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Abstract: In this paper, we analyses a stochastic model of tumorigenesis which takes into account the transient 

defects of mitotic spindle geometry and chromosome segregation errors in cell division process. The model is 

essentially a Markov branching process evolving in a random environment. Using the model, we predict that the 

two defects may specifically contribute to the tumorigenesis initiation and progression. 

 

I. Introduction 
Pease and Tirnauer [5] have reported that mitosis not only segregates the chromosomes but also decides 

cell fate and tissue architecture (spindle geometry). The spindle geometry plays an important role in determining 

whether cell division is symmetric (producing identical daughter cells) or asymmetric (resulting in different 

daughter cell contents, placements or fates). They have observed that daughter cells orient their spindles by 

rotating them parallel or perpendicular to the cell and in turn the spindle orientation controls the placement of 

daughter cells within a tissue, influencing tissue morphology. Tumor suppressor gene (TSG) has link between 

spindle orientation disorder and cancer. 

Recently, Silkworth and Cimini [6] have considered the transient defects of mitotic spindle geometry and 

chromosome segregation errors in cell population growth. They discussed how these defects may specifically 

contribute to the carcinogenesis initiation and progression. This paper has motivated us to formulate a stochastic 

model of tumorigenesis which takes into account the above mentioned defects. Our model is based on the model 

of Kimmel and Stivers [4].Kimmel and Stivers [4] have considered a population model of a cell-division process 

in which the population consists of countably infinite types of individuals and the types are denoted by 

j = 0, 1, 2… The individuals of the population evolve according to the following rules: 

a) A particle of type j ≥1 divides into two newborns 

(i) both belonging to type j + 1 with probability α1; 

(ii) both belonging to type j - 1 with probability α2; 

(iii) both belonging to type j with probability α3 = 1-α1-α2. 

b) An individual of type j = 0 produces two newborns of type 0 only. 

c) The process is initiated at time t = 0 by a single particle of given type i. 

 

The above formulation describes the process of evolution of reversible drug resistance in cancer cells. 

Their model explains the unstable drug resistance caused by extra chromosomal gene amplification and it takes 

into account both the stochastic changes in the number of gene copies from one generation to another and the 

stochastic variability in cell lifetimes. They have obtained the expression for the expected number of cells with a 

given number of gene copies in terms of modified Bessel functions. They have fitted the model to experimental 

data and obtained estimates of the probabilities of gene amplification and de-amplification. Their paper justifies 

that purely stochastic mechanisms may explain the dynamics of reversible drug resistance of cancer cells. Gusev 

et al. [3] have proposed a stochastic model that describes the evolution of chromosome number in a population of 

dividing cells as a result of chromosome segregation errors (CSE). Their model is described by a branching 

random walk in a K- dimensional nonnegative integer space. They have examined the effects of CSE on survival 

of cells and clones as well as on the dynamics of population growth and chromosome number distributions. Based 

upon their results, they have suggested that the long-term dynamics of cell population growth depends upon the 

rate of segregation errors. Swierniak et al. [7] have considered the models of emergence of resistance of cancer 

cells to chemotherapy and used the theory of feedback systems to study the asymptotic properties of the process. 

Andersson and Hughes [2] have analysed the gene duplication-amplification (GDA) processes and stated that 

whenever cellular growth is restricted, escape from these growth restrictions often occurs by GDA events that 

resolve the selective problem. They have also observed that GDA may facilitate subsequent genetic change by 

allowing a population to grow with a time delay and lead to increase in size, thereby increasing the probability for 
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subsequent adaptive mutations to occur in the amplified genes or in unrelated genes. The above studies indicate 

that the most suitable model to study the dynamics of cell population growth is the branching random walk subject 

to the occurrences of events such as GDA and CSE. Further these studies have also observed that growth 

restriction in the cell population may lead to the mutations to occur in the amplified genes. The notion of time 

delay in branching is very intrinsic in biological populations. However, no branching random walk model of cell 

division process with time delay is available in the literature for the study of the dynamics of a cell population in 

which the individuals perform GDA and CSE with time delay. To fill this gap, we propose and analyse, in the 

present paper, a Markov branching random walk model with time delay which describes the role of disorder in 

spindle orientation in cancer development and progression. For this model, we obtain the mean functions 

explicitly. 

