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Abstract: This paper presents some contexts relative to a matroid, which satisfy:  all the closure 

operators derived from their Galois connections  which to these contexts  are the closure operator of the  

matroid.  Using these  results  and  ready-made algorithms  for building up a concept  lattice  or an 

extent  lattice,  we believe that we may  search  out  the  class of all closed sets of a matroid, and 

meanwhile,  create  the construction of the dual of a matroid. 
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I. Introduction 

The word matroid was coined by Whitney in 1935 (cf.[1]). There are many algorithms to construct 

matroids  in the way of searching  out the family of independent sets of a matroid (cf.[2-4]).  However, it  

is well known that there  are dozens of equivalent ways to define a matroid. For example, there is a 

definition to define a matroid with the family of closed sets (cf.[2]).  The  family of closed sets of a 

matroid plays an important role in matroid theory and  produces  a lot of results.   The famous one is 

that Welsh in [2,Chapter  3] presents  the relationship between  matroids  and  geometric  lattices.   The  

relationship is relative  to  the family of all closed sets of matroids. Also, many results in [2] are 

associated  with the family of closed sets of a matroid. All these results relative to the family of closed 

sets of a matroid demonstrate that it is necessary to search out all the closed sets of a matroid if we 

consider some properties  of a matroid. But,  up till now, according to our knowledge, there are only a few 

approaches  directly  or indirectly  to search out all the closed sets of a matroid (cf.[5,6]). Hence, if we 

want to study  on matroids  deeply, then  we may try to find out the other  ideas to search out all the 

closed sets of a matroid. For this purpose,  we may notice the following statements: 

*This  research is supported by National Natural Science Foundation of China  (61572011) 

(1.1)  Concept  lattices  are a principal  way to automatically derive  an ontology  from a collection of 

objects and their  properties. The term  was introduced by R.Wille (cf.[7]), and built  on applied  lattice  

and order theory  that was developed by Birkhoff et al. (cf.[8]). 

(1.2) Galois connections  have applied  in various mathematical theories  (cf.[9-12]). 

(1.3) For a context, there are many algorithms  to search out all the concepts, and further, the concept  

lattices  (cf.[13-19]). 

(1.4) In [20], it presents  the  correspondent relationship between  algebraic  lattices  and concept  

lattices.    We  may  know  [8] that the  relationship between  algebraic  lattices  and geometric lattices  is 

that an algebraic  lattice  is geometric,  but  not vice versa.  Welsh in [2] points  out  that for finite cases, 

up  to  isomorphism,  there  is a correspondent relationship between  simple matroids  and geometric 

lattices. 

(1.5)  Combining  the  above  (1.1)-(1.3)  and  the  relationship between  matroids  and  lat- tices, we 

naturally ask a question:  shall we use some already made-algorithms for construct- ing concept  lattices  to 

construct all the closed sets of a matroid? 

(1.6) The three relationships in (1.4) also state  that it is valuable  to discuss the relation between  

contexts  and  matroids  for finite status.  Though,  in [20], it  deals with  algebraic lattices  in formal 

concept analysis, it does not provide an idea to discover a geometric lattice directly from formal concept 

analysis.  That is to say, it does not provide an idea to discover a matroid from formal concept  analysis.  

Even  though,  the  reference [20] is still good and helpful in dealing with lattices  and formal concept  

analysis. 

Based  on (1.1)-(1.6),  to seek the  answer  of the  above question  in (1.5),  we may think that the  

most  important step  is to work out  a suitable  context  (O, P, R)  such that {X  O | (X, X) ∈Gal(O, 

P, R)} is exactly   , where Gal(O, P, R)  is the set of all the concepts of (O, P, R)  and  is the family 

of all closed sets of a given matroid on O. 

