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I. Introduction 
In Chapter 1 of the Ph.D. thesis of Ahmed [15] we have proved the existence and uniqueness of a 

solution for certain types of delay (functional) stochastic differential equations (delay SDE’s) with 

discontinuous initial data,see also [1], [9] and the web cite www.sfde.math.siu.edu. See the delay SDE (1.1) in 

the present work. In [18] we have established integration by parts formula involving Mallivan derivatives of 

solutions to such type of delay (functional) SDE’s. The integration by parts formula which we establish can be 

used to extend the formulas in [2] and [3] and to include delay SDE’s as well as ordinary SDE’s. In this work 

we also establish some other useful applications to delay SDE’s. Generally speaking we can say that our work 

extends the first three chapters of the work by Norris to include delay SDE’s as well as ordinary SDE’s; see 

Theorems 2.3, 3.1 and 3.2 in [10] . In a sequal paper we will show that that the distribution of the solution 

process has smooth densities. Moreover we will establish integration by part formula involving Malliavin 

derivatives of higher order. 

 

1.2 Notations And Definitions 

The following notations and definitions will be used throughout this work: (𝛺, ℱ, ℙ) is a probability 

space; 𝑇 is a positive real number; {ℱ𝑡}𝑡∈[0,𝑇] is an increasing family of sub-𝜎 algebras of ℱ, each of which 

contains all null subsets of 𝛺; ℕ is the set of natural numbers; 𝑊 =  𝑊1 , … , 𝑊𝑟 : [0, 𝑇] × 𝛺 → ℝ𝑟  is a 𝑟-

dimensional normalized Brownian motion. If 𝑋 is a topological space, then ℬ(𝑋) denotes its Borel field. The 

symbol 𝜆 refers to the Lebesgue measure on ℝ𝑑 , and | ⋅ | denotes the Euclidean norm on ℝ𝑑 , 𝑑 ∈ ℕ. 

Let 𝐺 be a Banach space and let 𝒜 be a sub-𝜎 algebra of ℱ containing all subsets of measure zero in ℱ, then 

ℒ2(𝛺, 𝒜, ℙ; 𝐺) denotes the space of all functions 𝑓: 𝛺 → 𝐺 which are 𝒜-ℬ(𝐺) measurable and are such that 

   𝑓  𝐺
2

𝛺
𝑑ℙ < ∞. 

The symbol 𝐿2 𝛺, 𝒜, ℙ; 𝐺  denotes the Banach space (with norm determined by 

  𝑓  𝐿2
2 =    𝑓(𝜔)  𝐺

2

𝛺
𝑑ℙ) of all equivalence classes of functions 𝑓: 𝛺 → 𝐺 which are 𝒜-ℬ(𝐺) measurable and 

which are such that    𝑓  𝐺
2

𝛺
𝑑ℙ < ∞. The symbol 𝐿 ℝ𝑚 , ℝ𝑛  (𝑚, 𝑛 ∈ ℕ) denotes the space of all linear maps 

from ℝ𝑚  to ℝ𝑛 . The symbol 𝐽 refers to the interval [−1,0), and ℋ(𝐽) or ℬ(𝐽) refers to the Borel field on 𝐽. 

If 𝑋: [−1, 𝑇] × 𝛺 → ℝ𝑑  is a process, then for each 𝑡 ∈ [0, 𝑇] and 𝜔 ∈ 𝛺 we define the map: 𝑋𝑡 : 𝛺 →
ℒ2(𝐽, ℝ𝑑 ) by 𝑋𝑡(𝜔)(𝑠) = 𝑋(𝑡 + 𝑠, 𝜔) for all 𝑠 ∈ 𝐽 and almost all 𝜔. For each 0 ≤ 𝑡 ≤ 𝑇 we write 

  (𝑋(𝑡), 𝑋𝑡)  
2 =   𝑋(𝑡)  

2 +   𝑋𝑡  
2
. Let the function 𝑉 belong to ℒ2 𝛺, ℱ0 , ℙ; ℝ𝑑 , 𝜃 belong to ℒ2 𝐽 ×

𝛺,ℋ(𝐽)⊗ℱ0,𝜆⊗ℙ;ℝ𝑑, and for ℓ=1,2,…,𝑟 let 𝑓 ,𝑔ℓ be functions from [0,𝑇]×𝛺×ℝ𝑑×ℒ2(𝐽,ℝ𝑑) to ℝ𝑑. Then a 

process 𝑋: [−1, 𝑇] × 𝛺 → ℝ𝑑  is called a solution of the delay SDE with integral form 

𝑋(𝑡) =  
𝑉 +  𝑓

𝑡

0
 𝑢, 𝑋(𝑢), 𝑋𝑢 𝑑𝑢 +   𝑔ℓ𝑡

0
𝑟
ℓ=1  𝑢, 𝑋(𝑢), 𝑋𝑢  𝑑𝑊ℓ(𝑢), 0 ≤ 𝑡 ≤ 𝑇,

𝜃(𝑡), 𝑡 ∈ 𝐽,
 (1.1) 

If 

(𝑖) 𝑋 is ℬ([0, 𝑇]) ⊗ ℱ-ℬ(ℝ𝑑 ) measurable; 

(𝑖𝑖) For each𝑡 ∈ [0, 𝑇], the process 𝑋(𝑡,⋅) is ℱ𝑡-ℬ(ℝ𝑑 ) measurable, and for each 𝑡 ∈ 𝐽, the                  process 

𝑋(𝑡,⋅) is ℱ0-ℬ(ℝ𝑑 ) measurable; 

(iii)𝑋 ∈ ℒ2([−1, 𝑇] × 𝛺, ℋ × ℱ, 𝜆 × ℙ; ℝ𝑑), 

(IV) 𝑋 satisfies the delay SDE ([1.1.1]). 
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The following conditions are sufficient for the existence of a unique solution to (1.1) (see [1] and [15]). 

