On Pseudo m – power Commutative near – rings

G.GopalaKrishnamoorthy¹, R.Veega² and S.Geetha³

¹Principal,Sri. Krishnasamy Arts And Science College Sattur-626203 Tamil nadu ²Dr.G.R.D College of Education, Coimbatore Tamilnadu ³Pannai College Of Engg. And Tech Sivagangai Tamilnadu

Abstract: A near ring N is called weak commutative if xyz = xzy for every $x,y,z \in N[14]$. N is called pseudo commutative if xyz = zyx for every $x,y,z \in N[15]$. N is called quasi weak commutative if xyz = yxz for every xyz = yxz for every $x,y,z \in N[11]$. N is called pseudo m – power commutative if $x^myz = zy^mx$ for every $x,y,z \in N[10]$. We obtain more results, generalising the results of [15].

I. Introduction

S.Uma, R.Balakrishnan and T.Tammizhchelvam[15] called a near – ring N to be pseudo commutative if xyz =zyx forevery x,y,z ϵ N. G.GopalaKrishnamoorthy and S.Geetha[8] called a ring R to be m – power commutative if $x^my = y^mx$ forall x,y ϵ R, wherem ≥ 1 is a fixed integer. They also called a ring R to be (m, n) power commutative if $x^my^n = y^mx^n$ forallx,y ϵ R, where $m \geq 1$ and $n \geq 1$ are fixed integers. We [10] have defined a near – ring to be pseudo m-power commutative if $x^myz = zy^mx$ forall x,y,z ϵ N, where $m \geq 1$ is a fixed integer. Also we have defined a near – ring N to be pseudo (m,n) power Commutative if $x^my^nz = zy^mx^n$ for all x,y,z ϵ N, where $m\geq 1$ and $n\geq 1$ are fixed integers. In this paper we prove more general results on pseudo m – power commutative near – rings, this generalising the results of [15].

II. Preliminaries

Throughout this paper, N denotes a right near – ring with atleast two elements. For any non – empty subset A of N, we denote $A - \{0\}$ as A^* . The following definitions and results are needed for the development of this paper.

2.1 Definition

Let N be a near – ring. An element a N is said to be Idempotent if $a^2 = a$ Nilpotent if there exists a positive integer k such that $a^k = 0$

2.2 Lemma (Pilz [14])

Each near - ring N is isomorphic to a sub direct product of subdirectly irreducible near - rings

2.3 Definition

A near – ring N is said to be zero – symmetric if ab = 0 implies ba = 0, where $a,b \in N$.

2.4 Lemma

If N is zero symmetric, then every left ideal Aof N is an N – subgroup of N every ideal I of N satisfies the condition NIN \subset I

 $N*I*N* \subseteq I*$

2.5 Lemma

Let N be a near – ring. Then the following are true.

If A is an ideal of N and B is any subset of N, then $(A:B) = \{n \in N / nB \subseteq A\}$ is always a left ideal.

If A is an ideal of N and B is any N – subgroup then (A:B) is an ideal . In particular if A and B are ideals of a zero symmetric near – ring, then (A:B) is an ideal .

2.6 Lemma

Let N be a regular near – ring, $a \in N$ and a = axa, then

- (i) ax and xa are idempotents and so the set of idempotent elements of N is non empty.
- (ii) axN = aN and Nxa = Na
- (iii) N is S and S' near rings.

2.7 Definition

A near – ring N is said to be reduced if N has no non – zero nilpotent elements

2.8 Lemma [3]

Let N be a zero – symmetric reduced near – ring. For any $a,b \in N$ and for any idempotent element $e \in N$, abe = aeb

2.9 Lemma [5, 6]

A near ring N is sub – directly irreducible if and only if the intersection of all non – zero ideals of N is not zero **2.10 Lemma [6]**

Each simple near – ring is sub – directly irreducible

2.11 Lemma [13]

An N – subgroup A of N is essential if $A \cap B = \{0\}$ where B is any N subgroup of N implies $B = \{0\}$

2.12 Definition

A near – ring N is said to be an integral near – ring if N has no non – zero divisors.

2.13 Lemma

Let N be a near – ring such that for all a \in N, $a^2 = 0$ implies a = 0. Then N has no non – zero nilpotent elements. That is, N is reduced.

