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Abstract: In this paper, we consider a mixed integral equation (MIE) of the second kind.  Under certain 

conditions, the existence of a unique solution of is discussed and proved. The kernel of position takes asingular 

form, while the kernel of time is continuous. Using a quadratic numerical method, the MIE leads us to a linear 

system of Fredholm integral equations (SFIEs). Then,SFIEsafter using Toeplitz matrix method (TMM),tends to 

a linear algebraic system (LAS). The existence of a unique solution of LAS is proved. Finally, numerical 

examples are considered, and the error, in each case, is calculated. 
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I. Introduction 

The types of integralequations (IEs)arise in a variety of applications in many fields including 

continuum mechanics, potential theory, geophysics, electricity and magnetism, antenna synthesis problem, 

mathematical physics and contact problem in the theory of elasticity, see [1-4] 

In recent years, the theory of IEs has close contact with many different areas of mathematics. The 

following books contain many different methods to obtain the solution of the integral equation numerically, see 

[5-8]. The singular IEs appear in a variety of applications concerning the problems in the potential theory, see 

[9],wave scattering in quantum mechanics[10], diffraction problems of aero/hydroacoustis [11]. The common 

approach to the solution of this type involves its reduction to an equation with Cauchy and Carleman kernel. 

Consider a generalized formula of linear integral equation  

𝜇 𝜙 𝑥, 𝑡 = 𝜆  𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡 𝑑𝑦 + 𝜆   𝐹 𝑡, 𝜏 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝜏  𝑑𝑦 𝑑𝜏

Ω

𝑡

0Ω

 

+𝜆  𝐺 𝑡, 𝜏  𝜙 𝑥, 𝜏 𝑑𝜏 + 𝑓 𝑥, 𝑡   , (𝑥 = 𝑥  𝑥1 , 𝑥2 , … , 𝑥𝑛   , 𝑦

𝑡

0

= 𝑦  𝑦1 , 𝑦2 , … , 𝑦𝑛 ) . (1.1) 

The previous linear IEs is considered in the space 𝐿2 Ω × 𝐶 0, 𝑇  , 𝑇 < 1 , where   is the domain 

of integration with respect to position and ],0[ Tt  is the time. Here, in (1.1) the Fredholm integral term has a 

singular kernel   𝑥 − 𝑦  .While the Volterra integral term has the positive and continuous twokernels  𝑡, 𝜏  , and 

𝐺 𝑡, 𝜏  for all time , [0, ], 1t T T   . The coefficient   is a constant, has manyphysical meaning,while,   

is a constant define the kind of the integral equation. The given function 𝑓 𝑥, 𝑡 is called the free term, and 

𝜙 𝑥, 𝑡  is the unknown function. 

Many special cases can be derived from the integral equation(1.1), 

(1) If 𝐹 𝑡, 𝜏 = 0, we have 

𝜇 𝜙 𝑥, 𝑡 = 𝜆  𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡 𝑑𝑦 + 𝜆  𝐺 𝑡, 𝜏  𝜙 𝑥, 𝜏 𝑑𝜏

𝑡

0

+ 𝑓 𝑥, 𝑡 

Ω

  ,          (1.2)  

The above formula (1.2) is discussed in [12].  

 

(2) If,𝐺 𝑡, 𝜏 = 0, we obtain 

𝜇 𝜙 𝑥, 𝑡 = 𝜆  𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡 𝑑𝑦 + 𝜆   𝐹 𝑡, 𝜏 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝜏  𝑑𝑦 𝑑𝜏

Ω

𝑡

0Ω

+ 𝑓 𝑥, 𝑡  . 

(1.3) 

The  solution of  the above formula (1.2) is obtained in [13]. 

(3) If,in (1.3), 0 , we have a MIE of the first kind, where  [14] many spectral relationshipsare obtained in 

[14] 
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In addition the work of Abdou et al.,in[15-17] is considered special cases of this work 

In order to guarantee the existence of a unique solution of the linear equation (1.1), we assume the following 

conditions: 

(i)  The kernel ofposition satisfies the discontinuity condition  

   𝑘2  𝑥 − 𝑦  

Ω

𝑑𝑦 𝑑𝑥

Ω

 

1/2

= 𝑀,         𝑀 is a constant  . 

(ii) The kernels of time𝐹 𝑡, 𝜏 and 𝐺 𝑡, 𝜏  belong to the class 𝐶 0, 𝑇 ,  0 ≤  𝜏 ≤ 𝑡 ≤ 𝑇 < 1 , and satisfy for the 

constants,𝑁 > 𝑁1 , 𝑁 > 𝑁2, the conditions 

 𝐹 𝑡, 𝜏  ≤ 𝑁1    ,    𝐺 𝑡, 𝜏  ≤ 𝑁2      ,   ∀ 𝑡 , 𝜏 ∈  0, 𝑇    . 

