7 is Hausdorff.
Let {X,} be asequence in X and X & X .If for every C € C with 0 c there is N, €N such that
for all n>ny, d(X,,X) <Cthen {X_} is said to be convergent to X and X is the limit point of {X }.We
denote this by [im X, = X or X, — X as N —>o0. If for every C € C with 0 < C thereis N, €N such that

n—o

for all N >ngy,d(x ) <C, where meN then {Xn} is called a Cauchy sequence in (X, d). If every

X
n?! *n+m
Cauchy sequence is convergent in (X, d) then (X,d) is called a complete complex valued b -metric space.
We require the follwing lemmas.
Lemma 1.8.([15]) Let (X,d) be a complex valued D -metric space and let {Xn} be a sequence in X.

Then {Xn} converges to x if and only if |d(Xn,X)| —0 as n—oo0.
Lemma 1.9.([15]) Let (X,d) be a complex valued b -metric space and let {Xn} be a sequence in X.
Then {Xn} is a Cauchy sequence if and only if |d(Xn, Xn+m)| —>0 asnm-—>oo,
One can easily prove the following lemma

Lemma 1.10. Let (X,d) be a complex valued b -metric space and let {X.} and {y,} be sequences in X
converging to X and Y respectively. Then

(M) %|d(X, z)| <lim |d(x,,2)|<s|d(x,z)| forall ze X,

(ii) Siz|d(x, y)| < !]ian|d(xn, yo)| < s%ld(x, y).
Before proving our main theorem we give the following new definition.
Definition 1.11. Let X be a nonempty set, K a positive integer and S,T:X%* — X and
f,g:X — X. The pairs (f,S) and (g,T) are said to be jointly 2K -weakly compatible if
f(S(X, X,...,X)) = S(fX, fx,..., X) and g(T (X, X,..., X)) =T (gX, gX,..., gX) whenever there exists

X e X suchthat fx=S(X,X,...,X) and gx =T (X, X,...,X).
Now we give our main theorem.

Il.  Main Result
Theorem 2.1. Let (X,d) be a complete complex valued b -metric space with S>1 and k be any
positive integer. Let S, T : X — X and f,g: X — X be mappings satisfying
(2.1.1) S(X*) 2 g(X), T(X*) < f(X),

d(gx,, fy,),d(fx,,ay,),
d(gx,, fys), d(fx,, 9y,),

d(9%y1s TYar) d(FXy, Yo )

(2.1.2) d(S(%, Xo s X 1 T (Vi Yooy Vo)) S A max
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1
VX0, Xg 1o Xy Vi Yoo Yo € X, Where 4 e (O’ST)'

(2.1.3) (f,S) and (g, T) are jointly 2K -weakly compatible pairs,

(2.1.4) suppose z= fu=gu for some Ue X whenever there exists a sequence {Y,, ey in X

such that |im Y., =2€ X .

nN—oo

Then z is the unique pointin X suchthat z = fz=9z =5(z,z,..,2,2) =T(z, z,...,Z,2).

Proof. Suppose X, X,,..., X, are arbitrary points in X , From (2.1.1), define
Yakszna = S(Xon1s Xon s Xori2n-2) = Plosizn-as
Yatcran = T (Xons Xonageeer Xorsona) = Popon, for n=1,2,...
Let a,, = d(fX,,,0%,,,,) and a,,, =d(9X,, 4, TX,,), for n=1.2,..
; AN otz

Write @ = A% and g = max{—,—2L ..., }.
6 (0" (O*
Then 0 < @ <1 and by the selection of 1, we have
|0(n| <wu(@)" for n=1,2,...,2k (1)

Consider
Ayey = A(9Xy0r TXo1i2)
= d(S(Xy Xgreeer Xop_1s X I T (Xgs Xgreves Xy Xp11))

d(gx,, fx,), d(fx,, gx;),
o) 4(9%. Tx,), d(Tx,, gx;),
d(gXZk—l’ fXZk )’ d(fx2k ! gX2k+1)
= Amax{ey, &y, 0y, Ay sy Uy, Oy }-

<Ama

(@] < 4 MOXLL, 1(6)2..., 11(6)*}, From(1)
= A6 = po(0)™ = u(0)** )