2.14 Definition

A near ring N is said to satisfy intersection of factors property (I F P) if ab=0 implies anb=0 forall $n \in N$, where $a,b \in N$

2.15 Lemma [14]

A non – zero symmetric near – ring n has intersection of factors property $\,$ if and only if (O:S) is an ideal for any subset S of N

2.16 Definition

- (i) Let N be a near ring. An ideal I of N is called a prime ideal if for all ideals A, B of N, $AB \subseteq I$ or $B \subset I$
- (ii) I is called a semi prime ideal if for all ideals A of N, $A^2 \subseteq I$ implies $A \subseteq I$
- (iii) I is called a completely semi prime ideal if for any $x \in N$, $x^2 \in I$ implies $x \in I$
- (iv) I is called a completely prime ideal if for any $x, y \in N$, $xy \in I$ implies $x \in I$ or $y \in I$
- (v) N is said to have strong intersection of factors property if for all ideals I of N, ab ϵ I implies anb ϵ I for all n ϵ N

2.17 Lemma

Let N be a Pseudo Commutative near – ring. Then every idempotent element is central.

III. Main results

3.1 Lemma

Every pseudo m – power commutative (right) near – ring is zero symmetric

Proof

Let N be a pseudo m – power commutative near – ring. Then $x^myz = zy^mx$ for all $x,y,z \in N$ Now for all $a \in N$,

 $a.0 = a.0^{m+1}$

 $= a.0^{m}.0$

 $=0^{m}.0a = 0a = 0$

This proves N is zero symmetric

3.2 Lemma

Every idempotent element in a pseudo m – power commutative near – ring is central

Proof

Let N be a pseudo m – power commutative near – ring and e ϵ N be an idempotent element. Then it follows that $e^k = e$ for all $k \ge 2$

Now for any a \in N,

$$e \ a = e^{m+1} \ a = e^{m} \ e \ a$$

= $a \ e^{m} \ e = ae^{m+1}$

= ae

This proves e is central

3.3 Lemma

Homomorphic image of a pseudo m – power commutative near – ring is also a pseudo m – power commutative near – ring.

Proof

Let N be a pseudo m – power commutative near – ring. Let $f: N \to M$ be an endomorphism of near – rings. For all $x, y, z \in N$,

 $f(x)^m f(y) f(z) = f(x^m yz)$

```
= f(zy^mx)
```

$$= f(z) f(y)^m f(x)$$

This proves M is pseudo m – power commutative.

3.4 Corrollary

Let N be a pseudo m – power commutative near – ring. If I is an ideal of N, then N / I is also pseudo m – power commutative

Proof

Since the canonical map $\eta: N \to N/I$ is an endomorphism of near – rings, the corollary follows from the Lemma.

3.5 Theorem

Every pseudo m – power commutative near – ring N is isomorphic to a sub – direct product of sub – directly irreducible pseudo m – power commutative rings

Proof

By Lemma 2.2, N is isomorphic to a subdirect product of sub- directly irreducible near – rings N_k and each N_k is a homomorphic image of N under the projection map $\pi_k: N \to N_k$. The result follows from Lemma 3.4

3.6 Definition

Let N be a near-ring. N is said to be weak m – power commutative if $ab^mc = ac^mb$ for all $a,b,c \in N$

3.7 Lemma

Any pseudo – m – power commutative near – ring with right identity is weak m – power commutative

Proof

Let N be a pseudo m – power commutative near – ring. Let a,b,c \in N

Now, $ab^{m}c = (ab^{m}c)e$

 $= a(b^m ce)$

= $(ae)(c^mb)$ (N is pseudo m – power commutative)

 $= (ae)(c^mb)$

 $ab^{m}c = ac^{m}b$

This proves N is weak m – power commutative

3.8 Definition

Let N be a near – ring. N is said to be quasi – weak m – power commutative if $x^myz = y^mxz$ for all $x,y,z \in N$

3.9 Lemma

Any weak m – power commutative near – ring with left identity is quasi – weak m – power commutative

Proof

Let N be a weak m – power commutative near – ring. Let a,b,c \in N

Now $a^mbc = e(a^mbc)$

- $=(ea^{m}b)c$
- $= (eb^{m}a)c$
- $= b^{m}ac$

This proves N is quasi weak m – power commutative.

3.9 Definition

A near – ring N is said to be m – regular near – ring if for each $a \in N$, where exists an element $b \in N$ such that $a = ab^m a$ where $m \ge 1$ is a fixed integer.

3.10 Lemma

Let N be a m – regular near – ring, $a \in N$ and $a = ab^{m}a$.

