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Abstract: A congruence q of a lattice L is said to be isoform, if any two congruence classes of q are isomorphic
as lattices. The lattice L is said to be isoform, if all congruence's of L are isoform. We prove that every finite
distributive lattice D can be represented as the congruence lattice of a finite isoform lattice.

I.  Introduction

In this chapter we study about finite lattices with isoform congruences. We prove that every finite
distributive lattice D can be represented as the congruence lattice of a finite isoform lattice. Infact, we prove
that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L with the
following properties:
(i) Lisisoform
(if) For every congruence 6 of L, the congruence classes of 6 are projective intervals.
(iii) L is a finite pruned Boolean lattice.
(iv) L is discrete —transitive.

This result is a stronger version of the result obtained in the previous chapter. To prove this result, we
introduce a new lattice construction which is described in section 1.2. The congruence structure of this new
construct is described section 1.3. In section 1.4, we present the proof of the main theorem. We start with the
definition of isoform lattices.

DEFINITION: 1.1.1

Let L be a lattice. Let 6 be a congruence of L. Then 0 is said to be isoform, if any two congruence classes of 0
are isomorphic as lattices.

DEFINITION: 1.1.2

A lattice L is said to be isoform if all congruences of L are isoform.

DEFINITION: 1.1.3

A lattice L is said to be regular, if whenever two congruences share a congruence class, then the congruences are
the same.

NOTE: 1.1.4

An isoform lattice is always regular.

NOTATION: 1.1.5

For a lattice L, we denote by w, and i, the smallest and the largest congruence on L, respectively.

C,, will denote the n element chain.

B, will denote the Boolean algebra with 2" elements. For a bounded lattice A with bounds 0 and 1, A" will
denote the lattice A-{0,1}

EXAMPLE: 1.1.6

Consider the Boolean algebra B,, with 4 elements.

Its congruence lattice is also B..
It has four congruences, namely, the null congruence o, the all congruence i and two non-trivial congruences 0,
and 0,. 6, has two congruence classes { {0,a}, {1,b} } and 6, has two congruence

classes { {0,b} }, {a,1} }.
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[0,a] and [b,1] are isomorphic and [0,b] and [a,1] are isomorphic. So, 6, and 0, are isoform
congruences. Trivially  and i are isoform congruences. Hence B, is a isoform lattice.

NOTE: 1.1.7
Every lattice need not be an isoform lattice. For example, the lattice Ng, given below is not isoform.

1
b

0

This lattice has exactly one non-trivial congruence 6 and 0 has exactly two congruence classes {0,a,b,d} and
{c,1}. These two congruence classes are not isomorphic.
Hence 6 is not an isoform congruence.

. Lis not an isoform lattice.

DEFINITION: 1.1.8

Let L be a lattice and [a,b] an interval of L. If 6 is a congruence on L, we call 6 discrete on [a,b] or
[a,b] is ©-discrete, if 6 and w agree on [a,b].

That is © | [ab] = OYa, b]-

That is 6 | ;o = {(a,2),(b,b)}.

DEFINITIO: 1.1.9
Let L be a finite lattice. We call L discrete-transitive, if for any congruence ® of L and fora<b <cin
L, whenever @ is discrete on [a,b] and on [b,c] then @ is discrete on [a,c] .

DEFINITION: 1.1.10

Let P=(P,<p) be a finite poset. Then the partial ordering <, on P is the reflexive - transitive extension of
Op, the covering relation on (P, <p). That is ReflTr (Op) = <p.

Let H be a subset of Op. Take the reflexive-transitive extension ReflTr(H) of H. Then ( P,ReflTr(H) ) is
also a poset. This is called as a pruning of P. The diagram of ( P, ReflTr(H) ) can be obtained from the diagram
of (P,<) by cutting out some edges but not deleting any elements.