(iii) The given function 𝑓 𝑡, 𝜏  , with its partial derivatives with respect to tx   and   , are continuous in 

𝐿2 Ω × 𝐶 0, 𝑇  , 𝑇 < 1  ,and its norm is defined as  

 𝑓 𝑥, 𝑡  = max
0≤𝑡≤𝑇

   𝑓2 𝑥, 𝜏 𝑑𝑥

Ω

 

1

2𝑡

0

 𝑑𝜏 = 𝐻      ,      𝐻 is a constant   .   

(iv) The unknown function 𝜙 𝑥, 𝑡  satisfies Lipschitz condition for the first argument and Holder condition for 

the second argument. 

In this paper, the existence of a unique solution of the IE (1.1) is discussed and proved. A numerical 

method is used to translate the MIE (1.1) to a system of FIEs of the second kind.Then the existence of a unique 

solution of this system is proved. The TMMis used to obtain a LAS, where the existence of a unique solution of 

this system will be proved. Finally, we obtain, numerically the solution of the LAS when the kernel takes the 

weakly forms ( 𝑘  𝑥 − 𝑦  = ln 𝑥 − 𝑦  , 𝑘  𝑥 − 𝑦  =  𝑥 − 𝑦 −υ     ,   0 < υ < 1  ). Moreover, numerical results 

are obtained and the error estimate, in each case, is computed.   

 

II. Quadratic Numerical Method 
In this section,a quadratic numerical method is used to represent (1.1) as a SFIEs. For this, we divide 

the interval  0, 𝑇 , 0 ≤ 𝑡 ≤ 𝑇 < 1 

as 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑙 < ⋯ < 𝑡𝑝 = 𝑇, where 𝑡 = 𝑡𝑙    , 𝑙 = 1,2, … , 𝑝 ; to get 

𝜇 𝜙 𝑥, 𝑡𝑙 = 𝜆  𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡𝑙 𝑑𝑦 + 𝜆   𝐹 𝑡𝑙 , 𝜏 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝜏  𝑑𝑦 𝑑𝜏

Ω

𝑡𝑙

0Ω

 

+ 𝜆  𝐺 𝑡𝑙 , 𝜏  𝜙 𝑥, 𝜏 𝑑𝜏 + 𝑓 𝑥, 𝑡𝑙     .                                        2.1 

𝑡𝑙

0

 

Using the quadrature formula,see Atkinson [18] we have 

𝜇𝑙𝜙𝑙 𝑥 = 𝜆𝑙  𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦

Ω

+ 𝐻𝑙 𝑥 + 𝐸𝑝,𝑙  𝑥   , 𝐸𝑝,𝑙  𝑥 = max
𝑙1 ,𝑙2

 𝐸𝑝,𝑙1
 ,  𝐸𝑝,𝑙2

  ,       

(2.2) 

where𝜇𝑙 = 𝜇 − 𝜆 𝑤𝑙2
 𝐺𝑙 ,𝑙2

  , 𝜆𝑙 = 𝜆  1 + 𝑢𝑙  𝐹𝑙 ,𝑙1
   ,                  

 

and 

𝐻𝑙 𝑥 = 𝜆  𝑤𝑗  𝐺𝑙,𝑗  𝜙𝑗  𝑥 + 𝜆

𝑙2−1

𝑗 =0

 𝑢𝑗  𝐹𝑙,𝑗  𝑘  𝑥 − 𝑦  𝜙𝑗  𝑦  𝑑𝑦

Ω

+

𝑙1−1

𝑗 =0

𝑓𝑙 𝑥   ,        (2.3) 

Here, we used the following notations: 

𝜙𝑙 𝑥 = 𝜙 𝑥, 𝑡𝑙  ,      𝐹𝑙 ,𝑗 = 𝐹 𝑡𝑙 , 𝑡𝑗  ,      𝐺𝑙 ,𝑗 = 𝐺 𝑡𝑙 , 𝑡𝑗  ,     𝑓𝑙 𝑥 = 𝑓 𝑥, 𝑡𝑙 ,. 