Then (i) ab^m, b^m are idempotents

(ii)
$$ab^{m}N = aN$$
 and $Nb^{m}a = Na$

Proof

(i) Let $a \in N$. Since N is m – regular, there exists $b \in N$ such that

$$a = ab^{m}a$$
(1)
Now $(ab^{m})^{2} = (ab^{m})(ab^{m})$

$$= (ab^{m}a)b^{m}$$
$$= ab^{m}$$

Similarly,
$$(b^m a)^2 = (b^m a)(b^m a) = b^m (ab^m a)$$

= $b^m a$

Hence ab^m and b^ma are idempotents.

(ii) Let $y \in ab^m N$

 \Rightarrow y = ab^mx for some x \in N

```
\in aN
\Rightarrow ab^mN \subseteq aN
Let y \in aN
y = az for some z \in N
          = (ab^{m}a)z
         = ab^{m}(az)
  \in ab^mN
That is, aN \subseteq ab^mN
Hence ab^{m}N = aN
Similarly it can be proved Nb^{m}a = Na
```

3.11 Definition

Let N be a near – ring A \subseteq N then $\sqrt{A} = \{x \in N / x^k \in A \text{ for some } k \ge 1. \}$

3.12 Theorem

Let N be a m – regular pseudo m power commutative near – ring.

Then $A = \sqrt{A}$ for every N – subgroup A of N.

Proof

Let A be an N – subgroup of N.

Since N is m – regular for every $a \in N$, there exists $b \in N$ such that

By Lemma 3.10(i), ab^m, b^ma are idempotents

Since N is pseudo m – power commutative by Lemma 3.2, ab^m, b^ma are central.

Let
$$a \in \sqrt{A}$$
. Then $a^k \in A$ for some positive integer k.

Now
$$a = a b^m a = a (b^m a)$$

 $a = (b^m a) a = b^m a^2$ (1)
 $a = b^m a a = b^m (b^m a^2) a$
 $= b^{2m} a^3$
 $= b^{2m} a a^2$

$$= b^{2m} a a^{2}$$

= $b^{2m} (b^{m} a^{2}) a^{2}$

$$= b^{3m} (b^{m} a^{2}) a^{2}$$

 $= b^{3m} a^{4}$

$$a = b^{(k-1)m} a^k \in N$$

$$a = b^{(k-1)m} a^k \ \in \ NA \ \subseteq \ A \ \text{for all} \ k \ \ge 1 \quad(2)$$

Hence
$$\sqrt{A} \subseteq \mathbf{A}$$

Obviously A
$$\subseteq \sqrt{A}$$

Hence A =
$$\sqrt{A}$$

3.13 Theorem

Let N be a m – regular pseudo m – power commutative near – ring. Then (i) N is reduced (ii) N has IFP (A m – regular near – ring is said to have IFP if ab = 0 implies there exists $n \in N$ such that an^mb =0)

Let $a \in N$ be such that $a^2 = 0$. By (i) of Theorem 3.12, $a = b^m a^2 = b^m$. 0 = 0

Hence N is reduced.

Let
$$x, y \in N$$
 such that $xy = 0$

Now
$$(yx)^2 = (yx) (yx) = y (xy) x$$

= y.0.x
= y.0
 $(yx)^2 = 0$

By (i)
$$yx = 0$$

That is, N is zero commutative

Now for any
$$n \in N$$
, $(xn^m y)^2 = xn^m y.xn^m y$

$$= xn^{m}(yx)n^{m}y$$

$$= xn^m0n^my$$

By (i) $xn^m y = 0$

3.14 Theorem

Let N be a m – regular pseudo m – power commutative near – ring . Then every N subgroup is an ideal.

Proof

Let
$$a \in N$$
. Since N is m – regular, there exists $b \in N$ such that $a = ab^m a$. By Lemma 3.10(i) bma is idempotent

Let $b^m a = e$

Then $Ne = Nb^m a = Na$ (by Lemma 3.10 (ii))

Let $S = \{n-ne/n \in N\}$

Claim: $(O:S) = \{y \in N/sy = 0 \quad \forall s \in S\} = Ne$

Now $(n-ne)e = ne - ne^2 = ne-ne = 0 \quad \forall n \in N$

Since N has IFP, we have

 $(n-ne)Ne = 0$

Hence $Ne \subseteq (O:S)$

Let $y(O:S)$. Then $Sy = 0 \quad \forall s \in S$ (2)

Now N is m – regular. $y = yx^m y$ for some $x \in N$

Since $yx^m - (yx^m)e$ $y = 0$

That is, $yx^m y - yx^m e y = 0$
 $y - y(x^m e y) = 0$

That is, $y - yx^m y e = 0$
 $y - ye = 0$

Hence $y = y \in Ne$

That is, $(O:S) \subseteq Ne$

That is, $(O:S) \subseteq Ne$

That is, an ideal of N .