 

The plan of the paper is as follows: 

In Section 2, we describe the present model. Section 3 provides the system of integral equations for the 

probability generating functions for the underlying stochastic processes of the population. The mean values of the 

levels of the populations are found in section 4. 

 

II. Description of the Model 
We consider an extension of the model of Kimmel and Stivers [4] by assuming that the population 

evolves with age-dependent branching. To be specific, we assume the following rules for branching: 

1) The life-spans of all particles are independent and identically distributed 

exponential random variables with mean 


1  

2) A particle can leave off springs only at the end of its life-time. 

3) A particle of type j ≥ 0 leaves no descendants when its life time is less than or equal to a fixed positive constant 

T. 

4) A particle of type j ≥ 1 divides into two newborns 

(i) both belonging to type j + 1 with probability α1  0; 

(ii) both belonging to type j - 1 with probability α2   0; 

(iii) both belonging to type j with probability α3 = 1 -α1-α2. 

5) An individual of type j = 0 produces two newborns of type 0 only. 

6) The process is initiated at time t = 0 by a single particle of given type i> 0: 

 

Our objective is 

To analyses the probability distribution of the infinite vector X (t) = (X0(t); X1(t);…), where X j(t) is the number 

of particles of type j at time t. 

 

III. The Integral Equations for The P. G. F.’S of X(t) 
We observe that the infinite-dimensional vector process X(t) is a Markov process. To study the process, 

we define the conditional probability generating functions 

 

Where stands for the expectation operator. Using the Markov property and the Kroneckordelta ;ji  we obtain 

 

Case (i) t ≤ T: 

 
Case (ii) t > T: 

 

 
Using the above equations, we find the mean of Xj(t) in the next section. 
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IV. The means mi, j(t) 
We define 

 
Differentiating (3.2) with respect to s, and putting s = 1, we get 

 
 

Similarly, by differentiating (3.3) with respect to s; and putting s = 1; we get 

 
By differentiating (3.4) with respect to s, and putting s = 1, we get 

 
 

The two equations (4.2) and (4.3) give 

 
Using Laplace transform, (4.5) yields 

 
From (4.2) and (4.4), we get 

 
Using Laplace transform, (4.7) yields 

 
From (4.8), we get 

 
 

Inverting (4.9), we obtain 

 
 

To solve the infinite system of equations (4.6), we define 

 
Then, by using (4.6), we get 
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Solving for ),(* jM ; (4.12) gives 

 
 

The function ),(* jM is analytic in  and its denominator vanishes at the points given by the quadratic 

equation 

 
 

The roots of (4.14) are given by 

 

 
 

Where 3
)(2   Tek  ; We invoke the condition that 0)(0lim *   jim and it is satisfied only by 

the first root 1 .Then the numerator in (4.13) also vanishes at 1 . Consequently, we get  

 
Putting j = 0 in (4.16), we get 

 
From (4.9), we get 

 
Substituting (4.18) in (4.17), we get 

 
 

For 0j , (4.9) gives 0)(,0
* jm  and consequently, (4.16) yields  

 
 

Substituting for 1  (4.20) gives 

 
 

In particular, when j = 1; (4.21) gives 
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Inverting (4.22), we get 

 
When T = 0; equation (4.23) gives 

 
 

It is known (see Abramowitz and Stegun [1]) that 

 
 

where )(1 zI is the modified Bessel function. Taking 
2

21
24 tz   in (4.25), we get 

 
 

Substituting (4.26) in (4.24), we deduce the result of Kimmel and Stivers [4]: 
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For the general case j ≥ 2, we get 

 
Inverting (4.28), we get 

 
Now, (4.19) gives 

 
Inversion of (4.30) gives 

 
When α1 = 0 and α2 = 0, we get α3 = 1 and consequently, (4.6) yields 

 
Inverting (4.32), we obtain 
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