   (𝑙 = 0 , 1 , 2 , … , 𝑝  ,   0 ≤ 𝑗 ≤ 𝑙)       (2.4) 

The characteristic points 𝑢𝑗  , 𝑤𝑗  and the errors 𝐸𝑝,𝑙1
,𝐸𝑝,𝑙2

, 𝑝 ≈ 𝑙 , 𝑙1  , 𝑙2 < 𝑙 , are depend on the number of the 

derivatives of 𝐹 𝑡, 𝜏 and 𝐺 𝑡, 𝜏  ,  respectively , to𝑡 ∈  0, 𝑇 . 
The existence of a unique solution of the (2.2) ,can easily be provedunder the condition (i) and the following 

conditions 

1)   max
𝑗

 𝑓𝑗 (𝑥) 
𝐿2 Ω 

≤ 𝒬          ,    𝒬  is a constant  , 
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2) For the constants  𝐿 >   𝒬1 , 𝒬2  , we have max
𝑗

 𝑢𝑗 𝐹𝑙,𝑗  

𝑙−1

𝑗 =0

≤ 𝒬1 ,  max
𝑗

 𝑢𝑗𝐺𝑙 ,𝑗  

𝑙−1

𝑗 =0

≤ 𝒬2 ., 

 

III. The Toeplitz Matrixmethod, See Abdou Et Al. [16, 19] 
Write theSFIEs (2.2),when Ω =  −𝑎, 𝑎  , as 

𝜇𝑙𝜙𝑙 𝑥 = 𝜓𝑙 𝑥 + 𝜆𝑙  𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦.                             (3.1)

Ω

 

Write the integral term in the form 

 𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦 =   𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦

𝑛ℎ+ℎ

𝑛ℎ

𝑁+1

𝑛=−𝑁

     ,  ℎ =
𝑎

𝑁
  .         (3.2)

𝑎

−a

 

Then, approximate the integral in theright hand side of (3.2) by 

 𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦 = 𝐴𝑛
(𝑙) 𝑥 𝜙𝑙 𝑛ℎ + 𝐵𝑛

(𝑙) 𝑥 𝜙𝑙 𝑛ℎ + ℎ + 𝐸𝑁,𝑛
(𝑙)

,         (3.3)

𝑛ℎ+ℎ

nh

 

where𝐸𝑁,𝑛
(𝑙)

 is the estimate error . Using the principal idea of the TMMby assuming in (3.3), 𝜙𝑙 𝑥 = 1 , 𝑥 , 

respectively , in this case 𝐸𝑁,𝑛 = 0.Hence, we have two formulas of two unknown functions 𝐴𝑛
(𝑙) 𝑥 and 𝐵𝑛

(𝑙) 𝑥  

. By solving the results, the functions 𝐴𝑛
𝑙  𝑥  and 𝐵𝑛

𝑙  𝑥  take the forms 

𝐴𝑛
(𝑙) 𝑥 =

  𝑛ℎ + ℎ 𝐼 𝑥 − 𝐽 𝑥  

ℎ
,   𝐵𝑛

(𝑙) 𝑥 =
  𝐽 𝑥 − 𝑛ℎ 𝐼 𝑥  

ℎ
    ,           (3.4) 

where the values of  𝐼 𝑥  and 𝐽 𝑥  are  

𝐼 𝑥 =  𝑘  𝑥 − 𝑦    𝑑𝑦     ,        𝐽 𝑥 =  𝑦 𝑘  𝑥 − 𝑦    𝑑𝑦     ,     

𝑛ℎ+ℎ

nh

        (3.5)

𝑛ℎ+ℎ

nh

 

Therefore, the relation (3.2), becomes  

 𝑘  𝑥 − 𝑦  𝜙𝑙 𝑦  𝑑𝑦 =  𝐺𝑛
(𝑙) 𝑥  𝜙𝑙(𝑛ℎ)

𝑁

𝑛=−𝑁

     ,

𝑎

−a

                             (3.6) 

where 

𝐺𝑛
(𝑙) 𝑥 =  

𝐴−𝑁
(𝑙)

                                                    , 𝑛 = −𝑁

𝐴𝑛
(𝑙) 𝑥 + 𝐵𝑛−1

(𝑙)  𝑥                                   , −𝑁 < 𝑛 < 𝑁

𝐵𝑁−1
(𝑙)  𝑥                                    , 𝑛 = 𝑁 ; 0 ≤ 𝑙 ≤ 𝑝  

    (3.7) 

 The integral equation (3.1), after putting = 𝑚 ℎ , becomes 

𝜇𝑙𝜙𝑙,𝑚 − 𝜆𝑙  𝑌𝑛,𝑚
 𝑙 𝜙𝑙 ,𝑛 = 𝜓𝑙 ,𝑚

𝑁

𝑛=−𝑁

  ,    𝑙 = 0,1,2, … , 𝑝      ,         (3.8) 

