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Analytic Method for Solution the Heat Equation
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Abstract: In this paper an efficient modification of Adomian decomposition method is introduced for solving
heat equation. Tested for some examples and the obtained results demonstrate efficiency of the proposed
method. The results were presented in tables and figure using the MathCAD 12 and Matlab software package.
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. Introduction

Adomian decomposition method can solve large classes of linear and nonlinear differential equations
and it is much simpler in computation and quicker in convergence than any other method available in the open
literature [1,2]. A variety of modifications to Adomian decomposition method have been reported. Wazwaz
presented a strong modification of ADM that accelerates the rapid convergence of the series solution [3, 4]. E.
Babolian et al. introduced the restart method to solve the equation f (x) = 0 [5], and the integral equations [6].
H. Jafari et.al used a correction of decomposition method for ordinary and nonlinear systems of equations and
show that the correction accelerates the convergence [7, 8].
In this paper, we present computationally efficient numerical method for solving the heat equation:

D.u(x,t) = D u(x,t) +q(x,t) 1)
u(x,0) = f(x),0<x<1 )

u(0,t) = j¢(x,t)u(x,t)dx +0,(),0<t<T (3)
u(Lt) = j'z//(x,t)u(x,t)dx +0,(1),0<t<T (4)

Where f,d,,0,,0, and qare known functions, T is given constant.

I1.  Solution Heat Equation by Modified Adomian’s Decomposition Method
In this section, we will discuss the use of the MDM for the solution of heat equation with nonlocal boundary
conditions given in (1). In this method we assume that

u(x,t) :iun(x,t)

Can be rewritten Equation (1):

Lu(x,t) =L u(xt)+q(x,t) )
Where

0
L. ()= 5(')

and

2
L_a

XX )
Ox>
The inverse L™ is assumed an integral operator given by
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t
*=[Odt ©
0
Take the operator L™ on both sides of Equation (5) we have

L (Lu((x, 1)) = L (L (u(x,1))) + L7 (a(x, 1))

Therefore, we can write,

u(x,t):u(x,O)+L({ XX(ZU D *a(x1) (7)

The modified decomposition method was introduced by Wazwaz [11]. This method is based on the
assumption that the function H (X) can be divided into two parts, namely H,(X) and H,(X) . Under this
assumption we set
H(O) =H. () +H,(X)

Then the modification
o =H,

=H, + L (Lop)

un+1 = Lt_l[l—xx(iun]} , n>1

I11.  Numerical Hlustration
In this paper, we will apply the numerical method to solve heat equation.
Example 1:
Consider heat equation with nonlocal boundary conditions for the equation (1), as taken in [9]:

Du(x,t) = DZu(x,t) , —2(x* +t+1)
(t+1)°

u(x0)=x20<x<1

1
u(0,t) = Ixu(x Hdx+ ——— 1) 0<t<1

u(Lt) = un(x t)dx + (3 )2 0<t<1

We apply the above proposed method; we obtain:

Uo (X,t) = (txlj

u,(x,t)=0
u,(x,t)=0
us(x,t) =0

Then the series form is given by:

u(x,t) =uy (X, t) +u, (X,t) +u, (x,t) +uz(x,t)
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2
_ X
t+1
2
. . X
This is the exact solution U(X,t) = —— | .
t+1

Table 1 shows some of the analytical solutions for heat equation obtained for different values and
comparison between exact solution and analytical solution, the plot of the exact solution surface is shown in
Figure 1 and Figure 2 is shown the numerical solution surface for heat equation.

Tablel. Some of comparison between exact solution and analytical solution
For example 1

X t Exact Solution Modified Adomian Decomposition Method |Uex-Unmapm|
0 1 0.0000 0.0000 0.0000
0.1 1 0.0025 0.0025 0.0000
0.2 1 0.0100 0.0100 0.0000
0.3 1 0.0230 0.0230 0.0000
0.4 1 0.0400 0.0400 0.0000
0.5 1 0.0630 0.0630 0.0000
0.6 1 0.0900 0.0900 0.0000
0.7 1 0.1230 0.1230 0.0000
0.8 1 0.1600 0.1600 0.0000
0.9 1 0.2030 0.2030 0.0000
1 1 0.2500 0.2500 0.0000

15 5

Fig. 2: Numerical solution

Example 2:
Consider the problem (1) with the following conditions, as taken in [9]:

D,u(x,t) = D2u(x,t)

u(x,0)=0.5x*,0< x<1
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u@t)=10<t<T

b

[u(x t)dx=m(t) = 0.75t + %(0.75)3
0

where b e [0,1].

Now after modified decomposition method, we obtain:

U, (X,t) =0.5x* +t

u,(x,t)=0
u,(x,t)=0
u;(x,t) =0

Then the series form is given by:
u(x,t) =uy (X, t) +u, (X,t) +u, (x,t) +uz (x,t)

=0.5x% +t

Which gives the exact solution U(X,t) = 0.5x* +t.