Il. A Lattice Construction
DEFINITION: 2.2.1
Let A be a nontrivial finite bounded lattice with bounds 0 and 1 and | A|>2.
Let B be a nontrivial finite lattice with a discrete transitive
congruence 6.
For u € AxB, we use the notation u=(ua,ug) where uaeA and ugeB.  We shall denote by <y, Ox, Vx and A,
the partial ordering, the covering relation, the join and the meet on AxB respectively.
Let B.={0} x B, B*={1} x B, and for beB, let A,=Ax{b}.
We define the set Prune(A,B,0) by
Prune(A,B,0)={((a,by), (a,by)) /acA’,b; 0 b, in B and b; = b,(0)}.
Then Prune (A, B, 0) is a subset of Oy.
Define H = O - Prune (A,B,0).
Consider the reflexive, transitive closure of H.
Then ReflTr(H) is a partial order on AxB.
Define N(A,B,0)=( AxB, ReflTr(H) )
We shall denote the partial ordering ReflTr(H) on AXB by <y g,0) Or simply by <y.
NOTE: 2.2.2
If © = o, then N(A,B,0) is the direct product AxB.
PROPOSITION: 2.2.3
Let u,ve AxB and u <x V. Then u <y v if, and only if,
(i) uava €A and [ug,vg] is O - discrete  (or)
(if) uaorva gA
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Proof :-
Let <r denote the binary relation on N(A,B,0) defined by u < v if, and only if, (i) or (ii) holds.
We claim that < is a partial order.
Trivially <gis reflexive and anti-symmetric.
To prove < is transitive.
Letu<gvandv<gw
Then u <xw. We have to distinguish some cases.
Case: 1
Both u <g v and v < w hold by (i)
Then ua, Va €Aand Va, Wac A imply ua,W A €A
[us,vg] is B-discrete, [vg,wg] is B-discrete and 6 is discrete transitive imply [ug,wg] is 6-discrete.
Hence by (i), u <gw.
Case : 2
U <g Vv holds by (i) and v < w holds by (ii)
SUa,VaeA and [ug,vg] is O-discrete and v Or wagA™ .
Ua,Va €A forces wagA'
Hence by (ii) u <gw.
Case : 3
U <g Vv holds by (ii) and v < w holds by (i)
U <g Vv holds by (ii) implies either ua or vag A’
v <gw holds by (i) implies va,wa,€A’and  [vg,wg] is 6-discrete.
Va, Wa, €A and ua or vagA forces uag A'.
uag A" implies u <gw by (ii).
Case 4:
Both u <gv and v < w holds by (ii).
That is, ua Or va ¢ A” and va or wp ¢ A™
If us or wa ¢A’, then by (ii) u <¢ w holds.
Suppose that uy, WaeA™. Then vagA'.
.'.VAZO or1and Ua Sx Va<x Wa
If va=0, then u,=0, contradicting that uae A".
If va=1, the wa=1, contradicting that waeA".
These two contradictions prove that vag A” is impossible.
. Eitherupy or wa ¢ A
Hence u <gw holds.
.. <g is a partial order.
If uOv, thenu < v if, and only if, u <y v
Hence <g= <y
Hence the proposition.

NOTE :2.2.4
u <y Vvand u <V if, and only if,
Ua, Va € A and [ug, Vg] is not O - discrete.

EXAMPLE: 2.2.5
LetA=B,andB=C,and 6=0¢ )

1 s 1]
ag 1 ! b,
L ]
b,
L ]
0
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Then 0 is discrete transitive. The lattice N (A, B, 0) is given below.
' (1.1)

LEMMA: 2.2.6
N (A,B,0) is a lattice under the partial ordering < y. The meet and join in N (A, B, 6) can be computed
using the formulae.