The solution of the formula (3.8) takes the form 

𝜙𝑙,𝑚 =  𝜇𝑙  𝐼 − 𝜆𝑙𝑌𝑛,𝑚
 𝑙  

−1
𝜓𝑙 ,𝑚       ,      𝜇𝑙  𝐼 − 𝜆𝑙𝑌𝑛,𝑚

 𝑙  ≠  0  .                   (3.9) 

The formula (3.8) or (3.9) represents a SAEs, where𝜙𝑚  is a vector of 12 N elements,𝐼 is the unit matrix of 

order 𝑛 × 𝑚and mn,  is a matrix whose elements are given by  

𝑌𝑛,𝑚
 𝑙 = 𝐺𝑛−𝑚 + 𝑃𝑛,𝑚         ,                       

𝐺𝑛−𝑚 = 𝐴𝑛
(𝑙) 𝑚ℎ + 𝐵𝑛−1

(𝑙)  𝑚ℎ    ,    − 𝑁 ≤ 𝑛 ≤ 𝑁     (3.10) 

The matrix 𝐺𝑛−𝑚   is a Toeplitz matrix of order 2𝑁 + 1 , where −𝑁 ≤ 𝑚, 𝑛 ≤ 𝑁  and the elements of the second 

matrix are zeros except the elements of the first and last rows (columns). We can evaluate the values of the first 

row by substituting in 𝐵𝑛−1
(𝑙)  𝑚ℎ    𝑛 = −𝑁and = −𝑁 + 𝑖 , 0 ≤ 𝑖 ≤ 2 𝑁 , and the values of the last row (column) 

by substituting , in 𝐴𝑛
(𝑙) 𝑚ℎ    𝑛 = −𝑁 and 𝑚 = −𝑁 + 𝑖 . 

 

Definition1: The TMM is said to be convergent of order ],[in    aar   , if for 𝑁 sufficiently large , there exist 

a constant 0D  independent of N  such that 

  𝜙 𝑥 − 𝜙𝑁 𝑥  ≤ 𝐷 𝑁−𝑟     ,     (3.11) 

The error term 𝐸𝑁,𝑛
(𝑙)

 is determined from the following formula 
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𝐸𝑁,𝑛
(𝑙)

=   𝑦2𝑘  𝑥 − 𝑦    𝑑𝑦 − 𝐴𝑛
(𝑙) 𝑥  𝑛ℎ 2 − 𝐵𝑛

(𝑙) 𝑥  𝑛ℎ + ℎ 2𝑛ℎ+ℎ

nh
 = 𝑂 ℎ𝑙

3  ,  ℎ𝑙
4 → 0 .       (3.12) 

 

The existence of a unique solution of the algebraic systemin 
 : 

For thisaim, we write the system (3.8) in the operator form 

𝑇 𝜙𝑙 ,𝑚 = 𝑇𝜙𝑙,𝑛 + 𝜓𝑙 ,𝑚            ,    𝑇𝜙𝑙,𝑛 =
𝜆𝑙

𝜇𝑙

 𝑌𝑛,𝑚
 𝑙 𝜙𝑙 ,𝑛

𝑁

𝑛=−𝑁

,     𝜇𝑙 ≠ 0 

𝜓𝑙 ,𝑚 =   
𝜆𝑙

𝜇𝑙

 𝑢𝑗  𝐹𝑖,𝑗  𝑌𝑗 ,𝑚
 𝑙  𝜙𝑗 ,𝑛  + 𝐺𝑖,𝑗

𝑁

𝑚=−𝑁

𝜙𝑗 ,𝑚  +
1

𝜇𝑙

𝑓𝑙 ,𝑚    ,         (3.13) 

𝑙−1

𝑗 =0

 

Then, the following lemma can be proved. 

 

Lemma 1:If the kernel of position satisfies the conditions: 

 

 𝑖 : 𝑘  𝑥 − 𝑦  ∈ 𝐿𝑞   ,    𝑞 > 1  ,  𝑖𝑖 : lim
𝑥 ′→𝑥

 𝑘  𝑥 ′ − 𝑦  − 𝑘  𝑥 − 𝑦   
𝐿𝑞

= 0      

𝑥 , 𝑥 ′ ∈  −𝑎, 𝑎    ,              (3.14) 

we have 

𝑎) max
0≤𝑙≤𝑝

Sup
𝑁

  𝑌𝑛,𝑚
 𝑙 (𝑥) 