(i) 𝑉 ∈ ℒ2(𝛺, ℱ0, ℙ; ℝ𝑑 ). 

(ii) 𝜃 ∈ ℒ2(𝐽 × 𝛺, ℋ ⊗ ℱ0, 𝜆 ⊗ ℙ, ℝ𝑑). 

(iii) 𝑓, 𝑔ℓ: [0, 𝑇] × 𝛺 × ℝ𝑑 × ℒ2(𝐽, ℝ𝑑) → ℝ𝑑  are such that 

(a) 𝑓and𝑔ℓ are ℬ([0, 𝑇]) ⊗ ℱ ⊗ ℬ(ℝ𝑑 ) ⊗ ℬ 𝐿2(𝐽, ℝ𝑑 ) -ℬ(ℝ𝑑 ) measurable. 

(b) For each 𝑡 ∈ [0, 𝑇], the stochastic variables 𝑓(𝑡,⋅,⋅,⋅) and 𝑔ℓ(𝑡,⋅,⋅,⋅) are    ℱ𝑡 ⊗ ℬ(ℝ𝑑 ) ⊗ ℬ ℒ2(𝐽, ℝ𝑑 ) -

ℬ(ℝ𝑑) measurable. 

(c)There exists a constant 𝐾 and a function 𝜁 ∈ ℒ2(𝛺, ℱ, ℙ; ℝ𝑑 ) such that       

 𝑓(𝑡, 𝜔, 𝑠, 𝑕) +   𝑔ℓ(𝑡, 𝜔, 𝑠, 𝑕) 𝑟
ℓ=1 ≤ 𝐾 |𝑠| +  𝑕 +  𝜁(𝜔)   (1.2)              (1.2) 

for almost all 𝜔 and for all 𝑡 ∈ [0, 𝑇]; 𝑠 ∈ ℝ𝑑  and 𝑕 belongs to ℒ2(𝐽, ℝ𝑑). 

 

(d) There exists a constant 𝐾′ such that, for almost all 𝜔,  

 𝑓 𝑡, 𝜔, 𝑠, 𝑕1 − 𝑓 𝑡, 𝜔, 𝑢, 𝑕2  +   𝑔ℓ 𝑡, 𝜔, 𝑠, 𝑕1 − 𝑔ℓ 𝑡, 𝜔, 𝑢, 𝑕2  𝑟
ℓ=1

≤ 𝐾′ |𝑠 − 𝑢| +   𝑕1 − 𝑕2   
 (1.3) 

 for all 𝑡 ∈ [0, 𝑇]; for all 𝑠, 𝑢 ∈ ℝ𝑑 , and for all 𝑕1, 𝑕2 ∈ ℒ2(𝐽, ℝ𝑑). 

 

II. Integration By Parts Formula 
In the beginning of this section we recall the following eight basic numbered equations and definitions, 

See(16) and(17) . For  𝑋(0), 𝑋0 =  𝑥, 𝜉 ∈ ℝ𝑑 × 𝐿2 𝐽, ℝ𝑑 , let 𝑣 ↦ 𝐷𝑣𝑋𝑥,𝜉(𝑡), be the Malliavin derivative of 

the solution process 𝑋𝑥,𝜉(𝑡). We write 𝐷𝑣𝑋𝑡
𝑥,𝜉

(𝜗) = 𝐷𝑣𝑋𝑥,𝜉(𝑡 + 𝜗) (𝑡 ∈ [0, 𝑇], 𝜗 ∈ 𝐽 = [−1,0)) for its time 

delay. In the following definition we give a precise definition of the Malliavin derivative of a real-valued 

functional 𝐹 of Brownian motion. 

 

I.Definition: Let 𝐹  𝑊(𝑠) 0≤𝑠≤𝑇  be a functional of 𝑟-dimensional Brownian motion, and let 𝑣(𝑡) =

 𝑣1(𝑡), … , 𝑣𝑟 (𝑡) ∗ =  
𝑣1(𝑡)

⋮
𝑣𝑟 (𝑡)

  be a deterministic vector-valued function in 𝐿2 [0, 𝑇], ℝ𝑟 ⊗ ℝ𝑑 . Then 

𝐷𝑣𝐹  𝑊(𝑠) 0≤𝑠≤𝑇  is given by the limit: 

𝐷𝑣𝐹  𝑊(𝑠) 0≤𝑠≤𝑇 

            = lim
𝜀↓0

1

𝜀
 𝐹   𝑊(𝑠) + 𝜀 

0

𝑠
𝑣(𝜎)𝑑𝜎 

0≤𝑠≤𝑠
 − 𝐹  𝑊(𝑠) 0≤𝑠≤𝑡  .

  (2.1) 

The mapping 𝑣 ↦ 𝐷𝑣𝐹  𝑊(𝑠) 0≤𝑠≤𝑇  is a linear map (functional) from the space 𝐿2 [0, 𝑇], ℝ𝑟 ⊗
ℝ𝑑to ℝ. Here ℝ𝑟⊗ℝ𝑑 denotes the space of all 𝑟×𝑑-matrices (𝑟 rows, 𝑑 columns). 