UAxV if UAxv <nuand UA xv <\V
(*) uAwv =
(0, ugAvp), otherwise

and
uVyv if u<yuVyvandv<yuVyv
(**)uVyv =
(1, ugVvg) otherwise.
Proof:-
Letu,v eAx B and lett be a lower bound of uand v in N (A, B, 6).
Case 1:
UAxv is not a lower bound of both u and v in N(A,B, 6).
Suppose UAx v&<= u.
Then by (1.2.4), uaAva, Ua € A" and [ugAvg, Ug] is not O-discrete.
It follows that [t, ug] is not O-discrete.
So, t <yuimplies by (ii) of proposition (1.2.3), tagA".
We cannot have t,=1, for it will imply ua=1, contradicting uacA".
Therefore ta = 0.
Therefore t < (0, ugAvg).
Hence u Ayv = (0, ug A Vg).
Similarly, if uAxv < v, then also we can prove u Ayv = (0, ugAvg)
Thus in this case u Ay v = (0, Ug A Vg)
Case 2:
U Ax Vv is a lower bound of both u and v in N(A,B,6).
Ift <y u AV, thenby (1.2.4.) ta, ua A va €A and [t, uA,Vv] is not O-discrete.
Since usy A vaeA, it follows that uy e A" or vae A or both uae A and va €A
Suppose up €A’
Since t<yuandta, us €A™, we conclude that [t,u] is 0-discrete by (i) of proposition 1.2.3.
This contradicts the fact that [t, uAxv] is not 0-discrete.
Hencet <yu AxV.
Thus any lower bound of both u and v is <y u Ax V.
Hence u ANV =U Ax V.
Similarly if vae A", then also UANV = U Axv.
Thus in case 2, UAy vV = UAxV.
Hence (*) holds in N(A, B, 6).
By duality (* *) holds in N(A, B, 6).
Hence N(A, B, 0) is a lattice.
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I1l.  The Congruences On N (A, B, 0)

DEFINITION: 3.3.1

Let A be a bounded lattice. A congruence @ of A is said to separate 0 if [0] @ = {0}.

That is x = 0(®) implies that x = 0.
DEFINITION: 3.3.2

Let A be a bounded lattice. A congruence @ of A is said to separate 1 if [1] (®) = {1}.

That is x = 1 (@) implies that x = 1.
DEFINITION: 3.3.3

Let A be a bounded lattice. Then A is said to be non-separating if neither 0 nor 1 is separated by any
congruence @ =  of A.
NOTE : 3.3.4

In this section, we assume that A is a non-separating finite lattice with more than two elements. B is a

finite lattice with more than one element and 6 > w is a discrete-transitive congruence on B.

LEMMA: 3.35

Let y be a congruence relation on N(A, B, 0). Define y-« and y* as the restriction of y to B» and
B” respectively. Since B~ and B* are isomorphic to B, we can view - and vy~ as congruences on B.
Then y«= vy,

Proof : -
Let bo = b]_ (\V*)
Then (0, bo) = (0, by) (y)
Joining both sides with (1,0) we get
(0, bo) V (1,0) = (0, by) V (1, 0) (w)
That is (1, bg) = (1, by) (v)
That is bo = by (y")
Thus by = by (y-) implies b = by (y).
Hence y« <y’
Similarly, we can prove that x =y (y") implies X =y (y»).
Hence v~ <y«
Thus we get y" =y«

NOTE: 3.3.6
Let y be a congruence relation on N(A,B,8). For any beB, A, is isomorphic to A. Define , as the
restriction of y to A,. Then vy, is a congruence on A.

LEMMA: 3.3.7

Let v be a congruence relation on N(A,B,0). The congruences w- = v~ of B and the family of
congruences r\v = {w,/ beB} of A describe the congruence v of N(A,B,0).
Proof :-

We know that in a finite lattice a congruence is completely determined by the set of prime intervals it
collapses.

Every prime interval of N (A,B,0) is in one of the sublattices B« , B" or A, for some b € B, or is
perspective to a prime interval of B..

Hence  is determined by y « = " or by {y, /b € B}.