This paper is to find some contexts s a t i s f y i n g  {X  O | (X, X) ∈ Gal(O, P, R)} =  for a 

matroid M  on O with  as its family of closed sets.  Using these contexts,  it provides some applications 
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in mathematical theories,  especially, in finding out  all the closed sets of M .  Certainly, the  question  in 

(1.5)  is answered.   According  to [7], we may  describe  that concept  lattice  is the  central  content in 

formal concept  analysis.  Thus,  we may state  that the results  in this paper  are helpful to the discussion 

on geometric lattices  and formal con- cept analysis in our future. 

The structure of this paper  is as follows. In Section 2, it reviews some terminologies  of Galois 

connections,  some known notions  and  properties  about  concept  lattices  and  lattice theory and some 

properties  of matroid theory.  Thereafter, Section 3 provides some contexts for a matroid. Section 4 

discusses some applications for the contexts  provided  in Section 3. 

We may indicate  that though  there  are finite matroids  and infinite matroids, a context is finite.  

Thus,  we may suppose that all the discussions in this paper  are finite. 

 

II. Preliminaries 
The following is to summarize  the  known facts of Galois connections,  concept  lattices, lattice  

theory  and matroid theory  that are needed later  on. For more details,  lattice  theory is referred  to 

[2,8,10]; concept  lattice  theory,  please see [9,10]; matroid theory,  please refer to [2]. 

Let X be a set, and  (X ) be the collection of all subsets  of X . 

 

Definition 1 (1)[11] Let O and  P  be sets.  Let R  be a relation  between  O and  P ; in symbols, R  

O × P . For any subset  X of O, let 

K (X ) := {y ∈ P | x ∈ X, (x, y) ∈ R}. 

For any subset  Y  of P , let 

L(Y ) := {x ∈ O | y ∈ Y, (x, y) ∈ R}. 

This pair (K, L) of mappings  is a Galois connection  between  O and P . 

A mapping  J  :  (O)  →  (O)  is a closure  operator  on O if it  satisfies  the  following conditions  for 

all subsets  X and Y  of O: 

(s1) X  J (X ). 

(s2) X  Y   J (X )  J (Y ). (s3) J J (X ) = J (X ). 

(2)[10,p.146&9] An element X ∈  (O) is called closed if J (X ) = X . 

 

The definitions of the Galois connection  and closure operator  in [9] are the same to that in [10] 

respectively.   In fact,  the  correspondent  definitions  in Definition  1 are the  same to that in [9,10]. 

Lemma 1 [11] Let O and P  be sets and let K :  (O) →  (P ) and L :  (P ) →  (O) 

be maps which form a Galois connection.  Then  the map LK  is a closure operator  on O. 

Next we review some needed notations and properties. 

 

Definition 2 (1)[10,p.66&9] A context  is a triple (O, P, R) where O and P are sets and 

R  O × P . For A O and B  P , define 

A= {m ∈ P |g ∈ A, (g, m) ∈ R}, B= {g ∈ O | m ∈ B, (g, m) ∈ R}. 

A concept of (O, P, R)  is defined to be a pair  (A, B)  where A  O, B  P, A = B  and 

B= A.   The  extent  of the  concept  (A, B)  is A.   The  set  of all concepts  of (O, P, R)  is denoted  by 

Gal(O, P, R). 

(2)[2,p.51&8,10] A finite lattice  is geometric  if it is semimodular  and every point is the join of atoms. 

[9,p.20,Theorem  3] and [10,p.67,3.4] point out that there is a lattice  construction gener- ated  by Gal(O, 

P, R).  This concept lattice is still denoted  as Gal(O, P, R).  Let O  :={AO | A= A}. 

Lemma 2 (1)[10,p.68] ( O , ) is a lattice  which is isomorphic  to Gal(O, P, R). (2)[2,p.55&8,10] Any 

interval  of a geometric lattice  is geometric. 

The authors  in [9,10] indicate  that in Definition  2, the operation :  (O) →  (P ) and the operation  :  

(P ) →  (O) is a Galois connection  for a context  (O, P, R)  respectively. This  states  equivalently that  

in  a  context  (O, P, R),  for A   O  and  B   P ,  there  are A= K (A)  and B  = L(B), where (K, L) 

is defined as Definition 1. 