Notice that, for 𝑣(𝑡) =  𝑣1(𝑡), … , 𝑣𝑟 (𝑡) 𝜏 =  
𝑣1(𝑡)

⋮
𝑣𝑟 (𝑡)

  be a deterministic matrix-valued function in 

𝐿2 [0, 𝑇], ℝ𝑟 ⊗ ℝ𝑑 , 𝑈𝑣(𝑡) can be considered as a 𝑑 × 𝑑-matrix where each entry is an ℝ-valued adapted 

stochastic process; 𝑈𝑡
𝑣  can be considered as a 𝑑 × 𝑑-matrix where each entry is an 𝐿2 𝐽, ℝ -valued adapted 

stochastic process. If 𝑀 =  𝑚𝑗𝑘  
1≤𝑗≤𝑑, 1≤𝑘≤𝑟

is a real 𝑑 × 𝑟 matrix, then 𝑀𝜏 =  𝑚𝑘𝑗  1≤𝑘≤𝑟, 1≤𝑗≤𝑑
 denotes its 

transposed: it is 𝑟 × 𝑑 matrix with entries 𝑚𝑘𝑗 . 

 

The process 𝑫𝒗𝑿𝒕
𝒙,𝝃

(⋅) satisfies the following delay stochastic differential equation:  

𝑑𝐷𝑣𝑋𝑡(𝜗) = 𝑑𝐷𝑣𝑋(𝑡 + 𝜗)

=  
𝜕𝑓

𝜕𝑥
 𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 𝐷𝑣𝑋(𝑡 + 𝜗) 

  +  
𝜕𝑓

𝜕𝜉𝐽
 𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 (𝜑)𝐷𝑣𝑋𝑡+𝜗 (𝜑) 𝑑𝜑  𝑑𝑡

 +  
𝜕𝑔ℓ

𝜕𝑥

𝑟
ℓ=1  𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 𝐷𝑣𝑋(𝑡 + 𝜗)𝑑𝑊ℓ(𝑡 + 𝜗)

 +   
𝜕𝑔ℓ

𝜕𝜉𝐽
𝑟
ℓ=1  𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 (𝜑)𝐷𝑣𝑋𝑡+𝜗 (𝜑) 𝑑𝜑 𝑑𝑊ℓ(𝑡 + 𝜗)

 +  𝑔ℓ𝑟
ℓ=1  𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 𝑣ℓ 𝑡 + 𝜗, 𝑋(𝑡 + 𝜗), 𝑋𝑡+𝜗 𝑑𝑡,

(2.2) 

 

where 𝜗 belongs to 𝐽. If 𝑡 + 𝜗 belongs to 𝐽 we replace 𝑡 + 𝜗 with 0 in (2.2). If 𝜗 = 0 we obtain the 

delay stochastic differential equation for the process𝐷𝑣𝑋(𝑡):  
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𝑑𝐷𝑣𝑋(𝑡)

=  
𝜕𝑓

𝜕𝑥
 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣𝑋(𝑡) +  
𝜕𝑓

𝜕𝜉𝐽
 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑋𝑡(𝜗)𝑑𝜗 𝑑𝑡

+   
𝜕𝑔ℓ

𝜕𝑥
 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣𝑋(𝑡) +  
𝜕𝑔ℓ

𝜕𝜉𝐽
 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑋𝑡(𝜗)𝑑𝜗 𝑟

ℓ=1 𝑑𝑊ℓ(𝑡)

+  𝑔ℓ𝑟
ℓ=1  𝑡, 𝑋(𝑡), 𝑋𝑡 𝑣

ℓ 𝑡, 𝑋(𝑡), 𝑋𝑡 𝑑𝑡.

  (2.3) 

 

 We also write 𝑈11
𝑥,𝜉

(𝑡) =
𝜕

𝜕𝑥
𝑋𝑥,𝜉(𝑡), and 𝑈12

𝑥,𝜉
(𝑡) =

𝜕

𝜕𝜉
𝑋𝑥,𝜉(𝑡). In addition, we write 𝑈21

𝑥,𝜉
(𝑡) =

𝜕

𝜕𝑥
𝑋𝑡

𝑥,𝜉
= 𝑈11,𝑡

𝑥,𝜉
 (the delay of 𝑈11

𝑥,𝜉
(𝑡)), and 𝑈22

𝑥,𝜉
(𝑡) =

𝜕

𝜕𝜉
𝑋𝑡

𝑥,𝜉
= 𝑈12,𝑡

𝑥,𝜉
, the delay of the process 𝑈12

𝑥,𝜉
(𝑡). The 

matrix 𝑈11
𝑥,𝜉

(𝑡) can be identified with an operator from ℝ𝑑  to itself, the matrix 𝑈12
𝑥,𝜉

(𝑡) can be considered as an 

linear mapping from 𝐿2 𝐽, ℝ𝑑  to ℝ𝑑 , the matrix 𝑈21
𝑥,𝜉

(𝑡) as a mapping from ℝ𝑑  to 𝐿2 𝐽, ℝ𝑑 , and, finally, 

𝑈22
𝑥,𝜉

(𝑡) as a mapping from 𝐿2 𝐽, ℝ𝑑  to itself. Notice that 𝑈11
𝑥,𝜉

(𝑡) can be considered as 𝑑 × 𝑑-matrix where each 

entry is an ℝ-valued adapted stochastic process; 𝑈12
𝑥,𝜉

(𝑡) can be considered as 𝑑 × 𝑑-matrix where each entry is 

an 𝐿2 𝐽, ℝ -valued adapted stochastic process. To be precise, write the solution process as a 𝑑-vector 𝑋𝑥,𝜉 (𝑡) =

 𝑋1
𝑥,𝜉

(𝑡), … , 𝑋𝑑
𝑥,𝜉

(𝑡) , and consider the mapping (1 ≤ 𝑗, 𝑘 ≤ 𝑑)  

𝜉𝑘 → 𝑋𝑗
𝑥, 𝜉1 ,…,𝜉𝑘−1 ,𝜉𝑘 ,𝜉𝑘+1 ,…,𝜉𝑑  

(𝑡),  (2.4) 

which is a mapping from 𝐿2 𝐽, ℝ  to ℝ, and where each variable 𝜉ℓ, , 𝑙 ≠ 𝑘 , is a fixed function in 

𝐿2 𝐽, ℝ . The derivative of the function in (2.4) can be considered as a continuous linear functional on 𝐿2 𝐽, ℝ . 