Also
Oz = A (X2, Bhoi13)
= d(T (%) Xgrme0 Xaorer Xorei1)s S(Xgs X0y Xopaar Xoks2))
= d(S(Xgs Xgreeer Xoksar Xaro)s T (Ko Xgiees Xois Xogeia))
d(9%,, ), d(fx,, 9%;),
A9, Tx),d (1, %),

<Ama

d(9%0s P ) A (X120 OXopr)
= Amex{aty, O, Qy, Qg gy s Oy}
r.5] < A MRXE(6)?, (6 .. (6}, from(1)
= 24u0)* = u(6)* ()™ = w(6)** 3)
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Continuing in this way, we get |an| <u(@" forn=1,2,.... 4)
Consider
d(Yac-an1s Yakian)
= d(S(Xan11 Xonsess Xakszn-2 )y T (Xon s Xansa -+ Xoks2n-1))
d(9%on_1, TXz0), A (X500 9Xo0.0),

< /1 max d (gX2n+l’ fX2n+2)! d ( fx2n+2! gx2n+3)1

d(9%as2n-37 PXorrzn-2)s A (FXorion2) o on1)
= AMmeX{ayy 41 Qo vy Aipsan 30 Xotaon 2 &
14 (YVacszn-1: Yarrzn))
< RO O O, (6
= A4(0)™ = (O (0" = (O ®)
Also
d(Ya2ns Yorsonia)
= d (T (Xans Xoni10+ Xas2n-1)r S(Xansas Xonsz 1+ Xoks2n )
= A (S(Xan11s Xons2 s Xaon 1y T Xons Xonsa s+ Xais2n-1))
d(9%n.1, £%00), d (0,5, 0Xon,4),

< A max d (gX2n+3’ fX2n+2)1 d ( fX2n+4’ gX2n+3)’

d (gX2k+2n—l' fX2k+2n72)! d ( fX2k+2n ’ gx2k+2n—1)

= Amex{at,,, Aoni1) Conias Aoz Aoiion 1 F
1d(Vaison: Yairzn)
< Amex{u(O)?, 1(0)™..., 1(O) 2, 1(0)2 21}
= 2p(0)*" = w(0)* (0)*" = p(6)* ™" (6)
From (5),(6), we have |d (Yorsns y2k+n+1)| < p(@)*™" for n=1,2,3,... ... (7
Now, using(7),for m > n consider
S |d (Yakins y2k+n+1)| +s? |d (Yakenaar Yakens2 )|
1AV akns Yaem) <| 87 [d(Varensos Yorinsa)| + o+

Sm—n—l |d (y2k+m—1 ' y2k+m )|

Py Sﬂ(9)2k+n +52 ﬂ(9)2k+n+l+s3 ﬂ(9)2k+n+2
- +...+Sm_n_1,u(9)2k+m_l

3 |:(Se)2k+n +(Sg)2k+n+1+(89)2k+n+2

< ,sinces>1
+o. 4+ (s9)
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1

< u(s0)* 0) lince so= 22 <s.2=1
H 1-s6 S

—0asn—oo,m-— oo,
Hence {Y,.,} is a Cauchy sequence in (X,d).
Since X is complete there exists Z € X suchthat Y,,,, —>Z as N —>c0.

From(2.1.4),there exists U € X such that z = fu = gu. (8)
Now consider

A (S U U,-sU), Vo)
= |d (S (U, U,...,U),T(X2n ! X2n+l""’ X2n+2k71))|

|d (gU, fX2n)|' |d ( fU, gX2n+1)|1

|d (9u, Xy 00 5 )|: |d (fu, gx2k+2n—1)|
Letting N —> oo and using (8),Lemma 1.10(i), we get

%|d(8(u,u,...,u), fu)] <0 so that S(UU,...,u) = fu )

Similarly we have T (u,u,...,u) = gu (10)

Since (f,S) and (g, T) are jointly 2K -weakly compatible pairs and from (9),(10), we have
fz= f(fu)= f(S(u,u,...,u)) =S(fu, fu,..., fu) =S(z,z,...,.2)  ...(11)
and 0z=T(z,z,...,2,2) ..(12)