According to Lemma 2, we may call ( O , ) extent lattice for a context  (O, P, R), simply in notation O  

if there  is no confusion from the text. 

Combining  [10,p.159,7.2.6 &9,11] with [10,pp.160-162&9], we may express the following views: 

(v1) a Galois connection  (K, L)  between  O and  P  is produced  by a context  (O, P, R), and further  by 

Gal(O, P, R). 

Both  Gal(O, P, R)  and  (O, P, R)  are  produced  by the  same  Galois  connection  (K, L) 
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between  O and P . 

(v2) O  = (LK ), where (LK ) = {X  O | LK (X ) = X }. 

We review the definitions  and properties  relative  with a matroid which are best to our topic. 

Definition 3 (1)[2,p.7] A finite matroid M  is a pair (E, ), where E is a finite set and 

 is a collection of subsets  of E  (called independent  sets) with the following properties: (i1)  ∈  

(i2) X Y  ∈   X ∈  

(i3) A, B ∈  and |A| ≥ |B|  there  exists a ∈ A \ B  satisfying  B ∪ a ∈  . (2)[2,p.7] The rank function  

of M  is a function  ρ :  (E) → Z defined by 

ρ(A)  = max{|X | | X  A, X ∈ }, (A  E). 

(3)[2,p.8] A  E  is closed of M  if for all x ∈ E \ A, ρ(A ∪ x) = ρ(A) + 1. 

If for x ∈ E and A  E, it has ρ(A ∪ x) = ρ(A),  we say that x depends on A.  We define the  closure 

operator of M  to be a function  σ :  (E)  →  (E)  such that σ(A)  is the  set of elements  which depend  

on A. 

(4)[2,p.38] A hyperplane of M  is a maximal  proper  closed subset  of E. 

Lemma 3 (1)[2,pp.8-9] A function  σ on E is the closure operator  of a matroid M  on a finite set E  if 

and only if σ satisfies (s1)-(s3)  and the following condition: 

(s4) for Y   E  and y, z ∈ E, if y ∈/ σ(Y ) but  y ∈ σ(Y  ∪ {z}), then  z ∈ σ(Y  ∪ {y}). 

(2)[2,p.8] A function  ρ :  (E)  → Z is the  rank  function  of a matroid on E  if and only if for XE, y, z 

∈ E: 

(r1) ρ() = 0. 

(r2) ρ(X ) ≤ ρ(X ∪ y) ≤ ρ(X ) + 1. 

(r3) ρ(X ∪ y) = ρ(X ∪ z) = ρ(X )  ρ(X ∪ y ∪ z) = ρ(X ). (3)[2,p.22] If X and Y  are closed sets of M , 

then  so is X ∩ Y . 

(4)[2,p.51] (  , ) is a geometric lattice,  where  is the family of closed sets of M . 

By Lemma  1 and  Lemma  3, the  closure operator  σ of a matroid M  on E  is a closure operator  on E, 

but  not vice versa. 

Let M  be a matroid on E  with  σ and  ρ as its closure operator  and  the  rank  function. Based on 

Definition  3 and  Lemma  3, in this  paper,  we denote  M  as (E, σ) and  (E, ρ) re- spectively  if it does not 

cause the confusion. 

In what  follows, M  stands  for a matroid on a finite  set  E  with  ρ, σ, , as its  rank function,  its 

closure operator, its family of closed sets and its class of independent sets. 

Considered  the  above analysis  and  the  results  in [2], we may state  easily the  following properties  for 

any X  E  and y ∈ E, 

(I) ρ(σ(X )) = ρ(X ). 

(II) ρ(σ(X ) ∪ y) = ρ(X ∪ y). (III)  X ∈   |X | = ρ(X ). 

(IV) ρ(σ(X ) ∪ y) = ρ(X ∪ y) = ρ(B  ∪ y) for any base (i.e.  a maximal  independent set)  B 

of X . 

(V) σ(X ∪ y) = σ(X )  y ∈σ(X ). (VI) σ(σ(X ) ∪ y) = σ(X ∪ y). 