𝑁

𝑛=−𝑁

<  𝑐 , 𝑐 is a constant     ,         

𝑏) lim
𝑚 ′→𝑚

max
0≤𝑙≤𝑝

Sup
𝑁

  𝑌
𝑛,𝑚 ′

 𝑙 
− 𝑌𝑛,𝑚

 𝑙  

𝑁

𝑛=−𝑁

= 0  ,     ∀   0 ≤ 𝑙 ≤ 𝑝   .                            (3.15) 

Proof: Firstly, we go to prove (a) of Eq. (3.15). S0, from the first formula of (3.4), we obtain 

 𝐴𝑛
(𝑙) 𝑥  =   𝑛ℎ + ℎ   𝑘  𝑥 − 𝑦     𝑑𝑦

𝑛ℎ+ℎ

nh

−   𝑦  𝑘  𝑥 − 𝑦    𝑑𝑦

𝑛ℎ+ℎ

nh

  ℎ       . 

Then, using the first condition (i) of Eq. (3.14), we deduce that there exist a small constant 

𝑧1  , such thatmax
0≤𝑙≤𝑝

  𝐴𝑛
 𝑙  𝑥  

𝑁

𝑛=−𝑁

≤ 𝑧1 , ∀𝑁  .   Since each term in this inequality is 

boundedabove, hence for 𝑥 = 𝑚ℎ, we write 

max
0≤𝑙≤𝑝

Sup
𝑁

  𝐴𝑛
(𝑙)

(𝑚ℎ) 

𝑁

𝑛=−𝑁

≤ 𝑧1  .                                              (3.16) 

Similarly, from the second formula of (3.4), we can find a small constant 2z , such that 

max
0≤𝑙≤𝑝

Sup
𝑁

  𝐵𝑛
(𝑙)

(𝑚ℎ) 

𝑁

𝑛=−𝑁

≤ 𝑧2 .                                               (3.17)

 
Therefore,from the relations (3.7), (3.16) and (3.17),there exists a small constant𝑧 ≤  𝑧1 + 𝑧2  , such that the 

first inequality of (3.15) is proved. 

To prove (b), using the first formula of (3.4), for 𝑥 , 𝑥 ′  ∈ [−𝑎, 𝑎], and applying Hölder inequality , then 

summing from 𝑛 = −𝑁 to 𝑛 = 𝑁 , to have 

max
0≤𝑙≤𝑝

  𝐴𝑛
(𝑙) 𝑥 ′ − 𝐴𝑛

(𝑙) 𝑥  ≤  𝑞𝑛

𝑛=𝑁

𝑛=−𝑁

 𝑘  𝑥 ′ − 𝑦  − 𝑘  𝑥 − 𝑦   
𝐿𝑞

     .

𝑛=𝑁

𝑛=−𝑁

 

Putting = 𝑚ℎ ,  𝑥 ′ = 𝑚′ℎ , then using the condition (3.14), when 𝑥 ′ → 𝑥 , we get 

lim
𝑚 ′→𝑚

max
0≤𝑙≤𝑝

Sup
𝑁

  𝐴𝑛
(𝑙) 𝑚′ℎ − 𝐴𝑛

(𝑙) 𝑚ℎ  = 0    .                               (3.18)

𝑛=𝑁

𝑛=−𝑁

 

Similarly, in view of the second formula of (3.4)  , we have 

lim
𝑚 ′→𝑚

max
0≤𝑙≤𝑝

Sup
𝑁

  𝐵𝑛
(𝑙) 𝑚′ℎ − 𝐵𝑛

(𝑙) 𝑚ℎ  = 0    .                               (3.19)

𝑛=𝑁

𝑛=−𝑁

 

Hence, from (3.18) and (3.19) ,the second inequality of (3.15) is proved.◘ 

 

Now, under the two conditions of lemma 3.1 and the following condition 
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 𝑐 max
0≤𝑙≤𝑝

Sup 
𝑚

  𝑓𝑛,𝑚    ≤ 𝐻

𝑁

𝑛=−𝑁

          ,     𝐻  is a constant  

We can state the following 

Theorem 1: The LASof (3.8) or (3.13),has a unique solution in the Banachspace 
 , under the following 

condition 

 𝜆𝑙 <  𝜇𝑙  𝑐 + 𝐿𝑐 + 𝐿    ,     𝐿  is defined by condition 2    .       (3.20)  

 

To prove thistheorem, we consider the following twolemmas. 

Lemma 2:The operator T of Eq. (3.13) is bounded. 