Hence the lemma.

LEMMA : 3.3.8

Let y be a congruence relation on N(A,B, 0). For any beB, let y, be the restriction of y to A,. The
family of congruences [y = {y, / beB} is either { ®x /b e B}or{in /beB}.

Proof :-
Let us assume that x <y €A, for some beB and x =y (y).
Since A is non-separating, we can assume that x (0, Xg) the zero of Ay,
(0, xg) =y (y) =>(0,xg) V (0,1) =(0.1) V'y (v)
=> 01)=01Vy(y)
But (0,1) <(0,1) V.
So we can assume that x <y in A;.
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As A is non-separating, X, y €Ay, X =Y (y), we can assume that
ya=1(ie)y=(1,yg).
If X =0, then Y1 = iA.
The congruence x =y (y) implies (1, b) A x=(1,b) Ay (y)
That is (0,b) = (1,b) (v)
Hence y, =i,
Suppose xa #= 0.
0 > o by assumption. So, the interval [0,1] of B is not 6-discrete.
x=Yy (y) implies x A (1,0) =y A (1,0) (v).
That is (1,0) = (0,0) ().
That is Yo = iA.
(1,0) = (0,0) (w) implies (1,0) V (0,b) = (0,0) V (0,b) (w)
That is (1,b) = (0,b) (v)
Hence yy, = ia.

LEMMA: 3.3.9
Let A be a finite non-separating lattice with more than two elements. Let B be a finite lattice with
more than one element and 6 > be a discrete -transitive congruence on B. Consider N(A,B,0). For every
congruence @ of B, there exists a unique minimal congruence N(®) of N(A,B,0) satisfying  N(®). = N(®)* =
®. The congruence N(®) of N(A,B,0) can be described as follows :
(l)AX(D, if ®©AO=0w

N(@®) =
AXD, if ODAO>0
Proof :-
Casel: Letus assumethat ® A 6=
Let Y = 0a X D

As wa and @ are equivalence relations, v is also an equivalence relation.
Letx =y (y). Then xa=ya (0a) and Xg = yp (@)
As waand @ are congruence relations we have
XaAYa = XaVYa (0a) and XgAyg = XgVYg (D)
Hence we have x Ay = xVy (y).
To prove v is a congruence relation, it is sufficient to verify that
(***) For X, y € N(A, B,0) with x <y and for teN(A,B,0)
if X =y (y) then xAt = yAt (y) and XVt = yVt (y).
Let x=y (). Then xa=ya (ma) and Xg =Yg (D).
Xa = Ya (wa) implies Xa = ya.
Thus we have xa = ya— (1) and Xg = yg (D) — (2)
We have to prove XAt = yAt (D).
That is (XAt)a = (yAt)a —(3) and
(xAt)g = (YAt)s (®) — (4)
By lemma (3.2.6) (*), (XAt)g = XgAtg and (YAt)s = YAtz .
Hence (4) can be written as XgAtg = ygAtg(®).
By (2) xg = yg (@) and @ is a congruence on B.
implies XgAtg= ypAtg (D).
Hence (4) holds.
It remains to prove that (XAt)a = (YAt)a — (3)
By assumption, ® A 6 = ®
Hence xgAtg = ygAtg (®) can be written as
[xgAts YeAtg] is O-discrete — (5)
(YAt)a = YaAta or (YAt)a =0 (by lemma 3.2.6 (*))
If (yAt)a =0, then (XAt)a < (YAt)a = 0 implies (XAt)a = 0.
Hence (xAt)a = (YAt)a=0
Hence (3).
Suppose (YAt)a = Ya A ta. That is yAt = yAxt.
Then we prove that XAt = XxAxt and from this (3) follows yAt = yAxt.
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By lemma (1.2.6) (*), this is equivalent to
yAt < yyand yA t < yt, which can be rewritten as follows :
One of the following conditions holds :
YaAta=0 or 1 — (1a)

ya=0 or 1 —(1b)
[ys A tg, yg] is O-discrete — (1c)
and one of the following conditions holds :
YVaAta=0 or 1 —(2a)

ta=0 or 1 —(2h)
[ys A tg, tg] is O-discrete -->(2c)
We have to prove that XAt = XAxt
By, lemma (1.2.6) (*), this is equivalent to xAt <y xand x A t<yt
That is one of the following conditions holds :
XaAta=0 or 1> (3a)