(VII)  Let B  X . Then  B  is a base of X if and only if ρ(X ) = |B|. 

 

III. Contexts 
In [20], it deals with more properties  of algebraic  lattices  and obtains  the relationships between  

algebraic  lattices  and  formal  concept  lattices.   These results make  algebraic lat- tices apply in many 

parts  such as formal concept  analysis theory  (cf.[20]). We may use the discussion line as in [20] to begin 

our discussion with matroids  and contexts  in this section First,  for a matroid M  defined on a finite set, 

we provide some contexts  corresponding  to M satisfying  σ = LK , where (K, L)  is the Galois connections  

generated  from any of contexts provided  here.  After that, the relationships among these contexts  is 

dealt  with. 

 

Theorem 1   Let R O ×  (O) be defined as: 

for any x ∈ O and Y  O, (x, Y ) ∈ R ρ(Y  ∪ x) = ρ(Y ) and σ(Y ) = Y . 

If (K, L)  is the  Galois  connection  corresponding  to  the  context  (O,  (O), R),  then  there exists a 

matroid M  on O with σ as its closure operator  such that σ is the closure operator LK . 

Proof Definition 1(1) indicates  that for any X O, there  are K (X ) = {Z  O | x ∈ 
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X, (x, Z ) ∈ R} and L(K (X ))= {a ∈O | Z ∈ K (X ), (a,Z )∈R}. 

Since σ(σ(X )) = σ(X ) holds by (s3).  In addition, there  is ρ(σ(X ) ∪ x) = ρ(X ∪ x) = ρ(X ) = ρ(σ(X )) 

for any x ∈ X . These cause σ(X ) ∈ K (X ). For a ∈ LK (X ), σ(X ) ∈ K (X ) follows (a, σ(X ))  ∈ R.   By 

the  definition  of R,  (I),  (II)  and  (IV),  we obtain  ρ(X ∪ a) = ρ(σ(X ) ∪ a) = ρ(σ(X )) = ρ(X ). Hence, 

a∈σ(X ) holds.  This implies LK(X)σ(X ). 

On the  other  hand,  for any  Z  ∈ K (X ), there  are ρ(Z  ∪ x) = ρ(Z ) and  σ(Z ) = Z  for every x ∈ X . In 

light of Definition 3, x ∈ σ(Z ) is correct.  Furthermore, we find X  Z . So, σ(X ) Z holds.  We may 

confirm ρ(Z ∪ d) = ρ(Z ) for each d ∈ σ(X ).  Thus,  (d, σ(X )) ∈ R is true.  This follows σ(X )  LK (X ). 

Therefore, we receive LK (X ) = σ(X ) for any X  O. This means σ = LK . 

 

Theorem 2   Let R  O ×  (O) be established as: 

for x ∈ O and Y   O, (x, Y ) ∈ R  there  is I  Y  satisfying  ρ(I ∪ x) = |I | = ρ(Y ). 

If (K, L) is the Galois connection  corresponding  to (O, P (O), R).  Then σ = LK  is correct. 

Proof According to Definition 1, we firmly believe K (X ) = {Z  O | x ∈ X, (x, Z )∈ 

R} and L(K (X )) ={a ∈ O | Z ∈ K (X ), (a, Z ) ∈R}. 

Let  x ∈ X and  Z  ∈ K (X ).   By  (III),  (VII)  and  Lemma  3,  (x, Z )  ∈ R  determines ρ(Ix ∪ x) = 

|Ix| = ρ(Z ) for some Ix ⊆ Z .  Considering  the matroid’s  properties  in [2] with (III)  and  (IV),  we 

assure  Ix  to  be a base  in Z .   Thus,  x ∈ σ(Ix)  σ(Z ) is right.  So, X  σ(Z ) holds.  Furthermore, 

there is σ(X )  σ(Z ).  Additionally, in view of the maximal independent  property of Ix in Z , (IV)  and  

(VII),  we may  state  that ρ(Ix ∪ x) = |Ix| = ρ(Z ) = ρ(σ(Z )) holds and  Ix is a base of σ(Z ).  