Therefore it can be represented as an inner-product with a function in 𝐿2 𝐽, ℝ , which is denoted by 
𝜕𝑋𝑗

𝑥 ,𝜉
(𝑡)

𝜕𝜉𝑘
. 

Consequently, we write  

𝜕𝑋𝑗
𝑥 ,𝜉

(𝑡)

𝜕𝜉𝑘
(𝜂) = lim

𝑕→0

𝑋
𝑗

𝑥 , 𝜉1,…,𝜉𝑘−1,𝜉𝑘+𝑕𝜂 ,𝜉𝑘+1,…,𝜉𝑑 
(𝑡)−𝑋

𝑗

𝑥 , 𝜉1,…,𝜉𝑘−1,𝜉𝑘 ,𝜉𝑘+1,…,𝜉𝑑  
(𝑡)

𝑕

=  𝜂
𝐽

(𝜑)
𝜕𝑋𝑗

𝑥 ,𝜉
(𝑡)

𝜕𝜉𝑘
(𝜑)𝑑𝜑,    𝜂 ∈ 𝐿2 𝐽, ℝ .

(2.5) 

After giving a brief introduction to our work, we are now ready to continue the work that we have started in 

(16). 

Here, and in the sequel, we write 𝑓(𝑡) and 𝑔ℓ(𝑡) instead of 𝑓 𝑡, 𝑋𝑥,𝜉 (𝑡), 𝑋𝑡
𝑥,𝜉

  and 𝑔ℓ 𝑡, 𝑋𝑥,𝜉 (𝑡), 𝑋𝑡
𝑥,𝜉

  

respectively. For a concise formulation of the stochastic differential equation for the matrix-valued process 

 𝑈(𝑡): 𝑡 ≥  and its inverse we introduce the following stochastic differentials:  

𝑕𝑥 𝑡 =
𝜕𝑓

𝜕𝑥
 𝑡 𝑑 𝑡 +  

𝜕𝑔ℓ

𝜕𝑥

𝑟

ℓ=1

 𝑡 𝑑 𝑊ℓ 𝑡 ;                               2.6 

𝑕𝜉 𝑡 =
𝜕𝑓

𝜕𝜉
 𝑡 𝑑 𝑡 +  

𝜕𝑔ℓ

𝜕𝜉

𝑟

ℓ=1

 𝑡  𝑑 𝑊ℓ 𝑡                                 (2.7)

𝑕𝜉 𝑡, 𝜗 =
𝜕𝑓

𝜕𝜉
 𝑡, 𝜗 𝑑 𝑡 +  

𝜕𝑔ℓ

𝜕𝜉

𝑟

ℓ=1

 𝑡, 𝜗 𝑑 𝑊ℓ 𝑡  2.8 

 

 

 

Application of the Integration by Parts Formula: 

Relevant SDE’s are (𝑣(𝑡) is a 𝑟 × 𝑑 matrix-valued adapted process: 𝑑 columns, 𝑟 rows)  

 

𝑑𝐷𝑣𝑋(𝑡) = 𝑕𝑥(𝑡)𝐷𝑣𝑋(𝑡) +  𝑕𝜉
𝐽

(𝑡, 𝜗)𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)𝑣ℓ(𝑡)𝜏  𝑑𝑡;                   (2.9)

𝑑𝑉𝑣(𝑡) = −𝑉𝑣 𝑡 𝑕𝑥 𝑡 − 𝑉𝑣 𝑡  𝑕𝜉
𝐽

 𝑡, 𝜗 𝐷𝑣𝑋𝑡 𝜗  𝑑𝜗 𝐷𝑣𝑋 𝑡  
−1

 +𝑉𝑣 𝑡   
𝜕𝑔ℓ 𝑡 

𝜕𝑥
+  

𝐽

𝜕𝑔ℓ 𝑡, 𝜗 

𝜕𝜉
𝐷𝑣𝑋𝑡 𝜗  𝑑𝜗 𝐷𝑣𝑋 𝑡  

−1
 

2𝑟

ℓ=1

 𝑑𝑡;  (2.10)

𝑑𝑈𝑣(𝑡) = 𝑕𝑥 𝑡 𝑈𝑣 𝑡 +  𝑕𝜉
𝐽

 𝑡, 𝜗 𝐷𝑣𝑋𝑡 𝜗  𝑑𝜗 𝐷𝑣𝑋 𝑡  
−1

𝑈𝑣 𝑡 .                            (2.11)
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Next we come to higher order Malliavin derivatives. As above the first order Malliavinderivative 

𝐷𝑣𝑋(𝑡), which, by the way, is linear in the process 𝑣(𝑡), satisfies the following stochastic differential equation.  