Now using (10), (11), we get

d(fz,z) =d(fz,gu)
=d(S(z,z,...,z,2),T(u,u,...,u,u))
d(gz, fu),d(fz, gu),

f f
< max d(gz, fu),d(fz,gu),

d(gz, fu),d(fz,gu)
= A max{d(gz,z),d(fz,2)}.
Thus d(fz,z) s Amax{d(gz,z),d(fz,z)} (13)
Similarly,we have d (gz, z) 3 A max{d(gz, z),d(fz,2)} (14)
From (13)and (14), we have
max{|d (9z, z)|,|d (fz, z)[} < 2 max{/d (gz, 2)|,|d (fz, z)[}

which in turn yields that fz=2z =gz (15)
From (11),(12)and (15),we have fz=z=g9z=S(z,z,...,2,2)=T(z,2,...,2,2) (16)
Suppose that there exists z' € X such that

2'=f'=92'=S(,7,..,2',2")=T(",2,...,7,Z) .
Then from (2.1.2), we have

d(z,2")|=|d(5(z,2,...2,2), T (7" Z',.... 2, 7))
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= Ad(z,2)|
This implies that 2' = z.

Thus z is the unique point in X satisfying (16).
Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let X =[0,1] and d(X,y) =i|x—y|? and k =1.
3x? +2y 2X+3y? X x?
——, T(X,y)=——=, fX==and gx="—
V4608 () V4608 6 J 4
forall X,y e X . Thenclearly S= 2. Then forall X, X,,Y;, Y, € X ,we have

3 +2x, 2y, +3y:
d(S(x, %), T(Y1, Y2)) = l\/4608 3/146023/2

I—I(3X —2y,)+(2x, —3y;) [

Define S(X,y) =

|2

4608
s.m(wx =2y, |+]2x,-3y; |)?
< |m(|3x -2y, P +]2x, -3y2 %)
.\
i3V gD
;max{lxl Yip e Yopy
% max{d (gx,, fy,),d(fx,, ay,)}

1 1 1 1
Here A = g S (O,Z) = (O,?) = (O,Sw) .
Thus (2.1.2) is satisfied.
One can easily verify the remaining conditions of Theorem 2.1.
Clearly O is the unique pointin X suchthat f0=0=g0 = S(0, 0....,0, 0) = T(0, 0....,0, 0).
Corollary 2.3. Let (X,d) be a complex valued b -metric space with S>1 and K be any positive integer. Let
S,T:X%* > X and f:X —> X be mappings satisfying
(2.3.1) S(X*) < f(X), T(X*) < f(X),
(2.3.2) d(S(Xys X yees X iy T (V11 Vs Yo ) < Amax{d(fx, fy,) :1<i <2k}

1
VX5 Xoyeees X Vs Vosrees Yor € X, Whered e (0’37) ,

(2.3.3) f(X) isacomplete sub space of X,
(2.3.4) (f,S) or (f,T) isa 2k -weakly compatible pair.
Then there exists a unique point U € X such that u = fu=S(u,u,..,u,u) =T(u,u,..,u,u).
Corollary 2.4. Let (X,d) be a complex valued b -metric space with S>1 and K be any positive integer.
Let S: X* > X and f : X — X be mappings satisfying
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(2.4.1) S(X*) < £(X),
(2.4.2) d(S(Xs Xy 0o X ), SV, Voo Vi ) < Amax{d (X, fy,):1<i <k}

VX5 X yees Xy Yis Youe Yy € X,Where A e (O,ik),
S

(2.4.3) f(X) isacomplete sub space of X,

(2.4.4) (f,S) isa k -weakly compatible pair.

Then there exists a unique point U € X such that u = fu=S(u,u,..,u,u).

Corollary 2.5. Let (X,d) be a complete complex valued Db -metric space with S>1 and K be any positive

integer. Let S,T : X — X be mappings satisfying

(2.5.1) d(S(Xy, %o 10y X 1 T (V1 Yooy Vi )) S Amex{d (;, y;) 11 <1 < 2k}

1
Xy Xgpeees X Yis Yorees Yo € X, Where 4 e (0’57) .

Then there exists a unique point U € X such that u = S(u, u,..,u,u) =T(u,u,..,u,u).
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