Moreover,  we obtain  σ(Z ) ∈ K (X ).  We may  obtain  easily that for any  x ∈ X , there  is (x, X ) ∈ R.   

This  carries  out  X ∈ K (X ). Therefore,  σ(X ) ∈ K (X ) follows. 

Since for any a ∈ LK (X ), there  exists (a, Z ) ∈ R  for each Z  ∈ K (X ).  Recalling  (IV) 

and Definition  3, we may easily demonstrate a ∈ σ(Z ).  Moreover, we confirm L(K (X )) = Z ∈K (X ) σ(Z 

) = σ(X ) 

Summing up, LK  = σ. 

 

Theorem 3   Let R O ×  (O) be described as: 

for x ∈ O and Y O, (x, Y ) ∈ R σ(Y  ∪ x) = σ(Y ). 

If (K, L) is the Galois connection generated b y (O, P (O), R),  then  σ is properly  LK . 

Proof  According to Definition 1, (v1) and (v2), we may indicate  that for X  O, there are K (X ) = 

{Z  O | x ∈ X, (x, Z ) ∈ R} and L(K (X )) = {a ∈ O | Z ∈ K (X ), (a, Z ) ∈ R}. 

For x ∈ X and  Z  ∈ K (X ), in light of (x, Z ) ∈ R  and  (V),  we confirm x ∈ σ(Z ).  This follows X  σ(Z 

) for Z ∈ K (X ).  Thus,  we receive σ(X )  σ(σ(Z )) = σ(Z ).  Additionally, (x, X ) ∈ R is obvious.  This 

determines X ∈ K (X ) and x ∈ σ(X ).  Considering  this  result with (VI),  we may be assured  that 

σ(σ(X ) ∪ x) = σ(X ∪ x) = σ(X ) = σ(σ(X )) is true.  So σ(X ) ∈ K (X ) is followed. 

By (V)  in Section  2, for any  Z  ∈ K (X ), a ∈ LK (X ) will cause a ∈ σ(Z ).  Hence, it follows a ∈ σ(X 

).  However, for each b ∈ σ(X ), we obtain  b ∈ σ(Z ) since σ(X )  σ(Z ) for any Z  ∈ K (X ).  Therefore,  

we demonstrate σ(σ(Z )∪ b) = σ(σ(Z )) = σ(Z ).  Furthermore, by definition  of R and (VI),  we may gain 

σ(Z ) = σ(Z  ∪ b). Finally,  there  is b ∈ LK (X ). 

Adding up, we may express LK  = σ. 

 

Theorem 4 L e t  M be the set of hyperplanes of M . Let RO ×  (O) be defined as for x ∈ O and Y  

 O, (x, Y ) ∈ R  x ∈ Y  and there  is H ∈ M  satisfying  Y  = H . 

If (K, L) is the Galois connection  generated  by (O,  (O), R).  Then,  σ = LK  is correct. 

Proof  Divided two parts  to finish the proof. 

(Part 1) This part  is to prove that for any F ∈  , it has F =F H ∈ MH . 

We firstly prove:  let L be a geometric lattice  with H = {H1, . . . , Hn} as the coatoms  of 

L and let A ∈ L \ {1}, A ≤ H1 , . . . , Hm and A≰Hj  for any Hj  ∈  \ {H1, . . . , Hm}.  Then we assert  

A=∧𝑖=1
𝑚 H 

Obviously,  A ≤∧𝑖=1
𝑚 Hi.i is right 

We will prove by induction on h(1) (i.e., on h(L)) to show our assertion.  
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∧i=1 

If h(1) = 1. Then  the need follows evidently. 

If h(1) = 2. 