Xa=0 or1l - (3b)
[Xg A tg, Xg] is O-discrete —(3c)
and one of the following conditions holds :
XaAta=0 or 1 > (4a)

ta=0or 1 —(4b)

[Xg A tg, tg] is O-discrete—(4c)

Assume (1a, 1b, 1c)
Since Xa =Ya, YaAta=0 or 1 implies
XaAta=0 orl
Hence (1a) implies (3a).
XaA=Ya Ya=0or 1 implies xa= 0 or 1.
Hence (1b) implies (3b).
By (1c) we have [yg A tg, Yg] is 6-discrete.
By(5) [XsA tg, ¥s A tg] is 6-discrete.
Since 0 is discrete - transitive, we conclude that [Xg A tg, Y&]
is O-discrete.
Hence [xg A tg, Xg] is 0-discrete (Xg < Yg).
Hence (1c) implies (3c).
Thus (1a, 1b, 1c) imply (33, 3b, 3c).

Next assume that (2a, 2b, 2¢) hold.
Since Xa=Ya, YaAta=0or limpliesxa Ata=0o0r1
That is (2a) implies (4a).
By (2b) ta = 0 or 1, which is the same as (4b).
Finally (2c) gives [ yg A tg, tg] is ©-discrete.
By (5) [Xg A tg, Y& A tg] is O-discrete.
Since 0 is discrete-transitive, we conclude that
[Xg A tg, tg] is O-discrete.
Hence (4c).
Thus (2a, 2b, 2c) imply (4a, 4b, 4c).
Thusy At=y Astimplies X At =X Axt.
Case: 2
Let us assume that ® A 6 > ®
Define y = ip X @
Then  is a congruence relation on N(A,B,0).
Moreover y-=y*=® and y, =in forallb €B.
Next we claim that N(®) is a minimal congruencé’of N(A,B,0) satisfying N(®)~ = N(®)" = ®.
Let = be a congruence of N(A, B, 0) satisfying .= X" = ®
Since ® A 6 > o, we can choose in B the elements b;[1 b, such that
bi=h, (D A 6).
From 2. = @, it follows that b; = b, (Z) also holds.
By assumption, A has more than two elements, so we can
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choose a eA".
(ab1) V (0,bz) = (1, by V by) = (1,by).
Since b, = b, (+), it follows that (0,b,) = (0,b,) (Z).
Joining both sides with (a,b;) we get
(avbl) \% (Ovbl) = (albl) \% (O!bZ)(z)
(a,bs) = (1,02)(2)
~(aby) = (Lby)(X).
Thus we get X, >ma
By lemma (1.3.8), we gét Yy = 9\1
S 2Xp= i forall beB.
Hence X > .
-y = N(®) is the smallest congruence of N(A,B,0) satisfying
.=y = 0.
By the lemma (1.3.9), we conclude that to every congruence ® of B, we can associate a congruence
N(®) of N(A,B,0). In the next lemma, we see some properties of the map which associates @ to N(®).