Now if M is any subgroup of N , then $M = \sum_{x \in M} Na$

Thus M becomes an ideal of N.

3.15 Theorem

Let N be a m – regular pseudo m – power commutative near – ring. Then (i) N = Na = Na2 = aN = aNa for all $a \in N$

(ii)Any ideal of N is completely semi prime

Proof

Since N is m – regular, for every a
$$\epsilon$$
 N, there exists b ϵ N such that a = ab^ma

Then a =ab^ma = (ab^m)a =a(ab^m) = a²b^m (by Lemma 3.10 (i))

Also a = ab^ma = a(b^ma) = (b^ma)a = b^ma² ϵ Na²

Hence N \subseteq Na²(1)

Now Na \subseteq N \subseteq Na² = (Na)a \subseteq Na \subseteq N

So, Na = Na² = N(2)

We shall now prove that Na² = aN

Let x ϵ Na².

Then x = na² for some n ϵ N

= naa

= n(b^ma²)a

= nb^ma³

= (a^mbn) a² (pseudo m – power commutative)

= a(a^{m-1}bna²) aN

```
That is, Na^2 \subseteq aN
                                    ....(3)
         Let y \in aN.
         Then y = an for some n \in N
                    = (b^m a^2)n
                    =b^{m}a(a^{2}b^{m})n
                    =b^{m}a(a^{2}b^{m}n)
                = b^{m}a(n^{m}ba^{2}) (pseudo m – power commutative)
                = (b^m a n^m b) a^2 \in Na^2
         So aN \subseteq Na<sup>2</sup>
                                 .....(4)
(3) and (4) gives Na^2 = aN .....(5)
         Next we shall prove that aN = aNa
                  Let x \in aN.
                   Then x = an for some n \in N
                              = (ab^m a)n
                              = a(b^m an) \in a(NaN) \subset aNa
                  So, aN \subseteq aNa
                                           .....(6)
         Obviously aNa \subseteq aN
                  Hence aNa = Na
                                          .....(7)
         From (2), (5) and (7) we get
                   N = Na = Na^2 = aN = aNa
         Let I be any ideal of N and a^2 \in I
         Now a = a^2b^m \in IN \subseteq I
         That is, a^2 \in I implies a \in I
         Hence I is Completely semi – prime.
```

3.16 Definition

A near – ring N is said to have the property P_4 if for all ideals I of N, $xy \in I$ implies $yx \in I$, where $x,y \in N$

3.17 Theorem

Every m - regular pseudo m - power Commutative near - ring satisfies the property P₄

Proof

Let N be a m – regular pseudo m – power Commutative near – ring and I be an ideal of N. Let a,b ϵ N such that ab ϵ I

```
Then (ba)^2 = (ba)(ba)
= b(ab)a
\in N \mid N \subset I
That is, (ba)^2 \in I
By Theorem 3.15 (ii), ba \in I
```

Thus N satisfies the property P₄

3.18 Theorem

Let N be a m – regular pseudo m – power Commutative near – ring. Then (i) For every ideal I of N, (I:S) is an ideal of N, where S is any subset of N

(ii) For every ideal I of N, $x_1, x_2, x_3, ..., x_n \in N$ if $x_1, x_2, x_3, ..., x_n \in I$, then $< x_1 >, < x_2 >, < x_3 >, ..., < x_n > \subseteq I$.

Proof

Let I be an ideal of N and S be any subset of N.

By Lemma 2.5, (I:S) = $\{n \in \mathbb{N} / ns \subseteq I\}$ is a left ideal of N.

If a ϵ (I:S), then aS \subseteq I. So, as ϵ I forall s ϵ S.

Then by Theorem 3.16,sa \in I. Then for any n \in N, (sa)n \in I.

That is, $s(an) \in I$. By Theorem 3.17, $(an)s \in I$. So an $\in (I:S)$ for any $n \in I$.

Hence (I:S) is a right ideal. Consequently (I:S) is an ideal. This completes the proof 3.17 (i).