 

The need result is followed because on this occasion, it exists one and only one geometric lattice  L = {0, 

1, xi, (i = 1, . . . , n ≥ 2)} where xi satisfies 0 < xi < 1 and xi is parallel  with xj for any i = j, (i, j = 1, 

. . . , n).  We may state  easily that {xi : i = 1, . . . , n} is the coatoms of L, and besides, 0 = ∧𝑖=1
𝑛

 xi = 

∧𝑖=1
𝑛

 xi for any 1 < s ≤ n.  Furthermore, [A, 1] is geometric by Lemma 2(2).  This determines that if A 

<∧𝑖=1
𝑚 xi, then  under  this occasion, [A,1] is not geometric according to the non-existence of A. In other  

words, A=∧𝑖=1
𝑚 Hi is true. 

Suppose  for h(L)  < s, the need result  is correct.  

Now let L be geometric and h(L)  = s. 

Let A  ∈ L \ {0} and  A  ≤ Hi, (i = 1, . . . , m)  but  A ≰Hj  ∈  \ Hi, (i = 1, . . . , n; j ∈ 

{1, . . . , n} \ {1, . . . , m}).  It  is evident  h(A)  ≥ 1.  In addition, [A, 1] is geometric  owing to 

Lemma  2(2), and  {H1 , . . . , Hm} is also the  set of coatoms  in [A, 1].  By the  induction,  we obtain  A 

=∧𝑖=1
𝑚 Hi. Recalling  the  selection of A,  A =∧𝑖=1

𝑚 Hi is true  in L.  Especially,  if  we select A  as an atom  

in L,  then  we may receive A = at = 𝑖=1
𝑡𝑚  Hi  where at ≤ Hi  and 

at  ≰Hj , (i = 1, . . . , tm; j ∈ {1, . . . , n} \ {1, . . . , tm}).  Because 0 =t
 ∈

at, where every at is an atom 

(t ∈ ). This  causes 0=∧𝑖=1
𝑛  H i .  Hence, in a geometric  lattice,  every element is a meet of some of 

coatoms. 

Secondly, because of Lemma 3, (  , ) is geometric  with M  as its set of coatoms.  By the  above  

discussion,  there  exist  Hi ∈ M , (i ∈ F ) satisfying  F  =FHi, and i∈ F Hi  and F ≰Hj , (Hj ∈ M \ 

{Hi : i ∈ F }). 

 

 (Part 2) This part  is to prove σ = LK . 

In virtue  of the definition of M , we assure M   . In view of Lemma 3(3),  H   is correct,  

where  Hα  ∈ M  (α  ∈ .    Since for X   O,  there  are  K(X )  = {Z O | x  ∈ X, (x, Z )  ∈ 

R} and  L(K (X ))  = {a  ∈ O | Z  ∈ K (X ), (a, Z )  ∈ R}.    For  any Z  ∈ K (X ), (x, Z )  ∈ R  will 

carry  out  Z  ∈ M  and  x ∈ Z .   This  decides  X  Z  and K (X )  M .  Additionally, for every H  

∈ M  and X H , it causes H  ∈ K (X ).  Hence,by (Part 1), σ(X ) = ZK(X)Z  is followed. 

In the following, we consider the properties  of LK (X ). 

For  a ∈ LK (X ), there  exists  (a, Z ) ∈ R  for any  Z  ∈ K (X ).  Thus,  it  follows a ∈ Z . 

 

Hence, LK (X )  Z  holds for any  Z  ∈ K (X ).  Furthermore, LK (X ) ZK(X)Z  is true. Considering σ(X ) = 

ZK(X)Z with  LK (X ) ZK(X)Z , we may obtain  LK (X)σ(X ). Conversely,  b ∈ σ(X ) points  out  b ∈

ZK(X)Z .  Thus,  b ∈ Z  is real for any  Z  ∈ K (X ).  

We may express (b, Z ) ∈ R.  Moreover,  b ∈ LK (X ) is correct.  Therefore  σ(X ) ⊆ LK (X ). 

Hence LK  = σ holds. 

 

Theorem 5   Let M  be a matroid defined on O with σ as its closure operator  and M as its the set 

of hyperplanes. If σ =where is the Galois connection  of a context  (G, P, I ). Then is M  where  

= {X  G | X = X , there  exists a set X covered by the greatest element of Gal(G, P, I )}. 

