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Abstract: The current microprocessors are concentrating on the multiprocessor or multi - core system 

architecture. The parallel algorithms are recently focusing on multi - core system to take full utilization of 

multiple processors available in the system. The design of parallel algorithm and performance measurement is 

the major issue on today’s multi - core environment. Numerical problems arise in almost every branch of 

science which requires fast solution. In this paper we have presented parallel algorithms for computing the 

solution of system of non - linear equations and approximate the simple zeros of polynomial equations. The 

experimental results reveal that the performances of parallel algorithms are better than sequential. We 

implemented the parallel algorithms using multithreading features of OpenMP. 
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I. Introduction 
One of the most important problems in solving nonlinear equations is the construction of the initial 

conditions which provide rapid convergence of numerical algorithm. In this paper we present two methods 

Durand – Kerner and Börsch – Supan, which have some initial new conditions to ensure convergence of 

methods for solving algebraic equations. The stated initial conditions are of practical importance since they are 

computationally verifiable, they depend only on the coefficients of a given polynomial, its degree n and initial 

approximations to polynomial roots. [1] 

One of the main problems in the solution of equations of the form f(z) = 0 is the construction of the 

initial conditions which offer guaranteed convergence of numerical algorithms. These initial conditions include 

an initial approximation z
(0)

 to the root of f with which starts the implementation of the algorithm to generate the 

sequence  ( )

1,2,...

m

m
z


 of approximations tends to the root of f. The study of a general problem of the 

construction of the initial conditions and the choice of initial approximation to ensure convergence is very 

difficult and generally cannot be solved in a satisfactory way, even for simple functions such as algebraic 

polynomials.  

 

II. The Simultaneous Methods 
In this paper we present two methods that provide improved conditions and fast convergence. These 

methods are: Durand – Kerner and Börsch – Supan. These conditions depend only on the coefficients of the 

given polynomial 
1

1 1 0( ) n n

nP z z a z a z a

      of degree n and the vector of initial approximations 

 (0) (0) (0)

1 , , nz z z  . Most of iterative methods for the simultaneous determination of roots of o polynomial 

can be expressed as:   

   ( 1) ( ) ( ) ( )

1 , , , 0,1,m m m m

i i n nz z C z z i I m           (1.1)  

Where 
( ) ( )

1 , ,m m

nz z  are distinct approximations to simple roots 1, , n   respectively, obtained in the m-th 

step. The term    ( ) ( ) ( )

1 , ,m m m

i i n nC C z z i I   will be called the iterative correction term or simply the 

correction. [1] 

Let ( )i  a close neighbourhood of the root  i ni I   and the function    1 1, , , ,n i nz z F z z   

that satisfies the following conditions for each ni I :  
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F z z is continuous in
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If the correction term of iterative method 1.1 has the form 

 
 

 
 1

1

, ,
, ,

i

i n n

i n

P z
C z z i I

F z z
 


                                                                       (1.2) 

for which conditions (1) – (3) hold and 
(0) (0)

1 , , nz z  are the initial approximations to the polynomial roots, in 

[5] proved that this method is convergent if there is a real number (0,1)   such that satisfies the following 

inequalities::  

 

   

( 1) ( )

(0) (0) (0) (0)

( ) 0,1, .

( ) ( ) , ,

m m

i i

i j i j n

i C C m

ii z z g C C i j i j I





  

    


  

 

III. The Durand – Kerner Method 
One of the most useful simultaneous methods for solving a polynomial is the Durand - Kerner 

(Weierstrass) method expressed as follows:  

 ( 1) ( ) ( ) , 0,1,m m m

i i i nz z W i I m                                              (1.3)  

where  

 

 
 

( )

( )

( ) ( )

1

, 0,1,

m

im

i nn
m m

i j

j
j i

P z
W i I m

z z



  


                                 

In this case the correction term is equal to Weierstrass's correction  

 
 1, ,

i

i i

i n

P z
C W

F z z
 


 ku      1

1

, ,
n

i n i j n

j
j i

F z z z z i I



   .  