LEMMA :1.3.10
Let A be a finite non-separating lattice with more than two elements. Let B be a finite lattice with
more than one element and 6 >  is a discrete-transitive congruence on B. consider N(A,B,0). Define a map
N : ConB — ConN(A,B,0) by N(®)=N(®,A,B,0)which is denoted by N(®).
Then
(i) N isan order preserving, one-to-one map of ConB into
ConN(A,B,0).
(i) The map N is an order preserving, one-to-one map of the join irreducible elements of ConB into join-
irreducible elements of ConN(A,B,0).
(iii) The lattice ConN(A,B,8) has exactly one join-irreducible element that is not in the image of N. X =6 (
(0,0),(1,0) ), X is a minimal join-irreducible element of ConN(A,B,0).
(iv) For a minimal join-irreducible congruence @ of B, we have
2 <N(D)iff, <0

Proof :-

By lemma 1.3.9., if ®<ConB, then N(®) is the unique minimal congruence of N (A,B,0) such that N(®) =
N(®)" = .

Hence if @3, @, € ConB, and if N(®;) = N(®,) then ®; = O,

That is N is one-one.

If @; < ®,then N(D,;) < N(D,) .

Hence N is an order preserving one-to-one map of ConB into ConN(A,B,0).

A join-irreducible congruence of a finite lattice is one that is generated by a covering pair of elements.

If @ is a join-irreducible congruence, then ® = 6 (by,b,) with

bl O bz in B.

Then N(®) =6 ((0,by), (0,b,) ) and (0,by) O (0, b,) in N (A,B,6). So, the join-irreducible congruences of
B are mapped by N into join-irreducible congruences of N(A,B,0).

Also N is order preserving and one-one.

Hence (ii).

Any prime interval of N(A,B,0) is in one of the sublattices B«,B", or Ay, for some b € B, or is perspective to a
prime interval of B«

The prime intervals in B~and B” generate the join-irreducible congruences of the form N(®), where @ is a join-
irreducible congruence of B.

The remaining prime intervals all generate the same join-irreducible congruence %, by lemma 1.3.8.

Thus the lattice ConN(A,B,0) has exactly one join-irreducible element that is not in the image of N.

Hence (iii).

¥ < N(®) holds if, and only if, ® A 6 > ®

If @ A O <®, then there is a join-irreducible congruence of B, namely 6 A @ properly below ®, contrary to our
assumption.

Therefore 6 A D=0 .

That is @ < 0.

Thus £ < N(®) if, and only if, ® < 6.
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Hence (iv) .
Hence the lemma.

REMARK :1.3.11

Let D be a finite distributive lattice.

Let J(D) denote the poset of join-irreducible elements of D.

For a minimal join-irreducible element p of D, let Cov(p) denote the covers of p in J(D)

That is Cov(p) ={q € J(D)/p T q}.

Let D' denote the join-subsemilattice of D generated by J(D) — {p}.

Then D' is a finite distributive lattice with J(D") = J (D) — {p}. The set Cov(p) is an antichain of J(D").
Conversely, given a finite distributive lattice D' and an antichain C = ¢ of J(D'), we can form the poset J(D") U
{p} where p ¢ J(D".

We can extend the partial ordering of J(D') to J(D") w {p} by definingp < qforall q € C.

More precisely, we define p < r for every r € J(D') for which there exists a q € C satisfying g <r.

The poset J (D) U {p} determines a distributive lattice D.

In D, Cov(p) =C.

We call D, the distributive lattice obtained from D by deleting the minimal join-irreducible element p and we
call D, the distributive lattice obtained from D' by adding a minimal join-irreducible element under C.

Next we summarize the properties we have learned about the congruence lattice of N(A,B,0).

THEOREM: 1.3.12

Let A be a finite non-separating lattice with more than two elements. Let B be a finite lattice with
more than one element, and let 6 > w be a discrete-transitive congruence on B.

Let6 =%, VX,V ..V Z, be an irredundant representation of 6 as a join of join-irreducible elements and

let C={Z,, Z,...... Z,}. Let X be the join-irreducible congruence of N (A,B,0) define by =6 ( (0,0), (1,0) ).

Then we can obtain, upto isomorphism, the congruence lattice of N(A,B,0) by adjoining to the
congruence lattice of B, a minimal join-irreducible element under C.