𝑑𝐷𝑣𝑋(𝑡) = 𝑕𝑥(𝑡)𝐷𝑣𝑋(𝑡) +  𝑕𝜉
𝐽

(𝑡, 𝜗)𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)𝑣ℓ(𝑡)𝜏  𝑑𝑡.                (2.12)            

 In this equation we replace 𝑊(𝑡)with 𝑊𝑣1 ,𝑕(𝑡): = 𝑊(𝑡) +  𝑣1
𝑡

0
(𝑠)𝑕(𝑠)𝑑𝑠, where 𝑣1𝑡) is a column vector of 

an 𝑟 × 𝑑-matrix: 𝑣1(𝑡) =  
𝑣1

1(𝑡)
⋮

𝑣1
𝑟 (𝑡)

 . Here each 𝑣1
ℓ(𝑡), 1 ≤ ℓ ≤ 𝑟 is row vector of length 𝑑. The corresponding 

delay stochastic differential equation for the process 𝐷𝑣,𝑣1 ,𝑕𝑋(𝑡) reads as follows 

𝑑𝐷𝑣,𝑣1 ,𝑕𝑋(𝑡)

= 𝑕𝑥(𝑡)𝐷𝑣,𝑣1 ,𝑕𝑋(𝑡) +  𝑕𝜉
𝑣1 ,𝑕

𝐽

(𝑡, 𝜗)𝐷𝑣,𝑣1 ,𝑕𝑋𝑡(𝜗) 𝑑𝜗 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)𝑣ℓ(𝑡)𝜏  𝑑𝑡

=
𝜕

𝜕𝑥
𝑓 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣,𝑣1 ,𝑕𝑋(𝑡)𝑑𝑡 +  
𝜕𝑓

𝜕𝜉𝐽

 𝑡, 𝑋(𝑡), 𝑋𝑡 , 𝜗 𝐷𝑣,𝑣1 ,𝑕𝑋𝑡(𝜗) 𝑑𝜗 𝑑𝑡

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋(𝑡), 𝑋𝑡 , 𝜗 𝐷𝑣,𝑣1 ,𝑕𝑋𝑡(𝜗) 𝑑𝜗 𝑑𝑊ℓ(𝑡)

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡 , 𝜗 𝐷𝑣,𝑣1 ,𝑕𝑋𝑡(𝜗) 𝑑𝜗 𝑣1
ℓ(𝑡)𝜏𝑕(𝑡)𝑑𝑡 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)𝑣ℓ(𝑡)𝜏  𝑑𝑡. (2.13)

 

 Here we used the fact that 𝑕𝜉
𝑣1 ,𝑕

(𝑡, 𝜗) is given by  

𝑕𝜉
𝑣1 ,𝑕

(𝑡, 𝜗) =
𝜕𝑓

𝜕𝜉
 𝑡, 𝑋(𝑡), 𝑋𝑡 , 𝜗  𝑑𝑡 +  

𝜕

𝜕𝜉

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋(𝑡), 𝑋𝑡 , 𝜗 𝑑 𝑊ℓ,𝑣1 ,𝑕 (𝑡). 

 Then we differentiate equation (2.13) with respect to 𝑕 to obtain a delay SDE for the process 𝐷𝑣1𝐷𝑣𝑋(𝑡) =
𝐷𝑣1 𝐷𝑣𝑋(𝑡) :  

𝑑𝐷𝑣1𝐷𝑣𝑋 𝑡 

=
𝜕

𝜕𝑥
𝑓 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣1𝐷𝑣𝑋(𝑡)𝑑𝑡 +  
𝜕𝑓

𝜕𝜉𝐽

 𝑡, 𝑋(𝑡), 𝑋𝑡 , 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 𝑑𝑡

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡 , 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡 𝜗  𝑑𝜗 𝑑𝑊ℓ 𝑡 

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡 , 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 𝑣1
ℓ(𝑡)𝜏𝑑𝑡

= 𝑕𝑥 𝑡 𝐷𝑣1𝐷𝑣𝑋 𝑡 +  𝑕𝜉
𝐽

 𝑡, 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗                                              

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡 , 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 𝑣1
ℓ(𝑡)𝜏𝑑𝑡.                 (2.14)            
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𝑑𝐷𝑣1𝐷𝑣𝑋 𝑡 

=  
𝜕

𝜕𝑥
 

2

𝑓(𝑡)𝐷𝑣1𝑋(𝑡)𝐷𝑣𝑋(𝑡)𝑑𝑡 +  
𝜕2

𝜕𝜉𝜕𝑥𝐽

𝑓(𝑡, 𝜗)𝐷𝑣1𝑋𝑡(𝜗)𝑑𝜗 𝐷𝑣𝑋(𝑡) 𝑑𝑡

 +
𝜕

𝜕𝑥
𝑓 𝑡 𝐷𝑣1𝐷𝑣𝑋 𝑡 𝑑𝑡 +  

𝜕2

𝜕𝜉𝜕𝑥𝐽

𝑓 𝑡, 𝜗 𝐷𝑣1𝑋 𝑡  𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝑡    

 +   
𝜕2

𝜕𝜉2
𝐽𝐽

𝑓 𝑡, 𝜗, 𝜗1 𝐷𝑣1𝑋𝑡 𝜗1 𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝜗1  𝑑𝑡       

 +  
𝜕

𝜕𝜉𝐽

𝑓 𝑡, 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝑡               

 +   
𝜕

𝜕𝑥
 

2𝑟

ℓ=1

𝑔ℓ 𝑡 𝐷𝑣1𝑋 𝑡 𝐷𝑣𝑋 𝑡 𝑑𝑊ℓ 𝑡 

 +   
𝜕2

𝜕𝜉𝜕𝑥𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝜗 𝐷𝑣1𝑋𝑡 𝜗 𝑑𝜗 𝐷𝑣𝑋 𝑡  𝑑𝑊ℓ 𝑡 

 +  
𝜕

𝜕𝑥

𝑟

ℓ=1

𝑔ℓ 𝑡 𝐷𝑣1𝐷𝑣𝑋 𝑡 𝑑𝑊ℓ 𝑡 

 +   
𝜕2

𝜕𝜉𝜕𝑥𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝜗 𝐷𝑣1𝑋 𝑡  𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝑊ℓ 𝑡 

 +    
𝜕2

𝜕𝜉2
𝐽𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝜗, 𝜗1 𝐷𝑣1𝑋𝑡 𝜗1 𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝜗1  𝑑𝑊ℓ 𝑡 

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝜗 𝐷𝑣1𝐷𝑣𝑋𝑡 𝜗 𝑑𝜗 𝑑𝑊ℓ 𝑡 

 +  
𝜕

𝜕𝑥

𝑟

ℓ=1

𝑔ℓ(𝑡)𝐷𝑣1𝑋(𝑡)𝑣ℓ(𝑡)𝜏𝑑𝑡 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ(𝑡, 𝜗)𝑑𝜗 𝑣ℓ(𝑡)𝜏  𝑑𝑡

 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)
𝜕

𝜕𝑥
𝑣ℓ(𝑡)𝜏𝐷𝑣1𝑋(𝑡) 𝑑𝑡 +  𝑔ℓ

𝑟

ℓ=1

(𝑡)  
𝜕

𝜕𝜉𝐽

𝑣ℓ 𝑡, 𝜗 𝐷𝑣1𝑋𝑡(𝜗)𝑑𝜗 𝑑𝑡

 +  
𝜕

𝜕𝑥

𝑟

ℓ=1

𝑔ℓ(𝑡)𝐷𝑣𝑋(𝑡)𝑣1
ℓ(𝑡)𝜏𝑑𝑡.                                                   (2.15)                   

 

 

We need to mention that the integration by parts formula in [18] can be used to extend the formulas in 

[2] to include delay SDE’s as well as ordinary SDE’s. For this purpose we need to use the integration by parts 

formula in [18]where 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛+1. See the proof of the following Theorem 3. We also need the 

following definition. 

 

2 Definition: For a stochastic variable 𝑌 attaining its values in ℝ𝑚 × 𝐿2 𝐽, ℝ𝑛  the space 𝒟 𝑌  consists of those 

functions 𝐹: ℝ𝑚 × 𝐿2 𝐽, ℝ𝑛 → ℝ such that for some open subset 𝑂 of ℝ𝑚 × 𝐿2 𝐽, ℝ𝑛  

I.  The variable 𝑌 belongs to 𝑂 almost surely; 

II.  The restriction $F\bigm\vert_O$ is 𝐶∞; 

III.  For every 𝛼 ∈ ℕ𝑚  and 𝛽 ∈ ℕ𝑛  the Frechet derivative 𝐷𝑥
𝛼𝐷𝜉

𝛽
𝐹(𝑌) belongs to 

 

𝐿2 [0, 𝑇] × 𝛺, ℬ ⊗ ℱ, 𝜆 × ℙ . 

3 Theorem: Let 𝑊(𝑡) be 𝑟-dimensional Brownian motion and let 𝑋(𝑡) be the solution of  

𝑑𝑋 𝑡 = 𝑓 𝑡, 𝑋 𝑡 , 𝑋𝑡 𝑑𝑡 +  𝑔ℓ

𝑟

ℓ=1

 𝑡, 𝑋 𝑡 , 𝑋𝑡 𝑑𝑊ℓ 𝑡 ,                                                   (2.16) 

with (𝑋(0), 𝑋0) = (𝑥, 𝜉), where 𝑓, 𝑔1, 𝑔2 , … , 𝑔𝑟  are maps from [0, 𝑇] × ℝ𝑑 × 𝐿2(𝐽, ℝ𝑑) to ℝ𝑑  and 

𝐽 = [−1,0) and 𝑇 is a positive real number. Let 𝑣and 𝑣𝑗
ℓ: [0, 𝑇] × ℝ𝑑 × 𝐿2(𝐽, ℝ𝑑) → ℝ𝑑 , (ℓ = 1,2, … , 𝑟, 

𝑗 = 1,2, … , 𝑛 + 1) be 𝐶∞-mappings, with all their derivatives of polynomial growth. Then the linear delay SDE 
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𝑑 𝐷𝑣𝑋(𝑡) =
𝜕

𝜕𝑥
𝑓 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣𝑋(𝑡) 𝑑𝑡 +  
𝜕

𝜕𝜉𝐽

𝑓 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑋𝑡(𝜗) 𝑑𝜗 𝑑𝑡

 +  
𝜕

𝜕𝑥

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡 𝐷
𝑣𝑋 𝑡 𝑑𝑊ℓ 𝑡 

 +   
𝜕

𝜕𝜉𝐽

𝑟

ℓ=1

𝑔ℓ 𝑡, 𝑋 𝑡 , 𝑋𝑡  𝜗 𝐷𝑣𝑋𝑡 𝜗  𝑑𝜗 𝑑𝑊ℓ 𝑡 

 +  𝑔ℓ

𝑟

ℓ=1

 𝑡, 𝑋(𝑡), 𝑋𝑡 𝑣
ℓ 𝑡, 𝑋(𝑡), 𝑋𝑡 𝑑𝑡.                                 (2.17)         

 

 

with 𝐷𝑣𝑋(0), 𝐷𝑣𝑋0 = 0 ∈  ℝ𝑑 × ℝ𝑑 × 𝐿2 𝐽, ℝ𝑑 × ℝ𝑑   has a unique solution with 

sup
𝑠≤𝑡

 𝐷𝑣𝑋(𝑠)    and   sup
𝑠≤𝑡

 𝐷𝑣𝑗 𝑋(𝑠)  

belonging to 𝐿𝑝 𝛺, ℱ𝑡 , 𝑃 , and  

sup
𝑠≤𝑡

|𝐷𝑣𝑋𝑠|   and    sup
𝑠≤𝑡

 𝐷𝑣𝑗 𝑋𝑠  

belonging to 𝐿𝑝 𝛺 × 𝐽, ℱ𝑡 ⊗ ℬ, ℙ × 𝜆  for all 𝑡 ≥ 0 and for all 𝑝 < ∞ and for all 𝑗 = 1,2, … , 𝑛 + 1 . 