 

Next  we analyze  the  differences and  links among  the  contexts  provided  in the  above Theorems  and  

point out  some  of their  significance.   Let  Rj  be  the  relation  defined  in Theorem  j, (j = 1, 2, 3, 4) 

and M  be the set of hyperplanes of M . 

(3.1) (x, Y ) ∈ R2  ρ(I ∪ x) = |I | = ρ(Y ) for some I  Y .  |I | = ρ(Y ) causes the base property of I in 

Y . Considering  with (I)-(VII), we may point out:  (x, Y ) ∈ R2   ρ(I ∪ x) =|I | = ρ(Y ) = ρ(Y ∪ x)  x 

∈σ(I∪x) =σ(Y∪x)  σ(Y∪ x)= σ(Y )  (x, Y ) ∈ R3. 

Thus,  there  is (O,  (O), R2) = (O,  (O), R3). 

(3.2) By (I)-(VII), if (x, Y ) ∈ R1,  then  x ∈ σ(Y ). 

If (x, Y ) ∈ R3,  then  x ∈ σ(Y ).  But  (x, Y ) ∈ R3  may not follow Y  = σ(Y ). 
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Therefore  (x, Y ) ∈ R1   (x, Y ) ∈ R3,  and  not  vice versa.  In other  words, the  context appeared  in 

Theorem  1 is different from the context  defined in Theorem  3. 

(3.3)  (x, Y ) ∈ R4    “Y  ∈ M  and  σ(Y  ∪ x) = σ(Y )”  “Y  ∈ M  and  ρ(Y  ∪ x) =ρ(Y )”  “Y  

∈ M  and σ(Y  ∪ x) = σ(Y ) = Y ”  (x, Y ) ∈ R1,  but  not vice versa. 

(x, Y ) ∈ R4  “Y  ∈ M  and x ∈ Y ”  “Y  ∈ M  and ρ(Y  ∪ x) = ρ(Y )” “for  any base IY  of Y , 

ρ(Y ) = ρ(IY ∪ x) = |IY | and Y  ∈ M ”  (x, Y ) ∈ R2,  but  not vice versa. 

 

The analysis with (3.1) taken together e x p r e s s  that the context provided in Theorem 4 is not 

the same to that in Theorem j , (j = 1, 2, 3). 

(3.4) Though  the context  in Theorem  2 is the same to that in Theorem  3, they use the different words 

to state  the  same context.  This  is a good way for the  users because users can get more chances to 

select the best description  for their  topics. 

It is valuable to note that in linear optimization, many people like the greedy algorithm. In  [2,pp.357-

360],  it  points  out  that we may  utilize  greedy  algorithm   to  characterize a matroid.   If we describe  

a  context  by  greedy  algorithm, the  theory  of contexts  (or  say, concept  lattice  theory)  will be much 

more blooming in optimization, and vice versa. 

Additionally, we may know that a matroid links with a geometric lattice  (cf.[2,Chapter 

3]). If a context  is derived from a matroid with the standard language of lattice  theory,  then it will cause 

a new connection between matroid theory  and concept lattice  theory.  Actually, under  isomorphism,  

utilizing the above idea, some of works in [21] has done in this field. 

(3.5) We may express  according  to [9,10,22] that a main  interest in data  analysis  and formal  concept  

analysis  is to  reveal  and  describe  structure of empirical  data.   U.Wille  in [23] desires to  represent 

empirical  data  by matroids  and  presents  the  definition  of repre- sentability of data  by a matroid. 

However, U.Wille in [23] instructs that there  is no simple characterization of the  set structures that 

admit  matroid constructions, one should try  to search  matroid representations from an algorithmic  

point of view.  Theorem  4 provides  a context  with  the  family of hyperplane  sets of a matroid, and  

meanwhile,  the  definition  of representability of data  by a matroid is also relative  with  the  

hyperplanes of a matroid. What  is the  relationship between  the  context  in Theorem  4 and  the  context  

discussed for its representability in [23]? It is kept for our future research. 