Table 2 shows part the analytical solutions for heat equation obtained for different values and
comparison between exact solution and analytical solution. Figure 3 and Figure 4 show the plot of the exact
and the numerical solution surface for heat equation respectivel

Table2. Some of comparison between exact solution and analytical solution
For example 2 when t=1,2

X t Exact Solution Modified Adomian Decomposition Method |Uex-Unmapm|
0 1 1.020 1.020 0.000
0.1 1 1.005 1.005 0.000
0.2 1 1.020 1.020 0.000
0.3 1 1.045 1.045 0.000
0.4 1 1.080 1.080 0.000
0.5 1 1.125 1.125 0.000
0.6 1 1.180 1.180 0.000
0.7 1 1.245 1.245 0.000
0.8 1 1.320 1.320 0.000
0.9 1 1.405 1.405 0.000
1 1 1.500 1.500 0.000
0 2 0.000 0.000 0.000
0.1 2 2.005 2.005 0.000
0.2 2 2.020 2.020 0.000
0.3 2 2.045 2.045 0.000
0.4 2 2.080 2.080 0.000
0.5 2 2.125 2.125 0.000
0.6 2 2.180 2.180 0.000
0.7 2 2.245 2.245 0.000
0.8 2 2.320 2.320 0.000
0.9 2 2.405 2.405 0.000
1 2 2.500 2.500 0.000

10

15 5
Fig. 3: Exact solution
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155

Fig. 4: Numerical solution

Example 3:
Consider the problem (1) with the following boundary and initial conditions, as taken in [9]

D.u(x,t) = D?u(x,t) —30x* + 6t°
u(x,0)= P o0=x<l

1
U(0,1) = [0.2u(x DX+ 21° —— 0 <t <T
J 5 35

h 3, 33
u(l,t):IO.4u(x,t)dx+—t +20<t<T
) 5 35

Now we apply the above modified decomposition method, we obtain:
U (x,t) = x° +t°

u,(x,t)=0
u,(x,t)=0
us(x,t) =0

Then the series form is given by:

u(x,t) =uy (X, t) +u, (X,t) +u, (x,t) +uz (x,t)
=x° +t°

This is the exact solution U(X,t) = x°® +1°.

Table 3 shows some the analytical solutions for heat equation obtained for different values and
comparison between exact solution and analytical solution. Figure 5 and Figure 6 show the plot of the exact
solution surface and the numerical solution surface for heat equation respectively.

Table3. Some of comparison between exact solution and analytical solution
For example 3 when t=1,2,3

X t Exact Solution Modified Adomian Decomposition Method |Uex-Umaom|
0 1 0.00000 0.00000 0.0000
0.1 1 1.00000 1.00000 0.0000
0.2 1 1.00000 1.00000 0.0000
0.3 1 1.00100 1.00100 0.0000
0.4 1 1.00400 1.00400 0.0000
05 1 1.01600 1.01600 0.0000
0.6 1 1.04700 1.04700 0.0000
0.7 1 1.11800 1.11800 0.0000
0.8 1 1.26200 1.26200 0.0000
0.9 1 1.53100 1.53100 0.0000
1 1 2.00000 2.00000 0.0000
0 2 0.00000 0.00000 0.0000
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0.1 2 64.0000 64.0000 0.0000
0.2 2 64.0000 64.0000 0.0000
0.3 2 64.0010 64.0010 0.0000
0.4 2 64.0040 64.0040 0.0000
0.5 2 64.0160 64.0160 0.0000
0.6 2 64.0470 64.0470 0.0000
0.7 2 64.1180 64.1180 0.0000
0.8 2 64.2620 64.2620 0.0000
0.9 2 64.5310 64.5310 0.0000
1 3 65.0000 65.0000 0.0000
0 3 0.00000 0.00000 0.0000
0.1 3 729.000 729.000 0.0000
0.2 3 729.000 729.000 0.0000
0.3 3 729.001 729.001 0.0000
0.4 3 729.004 729.004 0.0000
05 3 729.016 729.016 0.0000
0.6 3 729.047 729.047 0.0000
0.7 3 729.118 729.118 0.0000
0.8 3 729.262 729.262 0.0000
0.9 3 729.531 729.531 0.0000
1 3 730.000 730.000 0.0000

15 15
Fig. 5: Exact solution

Fig. 6: Numerical solution

IV.  Conclusion
In this paper, we have applied the modified decomposition method for the solution of the heat equation
with nonlocal boundary conditions. This algorithm is simple and easy to implement. The obtained results
confirmed a good accuracy of the method. On the other hand, the calculations are simpler and faster than in
traditional techniques
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