The Durand – Kerner algorithm  

1. Compute initial values  0 1; ; nz z   

2. Let m=1;  

3. do 

4. max 0z  ; 

5. for  j = 0, ..., n-1 

6.  
1m m

j jz z  ;  

7.  1 1m m

j iz H z  ; 

8. Set 

1

max

m m

j j

m

j

z z
z

z


  ; 

9. k=k+1; 

10. while maxz    

 

IV. The Börsch- Supan Method 
The Börsch – Supan method is a simultaneous method, which is determined by the iterative formula  

 

( )
( 1) ( )

( )

( ) ( )
1

( , 0,1, )

1

m
m m i

i i nmn
j

m m
j i j
j i

W
z z i I m

W

z z






   







          (1.4) 
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where 
( )m

iW  is given by (1.2). This formula has term correction:   

 
 

 
 1

1

, ,
, ,

i

i n n

i n

P z
C z z i I

F z z
 


 

where   

     1, , 1
j

i n i j n

j i j ii j

W
F z z z z i I

z z 

 
      

   

 

The Börsch – Supan algorithm  

1. Compute initial values  0 1; ; nz z   

2. Let m=1;  

3. do 

4. max 0z  ; 

5. for  j = 0, ..., n-1 

6. 
1m m

j jz z  ;  

7.  1 1m m

j iz H z  ;  

8. Set 

1

max

m m

j j

m

j

z z
z

z


  ;  

9. 

 

( )
( 1) ( )

( )

( ) ( )
1

1

m
m m i

i i mn
j

m m
j i j
j i

W
z z

W

z z






 






;  

10. k=k+1;  

11. while maxz    

 

V. The Wilkinson’s Polynomial 
In numerical analysis, Wilkinson polynomial is a specific polynomial which was used by James H. 

Wilkinson 1963 to show the difficulty when finding the root of a polynomial.  

The Wilkinson polynomial  

 
has 20 root, localized in points x = 1, 2, ... , 20 respectively. These roots are separated from each - other, but 

they are still ill - conditioned. 

Expanding the polynomial we have  

 

 

https://en.wikipedia.org/wiki/Root-finding_algorithm
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If the coefficient of x
19 

is decreased from -210 by 2
-23

 to -210.0000001192, then the polynomial value 

w(20) decreases from 0 to 2
-23

20
19

=-6.25x10
17

, and the root at x=20 grows to 20.8x  . The roots at x=18 and 

x=19 transform into a double root at 18.62x   which turns into a pair of complex conjugate roots at 

19.5 1.9x i   as the perturbation increases further. The 20 roots become  

 

   
 

 
The plot 1.1   The plot of Wilkinson's polynomial 

 

Hereinafter we give the results taken from testing Durand - Kerner and Börsch - Supan algorithms in C 

++ programming language and platform OpenMP. 

 

Table 1 - 1   Execution time of 2 methods in C ++ programming language 
The polynomials Durand – Kerner Börsch – Supan 

The simple polynomial 0.54s 0.75s 

The Wilkilson’s  polynomial 8.00s 9.3s 

 

Table 1 – 2 Execution time of 2 methods in OpenMP platform 
The polynomials Durand – Kerner Börsch – Supan 

The simple polynomial 0.25s 0.4s 

The Wilkilson’s  polynomial 5.3s 5.7s 

 

After these tests, we see that the OpenMP platform is quite suitable for the execution of these methods 

because the time consumed is smaller compared with the sequential time. 

 

VI. Conclusions 
After we made some necessary tests we concluded that: 

By testing these two simultaneous methods we see that the OpenMP platform is more qualitative than 

the sequential execution. As seen on the platform OpenMP implemented in our algorithms, their performance 

increases and this happens in the same drive hardware, with the same parameters, just exploiting parallelism and 

increasing the use of all potential multithread processor.  

OpenMP is well adapted to intensive computing. We parallelized the Durand – Kerner algorithm and 

Börsch – Supan algorithm for polynomial roots - finding and we obtained encouraging results. Indeed, the 

experimental study confirms that our program determines the same roots than the sequential version for high 
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degrees. The contribution of the parallel solution allows us to accelerate the execution time and to study even 

more important degrees of polynomial.  
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