The notation 𝐷𝑣𝑋𝑡  is also employed for the delay process 𝜗 ↦ 𝐷𝑣𝑋(𝑡 + 𝜗). Furthermore, for any function 

𝛷: 𝑈0 → ℝ, where 𝑈0 is an open subset of [0, 𝑇] × ℝ𝑑 × 𝐿2(𝐽, ℝ𝑑 ) with  𝑡, 𝑋(𝑡), 𝑋𝑡 ∈ 𝑈0 a.s. such that 𝛷 is 

differentiable, and 𝐷𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡  and 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡  belonging to 𝐿2(𝛺, ℱ𝑡 , 𝑃),  

𝔼   
𝜕

𝜕𝑥
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 +  

𝐽

𝜕

𝜕𝜉
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑛+1𝑋𝑡(𝜗) 𝐷𝑣𝑛 +1𝑋(𝑡) −1𝑑𝜗  

     𝐷𝑣𝑛 +1𝑋(𝑡)𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  

= 𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐴
(𝑣𝑛 ,…,𝑣1)𝐺 𝑦(𝑛+1)(𝑡)                           (2.18)

 

where 

𝐴(𝑣𝑛 ,…,𝑣1)𝐺 𝑦(𝑛+1)(𝑡) = 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)   𝑣𝑛+1
ℓ

𝑡

0

𝑟

ℓ=1

 𝑠, 𝑋(𝑠), 𝑋𝑠 
𝜏𝑑𝑊ℓ(𝑠)

−𝛹 𝐷𝑣𝑛 𝑋(𝑡) 𝐷𝐺 𝑦(𝑛)(𝑡) 𝐷𝑣𝑛+1 𝑦(𝑛)(𝑡) 

−𝐷𝛹 𝐷𝑣𝑛 𝑋 𝑡   𝐷𝑣𝑛 +1𝐷𝑣𝑛 𝑋 𝑡  𝐺  𝑦 𝑛  𝑡  ;  (2.19)

 

 

𝑦(𝑛)(𝑡) =  𝑦(0)(𝑡), 𝐷𝑣1𝑦(0)(𝑡), 𝐷𝑣2𝐷𝑣1𝑦(0)(𝑡), … , 𝐷𝑣𝑛 𝐷𝑣𝑛−1 ⋯ 𝐷𝑣1𝑦(0)(𝑡) ; (2.20)

𝑦(0)(𝑡) =  𝑋(𝑡), 𝐷𝑣𝑋(𝑡), 𝑅𝑣(𝑡) ;                                                                               (2.21)

𝑅𝑣(𝑡) =   𝑣ℓ
𝑡

0

𝑟

ℓ=1

(𝑠)𝜏𝑑 𝑊ℓ(𝑠),                                                                               (2.22)

 

and𝐺 ∈ 𝒟[𝑦(𝑛)(𝑡)] where a choice for 𝑣ℓ could be  

𝑣ℓ 𝑠, 𝑋 𝑠 , 𝑋𝑠 =  𝑉 𝑠 𝑔ℓ 𝑠, 𝑋 𝑠 , 𝑋𝑠  
𝜏

.                                                        (2.23) 

 As in (2.12) in [18] a specialization of ([E: int.formula2]) to the partial derivatives 
𝜕

𝜕𝑥𝑘
 and 

𝜕

𝜕𝜉𝑘
 yields:  

𝔼   
𝜕

𝜕𝑥𝑘

𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 +  
𝐽

𝜕

𝜕𝜉𝑘

𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑛 +1𝑋𝑡(𝜗) 𝐷𝑣𝑛 +1𝑋(𝑡) −1𝑑𝜗  

 𝐷𝑣𝑛 +1𝑋(𝑡)𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  

= 𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐴𝑘
(𝑣𝑛 ,…,𝑣1)

𝐺 𝑦(𝑛+1)(𝑡)                                           (2.24)

 

where𝐴𝑘
(𝑣𝑛 ,…,𝑣1)

𝐺 𝑦(𝑛+1)(𝑡)  is the 𝑘-th component of 𝐴(𝑣𝑛 ,…,𝑣1)𝐺 𝑦(𝑛+1)(𝑡) . which is row vector of length 𝑑. 

We shall prove this theorem by induction on the non-negative integers 𝑛 = 0,  1,  2,  …. 

Proof: We first observe that the formula in (2.10) in [18] with 𝑦(𝑛)(𝑡) replacing the pair  𝑋(𝑡), 𝑋𝑡 , and 𝑣𝑛+1 

replacing the vector 𝑣, implies  

𝔼  𝐷𝑣𝑛+1  𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)   

=  𝔼

𝑟

ℓ=1

 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  
0

𝑡
𝑣𝑛+1

ℓ (𝑠)𝜏𝑑𝑊ℓ(𝑠)  (2.25)
 

which in turn, by Leibniz rule, implies  
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𝔼 𝐷𝑣𝑛+1𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  

 +𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷
𝑣𝑛+1𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  

 +𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐷𝑣𝑛 +1𝐺 𝑦(𝑛)(𝑡)  

= 𝔼  𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐺 𝑦(𝑛)(𝑡)  
ℓ=1

𝑟
 

0

𝑡
𝑣𝑛+1

ℓ (𝑠)𝜏𝑑𝑊ℓ(𝑠)  (2.26)

 

Again, by applying Leibniz rule to the Malliavin derivative 𝐷𝑣𝑛+1𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡  we see that the first 

term of the right-hand side of equality [2.26] coincides with the left-hand side of the equality in [2.18]. 