Equivalently, we can obtain, upto isomorphism, the congruence lattice of B by deleting the minimal
join-irreducible element = of ConN(A,B,0).

LEMMA :1.3.13

Let A be a finite non-separating lattice with more than two elements. Let B be a finite lattice with
more than one element and let 6 > o be a discrete-transitive congruence on B. Consider N(A,B,0).

If @ is a discrete-transitive congruence of B, then the congruence N(®) of N(A,B,0) is also a discrete-
transitive congruence.

Proof :-
Case (1)
Letusassumethat D A0 =
Then N(®) = wa X @ by lemma (1.3.9).
For elementsa <b e N(®), a=b (N(®D)) if, and
only if, ap = b and ag = bg (D).
Therefore, an interval [u,v] of N(A,B,0) is N(®)-discrete if, and only if, the interval [ug,vg] Of B is ®-
discrete.
Therefore, if @ is discrete-transitive in B, then N(®) is discrete- transitive in N(A,B, 0).
Case (2)
Let us assume that ® A 6 > o.
Then N(®) = ip X @ by lemma (1.3.9).
Then an interval [u,v] of N(A,B,0) is N(®) discrete if, and only if, ua=va and the interval [ug,vg] of B
is d-discrete.
As @ is discrete-transitive, it follows that N(®) is also discrete-transitive.
Hence the lemma.

COROLLARY: 1.3.14

Let A be a finite non-separating lattice with more than two elements. Let B be a finite lattice with
more than one element and let 6 > o be a discrete-transitive congruence on B. If all congruences of B are
discrete-transitive, then all congruences of N(A,B,0) are discrete-transitive.
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Proof :-

First, we observe that the congruence = = 6 ( (0,0),(1,0) ) is discrete — transitive.

Any congruence of N(A,B,0) is of the form ZVN(®) where @ is a congruence of B.

We know that the join of two discrete-transitive congruence is discrete-transitive.

Since @ is discrete-transitive, N(®) is also discrete-transitive.

Hence VN (@) is discrete-transitive.

Thus all congruences of N(A,B,0) are discrete-transitive if all congruences of B are discrete-transitive.
Hence the result.

IV.  The Main Theorem
In this section we prove the theorem given below:

THEOREM: 4.4.1
Every finite distributive lattice D can be represented as the congruence lattice of a finite lattice L with
the following properties:
(i) Lisisoform.
(if) For every congruence 6 of L, the congruence classes of 6 are projective intervals.
(iii) L is a finite pruned Boolean lattice.
(iv) L is discrete-transitive.

Proof:-
Let D be a finite distributive lattice.
We have to construct a lattice L satisfying the conditions of the above theorem.
If D is the one-element lattice, then let L be the one-element lattice.
If D has more than one element, then J(D) = ¢.
We prove the result using induction on n = | J(D) |.
If [J(D)]=n=1,thenletL=C,.

If [J(D)| =2, then either J(D) is unordered or J(D) is a two-element chain.
If /DY ic nnnrdarad rhnnea | = C22

1

(i) L =B, = a@b

0

If J(D) is the two element chain, then choose L as the lattice given below.

Then L satisfies the conditions of the above theorem.

By induction assumption assume that the result is true when

[J(D) | <n.

Now, we prove the result when |J(D)|=n> 2.

If J(D) is an antichain, the theorem follows, by choosing the lattice L as the Boolean lattice with n atoms.
If J(D) is not an antichain, choose a minimal but not maximal join-irreducible element p of D.

Let D' be the distributive lattice join-generated by J(D) — {p}.

Then [J(D)] =n-1.

Then by induction assumption, there is a lattice B and a lattice isomorphism o : D' — Con B satisfying the
conditions of the above theorem.

Since p is not a maximal element of J(D), it follows that Cov(p) # ¢.

Let g € Cov(p).

Since geD',under the isomorphism o is mapped to a congruence6,0f B.