 

Proof: LetV be the set of all sequencesΦ =  𝜙𝑙,𝑚   in ℓ∞ such that Φ ℓ∞ ≤ β , β is aconstant. Define the norm 

of the operator 𝑇  Φin Banach space ℓ∞ by 

 𝑇  Φ = max
0≤𝑙≤𝑝

Sup
𝑚

 𝑇 𝜙𝑙 ,𝑚  ,    for each integer m.                   (3.21) 

Hence, the integral operator (3.13) takes the form 

max
0≤𝑙≤𝑝

Sup
𝑚

 𝑇 𝜙𝑙 ,𝑚  ≤  
𝜆𝑙

𝜇𝑙

  max
0≤𝑙≤𝑝

  𝑌𝑛,𝑚
 𝑙  Sup 

𝑛
  𝜙𝑙,𝑛   +

𝑁

𝑛=−𝑁

  

max
0≤𝑙≤𝑝

    𝑢𝑗 𝐹𝑖 ,𝑗    𝑌𝑛,𝑚
 𝑙  Sup 

𝑛
  𝜙𝑙,𝑛   +

𝑁

𝑛=−𝑁

 𝑢𝑗 𝐺𝑙,𝑗  Sup 
𝑚

  𝜙𝑙 ,𝑚   

𝑙

𝑗 =0

 +  
1

𝜇𝑙

 max
0≤𝑙≤𝑝

Sup 
𝑚

 𝑓𝑙,𝑚   

Using condition (2), and Lemma 3.1 and condition (c), we have 

max
0≤𝑙≤𝑝

Sup
𝑚

 𝑇 𝜙𝑚  ≤  
𝜆𝑙

𝜇𝑙

  max
0≤𝑙≤𝑝

Sup 
𝑛

  𝑌𝑛,𝑚
 𝑙   Φ ℓ

∞  +

𝑁

𝑛=−𝑁

  

   𝐿 max
0≤𝑙≤𝑝

Sup
𝑛

  𝑌𝑛,𝑚
 𝑙   Φ ℓ

∞  +

𝑁

𝑛=−𝑁

𝐿  Φ ℓ
∞ 

𝑙

𝑗 =0

 +  
1

𝜇𝑙

  𝐻

 
Finally, with the aid of (3.21), we have 

 T Φ = max
0≤𝑙≤𝑝

Sup
𝑚

 𝑇 𝜙𝑙,𝑚  ≤ 𝛼2 Φ ℓ
∞ +

𝐻 

 𝜇𝑙 
   ,    𝛼2 =  𝜆𝑙 𝜇𝑙   𝑐 + 𝐿𝑐 + 𝐿  .  (3.22)

 
The inequality (3.22) shows that the operator T  maps the set V  into itself, where  21 .lH   

Hence, we deduce 2 1.  In addition, the inequality (3.22) involves the boundedness of the operators T  andT  . 

 

Lemma 3: The operator T is continuous and contractive operator. 

Proof:For the two sets Φ =  𝜙𝑙 ,𝑚   , and , Φ =  𝜙𝑙 ,𝑚
        , we have 

max
0≤𝑙≤𝑝

Sup
𝑚

 𝑇 𝜙𝑙,𝑚 − 𝑇 𝜙𝑙 ,𝑚
       ≤  

𝜆

𝜇
  max

0≤𝑙≤𝑝
  𝑌𝑛,𝑚

 𝑙  Sup 
𝑛

  𝜙𝑙,𝑛 −  𝜙𝑙 ,𝑛
       +

𝑁

𝑛=−𝑁

  max
0≤𝑙≤𝑝

   𝑢𝑗 𝐹𝑖,𝑗   
𝑙

𝑗 =0

  

    𝑌𝑛,𝑚
 𝑙  Sup 

𝑛
  𝜙𝑙 ,𝑛 −  𝜙𝑙,𝑛

        +

𝑁

𝑛=−𝑁

 𝑢𝑗 𝐺𝑙,𝑗  Sup 
𝑚

  𝜙𝑙 ,𝑚 −  𝜙𝑙 ,𝑚
         ≤  

𝜆

𝜇
  max

0≤𝑙≤𝑝
 Sup

𝑛

  

   𝑌𝑛,𝑚
 𝑙  

𝑁

𝑛=−𝑁

 Φ − Φ   +   𝐿 max
0≤𝑙≤𝑝

 Sup
𝑛

  𝑌𝑛,𝑚
 𝑙   Φ − Φ  +

𝑁

𝑛=−𝑁

𝐿  Φ − Φ   

𝑙

𝑗 =0

    . 