(3.6) (3.4) and (3.5) not  only state  the  important for a context  provided  by a matroid such  as the  

above  four Theorems,  but  also describe  the  significance to  express  the  same context  with different 

ways such as Theorem  2 and Theorem  3. In the future, we may hope to produce much more contexts 

re la t ive  to matroids  in order to satisfy our discussion. 

(3.7) Li et al.  [24] point the relationships between  rough sets and matroids  with lattice theoretic  ideas.   

Gal(O, P, R)  is a lattice.   Hence, using  rough  set  to  find a context  by amatory is a good idea for our 

future  research. 

We may believe that there are much better ways to calculate the closed sets of a matroid from its 

hyperplanes.  But  we may believe that our way here is a new idea.  We may hope that in the future,  

there  are much more new ideas to up to the user’s attempt. 

 

IV. Applications 
In Section 3, it presents s o me  contexts r e l a t i v e  to  a matroid.  We will introduce t h e i r  some 

applications in mathematical opinions, particularly, in using these contexts with ready- made algorithms  

for constructing concept lattices  to construct the closed sets of a matroid. 

By (v2),  for a context  (O, P, R)  provided  in Section  3, if (K, L)  is the  corresponding 

Galois connection,  then  (LK ) = O . 

If (O, P, R)  is a  context  and  M  is relative  to  (O, P, R)  as  that in  Theorem  j, (j ∈ {1, 2, 3, 4}), 

then   = (LK ), where F is the class of the closed sets of M . 

In light of [9,10,13-18,22], there  are many  ready-made  algorithms  building  up concept lattices  

and  also searching  out  extent lattices.    We  can  choose any  of these  ready-made algorithms  especially 

the algorithms  for searching  out extent lattices  to find out  . Hence, we may state  that the question  

raised in (1.5) is answered here. 

In [2,Chapter  2], it introduces  the properties  about  the dual M* of M . (The  definition of M* is seen 

[2,p.34]). We may notice that until  now, based on our knowledge, it does not have an algorithm  to yield 

out the construction of M* from directly.  Next, we may build up  M*  correctly  by selecting  a top-
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down  (from  the  maximal  extent  to  the  minimal  one) approach of constructing an extent lattice  or a 

concept  lattice.  The reason is the following (4.1)-(4.4): 

(4.1)  [2,p.39,Theorem  2] describes  that a  set  C  is a  circuit  of M*  if and  only  if its complement O \ 

C is a hyperplane  of M  on O. 

(4.2)  [2,p.8,Theorem 5] indicates  that a matroid is uniquely  determined by its  set  of circuits. 

(4.3) [2,pp.48-49] points  out that an element in (  , ) is covered by O if and only if it 

is a hyperplane  of M . 

(4.4) By (4.1)-(4.4),  we may describe  that using a top-down  method  for searching  out a concept  

lattice,  we may directly  find out all the hyperplanes of M , i.e. the set of covered elements  by the  

maximum  member  in (LK ).  That is to say,  until  now, we may  obtain many algorithms  to build up 

the dual of M . 

In  [15], it  points  out  that different  algorithms  play  differently  on different  databases (or  say,  

contexts).   Sometimes authors compare their a l g o r i t h m s  w i t h  others  o n  specific data se ts .  We may 

propose that the community should reach a consensus with respect to databases to be used as test beds.  

For the  reasons  mentioned  above, we may not  indicate that one of contexts  in the  four Theorems  in 

Section  3 is better than  the  others.   If we consider a solution of a question relative to a matroid, then we 

may be better to choose a context based on our databases to carry out the solution. 

Now, in Section 3, we find out four contexts relative to M though actually they are said to be three.   These  

contexts  can  be used to  search  out  , and  meanwhile,  build  up  M*. Certainly, these contexts may be 

applied in the other fields .  We may believe that it will discover many contexts relative to a matroid 

because there are dozens of equivalent ways 

To define a matroid. These are left rooms for the future. 
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