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Abstract:In this paper, we analyze a stochastic model of tumorigenesis which takes into account the selection 

dynamics in a heterogeneous colony of cells. The stochastic model is a modified branching process which 

includes cell divisions, death and mutation. Mutation is included explicitly to account for two types of 

intermediate cells. The model is essentially a Markov branching process evolving in a random environment. 

Using the regeneration technique, we obtain integral equations for the probability generating functions of the 

underlying stochastic variables. 

 

I. Introduction 
Branching processes have been used by several researchers for studying biological processes (see 

Harris [7], Athereya and Ney [4] and Assmussen and Herin [3]. Typical biological processes such as 

carcinogenesis exhibit selection and mutation in their evolution. A great amount of theoretical investigations on 

carcinogenesis have been made during the past several decades (see for example, Armitage and Doll [2], 

Kendall [8] Waugh [15], Knudson [9], Moolgavkar and Venzon [12], Moolgavkar and Luebeck [11], Michor et 

al. [10] and Beerenwinkel and Sullivant [5]). Several monographs have appeared containing almost all research 

on theoretical aspects of carcinogenesis (see for example, Tan [13], Frank [6] and Weinberg [16]). Recently, 

Thalhauser et al. [14] have studied the selection dynamics in a heterogeneous spatial colony of cells by using 

spatial generalization of birth-and-death processes which include migration. They analyzed the impact of 

migration on the ability of a single mutant cell to invade a pre-existing colony. Environmental factors such as 

ionizing radiation, chemical pollution, smoking and alcohol consumption have been proved to initiate 

tumorigenesis of various organs (see Actis and Eynard [1]). Furthermore the bipolar chromosome segregation 

errors are caused by the transient spindle defects observed in cancer cells. This aspect has not been given due 

importance in the previous stochastic models which consider selection and mutation in their evolution. In the 

present paper, we fill this gap by studying a branching process model of selection and mutation in their 

evolution subject to a random environment. Accordingly, the object of the present paper is to propose and 

analyze a stochastic model of a cell division process taking into account the effect of environmental influences 

on the selection of life-time distribution. 

The organization of the chapter is as follows: 

In section 2, a branching process model is described. Section 3 provides the derivation of explicit expressions 

for the time-dependent mean size of the population. 

In section 4, a numerical illustration is provided to exhibit the model. 

 

II. Description Of The Model 
We consider a stochastic population of cells which evolves in a carcinogenic environment. The cells 

are of three types, namely normal cells, intermediate cells and malignant cells. Due to the impact of the 

environment, the intermediate cells are of two subtypes. Let X(t) be the number of normal cells in the 

population at time t. Let Z11(t) and Z12 (t) denote the number of intermediate stage cells of type 1 and type 2, 

respectively. Let W(t) be the number of malignant cells at time t. We assume that in a small interval of time (t,t+

 ), 

1. a normal cell divides into two normal cells independent of the environment with probability L +o( ) ; 

2. a normal cell divides into one normal cell and one intermediate cell of type 1 under the influence of the 

environment with probability Np +o( ) ; 

3. a normal cell divides into one normal cell and one intermediate cell of type 2 under the influence of the 

environment with probability N(1-p) +o( ) ; 

4. a normal cell dies or differentiates with probability D +o( ) ; 

5. an intermediate cell of type 1 divides into two intermediate cells of type 1 with probability 11 +o( ) ; 
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6. an intermediate cell of type 1 divides into one intermediate cells of type 1 and one intermediate cell of type 

2 under the influence of the environment with probability 12 +o( ); 

7. an intermediate cell of type 2 divides into two intermediate cells of type 2 independent of the environment 

with probability 22 +o( ); 

8. an intermediate cell of type 2 divides into one intermediate cells of type 2 and one intermediate cell of type 

1 under the influence of the environment with probability 21 +o( ); 

9. an intermediate cell of type 1 divides into one intermediate cell of type 1 and one malignant cell under the 

influence of the environment with probability 1 +o ( ); 

10. an intermediate cell of type 2 divides into one intermediate cell of type 2 and one malignant cell under the 

influence of the environment with probability 2 +o ( ); 

11. an intermediate cell of any type dies or differentiates independent of the environment with probability  

 +o ( ). 

We consider the vector random variable ))(),(),(),(()( 21 tWtZtZtXt  and define 
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which denotes the probability generating function for the number of normal cells, type 1 intermediate cells, type 

2 intermediate cells, and malignant cells at time t, starting with one normal cell, no intermediate cells and 

malignant cells at time 0. Next we consider the random vectors ))(),(),(()( 21 tWtZtZt  and define 
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),,,( 21 twzzj  represents the probability generating function for the number of intermediate cells of types 1 

and 2 and malignant cells at time t, starting with one intermediate cell of type j and no malignant cell at time 

0.Using the regeneration method of Kendall [8], we derive integral equations for the probability generating 

functions ),,,(),,,,,( 21121 twzztwzzx  and ),,,( 212 twzz . To achieve this, we first note that either no 

event occurs in the interval (0, t) or at least one event occurs in (0,t).Using the total probability law, we get 
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where K = L + N + D,   112111k  and   221222k .By a simple technique, 

equations (2.1), (2.2) and (2.3) can be equivalently written as differential equations: 
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Equations (2.4)-(2.6) are subject to the initial conditions 
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III. Mean Number Of Cells 
We define the conditional means 
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Using Laplace transform, equations (3.1)-(3.7) give 
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where we used the Laplace transform notation 
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Equations (3.1)-(3.7) are exactly solvable and we obtain 
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where © symbol is used in the following sense: 
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IV. Numerical Illustration 
In this section, we illustrate our model by adopting the same values for the values of the parameters as in 

Moolgavkar and Venzon [12]: 
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We compute the mean number of intermediate cells from time 0 to time 12 and plot )(
1

tM Z against t.Thegraph 

is depicted in Fig. 1. It shows that the mean number increases with respect to time. 



Selection Dynamics of Carcinogenesis 

DOI: 10.9790/5728-1204034448                                          www.iosrjournals.org                                    48 | Page 

 
Figure 1 
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