Hence, we get 

 𝑇  Φ − 𝑇 Φ  ℓ
∞ ≤ 𝛼2 Φ − Φ  ℓ

∞           ,        𝛼2 < 1     .                              (3.23) 

The previous inequality tells us thatT  is a continuous operator and under condition (3.20) it is a contractive 

operator in 
 .Hence, the Theorem is proved.◘ 

 

Definition 2: The estimate local error 𝐸𝑠,𝑛of (3.3) is determined as 

𝜙𝑙 𝑥 −  𝜙𝑙 𝑥  
𝑠

=  𝑌𝑛,𝑚
 𝑙  𝜙𝑙 𝑛ℎ − 𝜙𝑙,𝑠 𝑛ℎ  

𝑠

𝑛=−𝑠

+ 𝐸𝑠,𝑛
 𝑙       ,      (𝑥 = 𝑚ℎ)          (3.24) 
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where 𝜙𝑙 𝑥  
𝑠
 is the approximate solution of equation (3.1) . 

 

Corollary1:Assume the hypothesis of theorem 2are verified , thenlim
𝑠→∞

𝐸𝑠,𝑛
 𝑙 = 0. 

Proof:In view of formula (3.23), we have 

 𝐸𝑠,𝑛
 𝑙  ≤ max

0≤𝑙≤𝑝
Sup 

𝑚
 𝜙𝑙 𝑚ℎ −  𝜙𝑙 𝑚ℎ  

𝑠
 +  Φ − Φs ℓ

∞   Sup
𝑛

  𝑌𝑛,𝑚
 𝑙  

𝑠

𝑛=−𝑠

  . 

The above inequality is true for each integer  , and by condition (b) , we get 

 𝐸𝑠,𝑛
 𝑙  

ℓ∞
≤  1 + 𝑐  Φ − Φs ℓ

∞           ,     for each  𝑠 .                  (3.25) 

Since Φ − Φs → ∞ as 𝑠 → ∞ then  𝐸𝑠,𝑛
 𝑙 → 0 as 𝑠 → ∞.◘ 

Finally, it is convenient to consider the following theorem, which proves the convergence of the sequence of 

approximate solution   𝜙𝑙 𝑚ℎ  
𝑧,𝑠

  to the exact solution of equation (1.1) in Banachspace   ],0[2 TCL  . 

 

Definition 3:The following relationdetermines the totalerror 
SZE ,

: 

𝐸𝑧,𝑠 =  𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡 𝑑𝑦 +   𝐹 𝑡, 𝜏 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝜏  𝑑𝑦 𝑑𝜏 +

𝑎

−𝑎

𝑡

0

𝑎

−𝑎

 

 𝐺 𝑡, 𝜏  𝜙 𝑥, 𝜏 𝑑𝜏 −  𝑢𝑙  𝐹𝑖,𝑗  𝑌𝑛,𝑚
 𝑙 

𝑠

𝑛=−𝑠

𝜙𝑗 ,𝑛
 +𝐺𝑗 ,𝑙𝜙𝑗 ,𝑚  −  𝑌𝑛,𝑚

 𝑙 

𝑠

𝑛=−𝑠

𝜙𝑗 ,𝑛 

𝑙

𝑗 =0

𝑡

0

 . (4.27) 

 When 𝑧, 𝑠 → ∞ , the sum  𝑢𝑙  𝐹𝑖,𝑙  𝑌𝑛,𝑚

𝑠

𝑛=−𝑠

𝜙𝑙,𝑛 + 𝐺𝑖 ,𝑙𝜙𝑙,𝑚  

𝑖

𝑙=0

+  𝑌𝑛,𝑚

𝑠

𝑛=−𝑠

𝜙𝑙,𝑛 → 

 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝑡 𝑑𝑦 +   𝐹 𝑡, 𝜏 𝑘  𝑥 − 𝑦   𝜙 𝑦, 𝜏  𝑑𝑦 𝑑𝜏

𝑎

−𝑎

𝑡

0

𝑎

−𝑎

+  𝐺 𝑡, 𝜏  𝜙 𝑥, 𝜏 𝑑𝜏  ,

𝑡

0  
and the solution of the algebraic system becomes the solution of the equation (1.1) . 

 

IV. Application  

Consider the mixed integral equation 

𝜇𝜙 𝑥, 𝑡 = 𝜆  𝜙 𝑦, 𝑡 𝑘  𝑥 − 𝑦  𝑑𝑦 + 𝜆   𝑡2𝜏

Ω

𝑡

0Ω

𝜙 𝑦, 𝜏 𝑘  𝑥 − 𝑦  𝑑𝑦𝑑𝜏 

+𝜆  𝑡𝜏2𝜙 𝑥, 𝜏 𝑑𝜏

Ω

+ 𝑓 𝑥, 𝑡   .      𝜙 𝑦, 𝑡 = 𝑥2 + 𝑡2          .               (4.1) 

Example(1): Consider ( ) ;0 1,k x y x y





     at 0.5152; 1; 0.2; 41T n      

 The approximate solution and the estimate error, in each cases, 0.12 0.73for and    are calculated in 

table (1). 