Define 6 = V{ 6q | g € Cov(p) }
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Let L = N(B,, B,0)

By theorem 1.3.12., Con L = D.

Now, we have to prove L satisfies conditions (i) to (iv) of the theorem.

Let y be a congruence of L.

Then v is one of the following forms by lemma 3.3.9, lemma 3.3.10 and theorem1.3.11.

Form:1
y =N (@) = wa X @, where @ is a congruence of B satisfying
OA D=0

Form: 2
y = N(®) = ip x D, where @ is a congruence of B satisfying ® A 6 > w.

Form : 3

v = N(®) V X, where @ is a congruence of B.

Form1:y = N(®) = wa X ©.

Then the congruence classes of N(®) are described as follows.

Let [u, v] be a congruence class of @ in B.

Then the congruence classes of y in L are exactly the intervals of the  form [(a,u), (a,v)] for any a € A.

The interval [u,v] of B is isomorphic to the interval [(a,u), (a,v)] of L by a A" and by lemma 1.2.6.

If [u,v] and [u',v"] are any two congruence classes of @ in B, then [u,v] and [u',v'] are isomorphic intervals and
they are projective by induction hypothesis.

Then [(a,u),(a,v)] and [(a',u"),(a",v")] are isomorphic for any a, a'€ A.

We have to prove that [(a,u),(a,v)] and [ (a',u’),(a',v")] are projective.

[(a,u),(a,v)] is perspective to [(0,u),(0,v)] and [(a',u"),(a',v)] is perspective to [(O,u"),(0,v"].

Therefore, to prove [(a,u),(a,v)]and[(@',u"),(@',\v)] are projective, it is enough to prove [(O,u),(O,v)] and
[(O,u),(0,v")] are projective.

By induction assumption, [u,v] and [u',v'] are projective.

A trivial induction shows that it is sufficient to verify that if [u,v] and [u',v'] are perspective, then so are
[(0,u),(0,v)] and [(O,u),(0,v")].

By duality it is sufficient to compute this for up perspectives.

So, let vAu'=uand vWu'=V'

Then (0,v) A (O,u") = (O,u) and (O,v) V (0,u") = (O,V").

This completes the proof in this case.

If v is of form 2 or form 3, then the congruence classes of y are described in lemmas 1.3.9. and 1.3.10. as
follows:

Let [u, v] be a congruence class of @ in B.

Then the congruence classes of y in L are exactly the intervals of L of the form [(0,u), (1,v)].

[(O,u), (1,v)] is isomorphic to N(By, [u,V], i)

So, if the intervals [u,v] and [u',v'] of B are isomorphic, so are the intervals [(O,u),(1,v)] and [(O,u"),(1,v)] of L.
We have to prove that any two congruence classes of y are projective intervals.

Let [u,v] and [u',v'] be any two congruence classes of @ in B.

Then [(0,u),(1,v)]and[(0,u"),(1,v")] are the corresponding v classes in L.

If [u,v] is up perspective to [u',v'] then vVu' = v' and VAU' = u.

L (@Avyvou)=@1vvu)=(1Vv)and

(1v) AOu)=(0,vAu)=(0,u)

- [(0,u),(1,v)] and [(O,u"),(1,v")] are up perspective.

Similarly, if [u,v] is down perspective to [u',v'], then we get

[(O,u),(1,v)] and [(O,u"),(1,v")] are down perspective (by duality).

If [u,v] and [u',v'] are projective, then [(0,u),(1,v)] and

[(O,u),(1,v")] are projective by induction.

This completes the proof of conditions (i) and (ii).

Condition (iii) is obvious.

By hypothesis, B is a pruned Boolean lattice.

Of course, B, is a Boolean lattice.

So, L is a pruned Boolean lattice.

Finally by corollary 1.3.14, the congruence’s of L are discrete-transitive.
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Hence the theorem
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