Let
$$x_1, x_2, x_3, ..., x_n \in I$$

$$\Rightarrow x_1 \in (I : x_2.x_3..., x_n)$$

$$\Rightarrow < x_1 > \subseteq (I : x_2.x_3 ..., x_n)$$

$$\Rightarrow < x_1 > x_2.x_3 ..., x_n \subseteq I$$

$$\begin{array}{l} \Rightarrow x_{2}.x_{3}...,x_{n} < x_{1} > \subseteq I \\ \Rightarrow x_{2} \in (I:x_{3}.x_{4}...,x_{n} < x_{1} >) \\ \Rightarrow < x_{2} > \subseteq (I:x_{3}.x_{4}...,x_{n} < x_{1} >) \\ \Rightarrow < x_{2} > x_{3}.x_{4}...,x_{n} < x_{1} > \subseteq I \\ \Rightarrow x_{3}.x_{4}...,x_{n} < x_{1} > \subset I \\ \text{Continuing like this, we get } < x_{1} > , < x_{2} > , < x_{3} > ,..., < x_{n} > \subseteq I. \end{array}$$

3.19 Theorem

Let N be a m – regular pseudo m – power Commutative near – ring. Then (i) N has strong IFP

(ii) N is a semi – prime near –ring

Proof

Let I be an ideal of N such that ab ϵ I, where a,b ϵ N. By Lemma 3.1, N is zero symmetric NI \subseteq I.

By Theorem 3.15 $aN = Na^2$.

Hence an = ma^2 for some m,n \in N

Then for any $n \in N$, and $= ma^2b$

$$=$$
 (ma)ab \in NI \subset I

That is, N has strong IFP

Let M be an N – subgroup of N. Then by Theorem 3.14, M is an ideal of such that $I^2 \subseteq M$.

Since N is zero symmetric, $NI \subset I$.

If $a \in I$, then $a = ab^m a \in I(NI) \subseteq I^2 \subseteq M$.

So, any N – subgroup M of N is a semi – prime ideal. In particular $\{0\}$ is semi – prime ideal and hence N is a semi – prime near – ring.

3.20 Note

When m = 1, all the results of [15] are obtained.

References

- [1]. H.E.Bell, Quasi centres, Quasi Commutators, and Ring Commutativity, Acta Maths, Hungary 4 (1 2) (1983),127-136
- [2]. L.o.Chung and Jiang Luh, Scalar central elements in an algebra over a Principal ideal domain, Acta Sci. Maths 41, (1979), 289-293
- [3]. Dheena .P; On Strongly regular near –rings, Journal of the Indian Maths.Soc, 49 (1985), 201 208
- [4]. Dheena.P. A note on a paper of Lee, Journal of the Indian Maths.Soc, 53(1988), 227 229
- [5]. Fou'n, Some structure Theorem for near rings, Doctoral dissertation, University of lahama, 1968
- [6]. Gratzer. George, Universal Algebra, Van Nozfrand, 1968
- [7]. G.Gopalakrishnamoorthy and R.Veega, On Quasi Periodic , Generalised Quasi Periodic Algebras, Jour.of Inst.of Mathematics and Computer Sciences, Vol 23, N02(2010)
- [8]. G. Gopalakrishnamoorthy and S.Geetha , On (m,n) Power Commutativity of rings and Scalar (m, n) Power Commutativity of Algebras, Jour.of Mathematical Sciences
- [9]. G.Gopalakrishnamoorthy and R.Veega, On Scalar Power Central Elements in an Algebra over a Principal ideal domain, Jour.of Mathematical Sciences
- [10]. G.Gopalakrishnamoorthy and R.Veega, On Pseudo m power Commutative Near rings and (m,n) Power Commutative Near rings, International Jour. of Math. Research & science, vol 1,issue 4,Sep 2013, (71 80)
- [11]. G. Gopalakrishnamoorthy, M. Kamaraj, S.Geetha, On Quasi weak Commutative Near rings
- [12]. Hentry. E. Heartherly, Regular Near rings, Journal of Indian Maths. Soc, 38(1974), 345 354
- [13]. Oswald. A Near rings in which every N subgroup is principal, Proc. London Math. Soc, 3(1974), No 28, 67 88
- [14]. Pilz Giinter, Near rings, North Holland, Amsterdam, 1983
- [15]. S.Uma, R.Balakrishnan and T.Tamizhchelvam, Pseudo Commutative Near rings, Scientia Magna, Vol 6(2010), No 2, 75 85