 

Table1 

 

 

 

 

 

 

 

 

 

 

 

 (Table (1) describes the exact and numerical solution of Eq. (4.1) when ( ) ;0 1,k x y x y





     at

0.5152; 1; 0.2; 41; 0.12 0.73T n for and         ) 

x  Exact 𝝊 = 𝟎. 𝟏𝟐     𝝊 = 𝟎. 𝟕𝟑   
App. Sol. Error App. Sol. Error 

-1 4.00000E-04 3.63253E-04 3.67468E-05 3.08591E-04 9.14093E-05 
-0.8 2.56000E-04 2.73278E-04 1.72775E-05 2.24550E-04 3.14502E-05 
-0.6 1.44000E-04 1.61339E-04 1.73390E-05 1.10959E-04 3.30406E-05 

-0.4 6.40000E-05 8.14052E-05 1.74052E-05 3.00103E-05 3.39897E-05 
-0.2 1.60000E-05 3.34485E-05 1.74485E-05 -1.85140E-05 3.45140E-05 
0 0.00000E+00 1.74632E-05 1.74632E-05 -3.46828E-05 3.46828E-05 
0.2 1.60000E-05 3.34485E-05 1.74485E-05 -1.85140E-05 3.45140E-05 
0.4 6.40000E-05 8.14052E-05 1.74052E-05 3.00103E-05 3.39897E-05 
0.6 1.44000E-04 1.61339E-04 1.73390E-05 1.10959E-04 3.30406E-05 

.8 2.56000E-04 2.73278E-04 1.72775E-05 2.24550E-04 3.14502E-05 
1 4.00000E-04 3.63253E-04 3.67468E-05 3.08591E-04 9.14093E-05 
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We can deduce from the above and other results the following: 

1) When the values of   and T are fixed , the error increases with increasing of𝜐 , where is called Poisson 

ratio , in the theory of elasticity and when 0 0.5,   the atomic bond between the particles of the 

material is normal, while 𝜐 ≥ 0.5 the atomic bond is strong , for this the error may be large . 

2) It was found that the highest error value is obtained when 0.73 1.at x    Also, the errordecreases 

gradually, and has less valuewhen = 0.07 . 

3) When the values of   and   are fixed,the error value increases with the time. 

4) The maximum error is 0. 2363917451, at 𝑥 = ±1  , when 0.73, 0.8T    . 

5) The minimum error is 1.81871E-7, at 𝑥 = ±0.0   , when 𝜐 = 0.07  , 𝑇 = 0.004  . 

6) In all the studied situations, the error value increases when it get closer to the ends points 1x   . It also 

decreases at the middle when it gets closer to zero.  

 

Example (2): Consider the logarithmic form 𝑘  𝑥 − 𝑦  = ln 𝑥 − 𝑦  ,at 1, .25   41, 0.2.n T   

 

Table 2 
x  Exact App. Error 

-1 4.00E-04 4.14364E-04 1.43636E-05 
-0.8 2.56E-04 2.53924E-04 2.07618E-06 
-0.6 1.44E-04 1.43201E-04 7.98768E-07 
-0.4 6.40E-05 6.37610E-05 2.38987E-07 
-0.2 1.60E-05 1.60212E-05 2.12470E-08 

0 0.00E+00 9.86122E-08 9.86122E-08 
0.2 1.60E-05 1.60212E-05 2.12433E-08 
0.4 6.40E-05 6.37610E-05 2.38987E-07 

0.6 1.44E-04 1.43201E-04 7.98770E-07 
0.8 2.56E-04 2.53924E-04 2.07618E-06 
1 4.00E-04 4.14364E-04 1.43636E-05 

 

 (Table (2) describes the exact and numerical solution of Eq. (4.1) 

when ( ) ln ,k x y x y   at 0.25; 1; 0.2; 41.T n     ) 

 

We notice from the results of the program at the previous and others cases that 

1) When the values of  𝑇 are fixed,the error values clearly increase with increasing of𝜆. 

2) When the values of 𝜆 are fixed,the error values increase with the time increase. 

3) The maximum error is 0.020521631, at𝑥 = ±0.8, when 0.4368, 0.8.T    

4) The minimum error is 8.4973E-10, at = ±0.2 , when 𝜆 = 0.25  , 𝑇 = 0.004 . 

5) The error value increases when it get closer to the ends points 1x   . It decreases at the middle when it 

gets closer to zero. 
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