Consequently [2.18] follows from [2.26] here we applied the chain rule for the Malliavin derivative 𝐷𝑣𝑛 +1  a 

number of times. 

Then by choosing 𝐺 = 1 we can formulate the above equation as follows:  

𝔼  
𝜕

𝜕𝑥
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷

𝑣𝑛+1𝑋(𝑡)𝛹 𝐷𝑣𝑛 𝑋(𝑡)  

 +𝔼   
𝐽

𝜕

𝜕𝜉
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑛+1𝑋𝑡(𝜗)𝛹 𝐷𝑣𝑛 𝑋(𝑡) 𝑑𝜗 

 +𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷
𝑣𝑛+1𝛹(𝐷𝑣𝑛 𝑋(𝑡)) 

= 𝔼  𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡)) 
0

𝑡
𝑣𝑛+1

ℓ (𝑠)𝜏𝑑𝑊ℓ(𝑠)                      (2.27)

 

  

Hence we can rewrite equation ([int.formula 3]) in the following form:  

𝔼   
𝜕

𝜕𝑥
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 +  

𝐽

𝜕

𝜕𝜉
𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 (𝜗)𝐷𝑣𝑛+1𝑋𝑡(𝜗) 𝐷𝑣𝑛 +1𝑋(𝑡) −1𝑑𝜗  

     
𝐽
𝐷𝑣𝑛 +1𝑋(𝑡)𝛹 𝐷𝑣𝑛 𝑋(𝑡)  

= 𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝑅𝑣𝑛 +1 (𝑡) 

 +𝔼 𝛷 𝑡, 𝑋(𝑡), 𝑋𝑡 𝐷𝛹(𝐷𝑣𝑛 𝑋(𝑡))𝐷𝑣𝑛 +1𝐷𝑣𝑛 𝑋(𝑡) 

= 𝔼 𝐴 𝑣𝑛+1 ,1 1 𝑦(𝑛)(𝑡)  .                                                                               (2.28)

 

 Hence the theorem is valid for all non-negative integers 𝑛 = 0,  1,  2,  …. 

 

4 Theorem: Let 𝑊(𝑡) be 𝑟-dimensional Brownian motion and let 𝑋(𝑡) be the solution of equation (2.9) in [18], 

to wit:  

𝑑𝑋(𝑡) = 𝑓 𝑡, 𝑋(𝑡), 𝑋𝑡 𝑑𝑡 +  𝑔ℓ

𝑟

ℓ=1

 𝑡, 𝑋(𝑡), 𝑋𝑡 𝑑𝑊ℓ(𝑡), 

with (𝑋(0), 𝑋0) = (𝑥, 𝜉), where 𝑓, 𝑔1 , 𝑔2, … , 𝑔𝑑  are maps [0, 𝑇] × ℝ𝑑 × 𝐿2(𝐽, ℝ𝑑 ) → ℝ𝑑  and 𝐽 =
[−1,0) and 𝑇 is a positive real number. Let 𝑣ℓ: [0, 𝑇] × ℝ𝑑 × 𝐿2(𝐽, ℝ𝑑) → ℝ𝑑 , (ℓ = 1,2, … , 𝑟) be 𝐶∞, with all 

derivatives of polynomial growth. Suppose that fore some 𝑡 ∈ [0, 𝑇] the inverse  𝐷𝑣𝑋(𝑡) −1 of the Malliavin 

derivative 𝐷𝑣𝑋(𝑡) belongs to 𝐿𝑝 𝛺, ℱ𝑡 , ℙ  for all 1 ≤ 𝑝 < ∞. Then the law of 𝑋(𝑡) has a 𝐶∞-density. 

 

proof As in Theorem 3.2 page 121 of Norris’ paper [10]  the present Theorem 3 implies: 

𝔼 𝐷𝑘1

𝑣1 … 𝐷𝑘𝑛

𝑣𝑛 𝛷 𝑋(𝑡) 𝐷𝑣𝑛 +1𝑋(𝑡)𝛹 𝐷𝑣𝑛  𝐺 𝑦𝑛 (𝑡)  

= 𝔼 𝛷 𝑋(𝑡) 𝐴𝑘𝑛

𝑣𝑛 ,…,𝑣1 ∘ ⋯ ∘ 𝐴𝑘1

𝑣1 𝐺 𝑦(𝑛+1)(𝑡)  ,                   (2.29)
 

 

where𝛷 is a bounded 𝐶∞-function. If 𝑣𝑛+1 = 𝑣𝑛 = ⋯ = 𝑣1 = 𝑣, then from (2.29) we get 

𝔼 𝐷𝑘1

𝑣 … 𝐷𝑘𝑛

𝑣 𝛷 𝑋(𝑡) 𝐺 𝑦𝑛 (𝑡)  

= 𝔼  𝛷 𝑋 𝑡  𝐴𝑘𝑛

𝑣,…,𝑣 ∘ ⋯ ∘ 𝐴𝑘1

𝑣 𝐺  𝑦 𝑛+1  𝑡   .                  (2.30)
 

 

Hence, with 𝐶 𝑘1, … , 𝑘𝑛 ; 𝐺 = 𝔼   𝐴𝑘𝑛

(𝑣,…,𝑣)
∘ ⋯ ∘ 𝐴𝑘1

(𝑣)
𝐺 𝑦𝑛+1(𝑡)    we obtain  

 𝔼 𝐷𝑘1

𝑣 … 𝐷𝑘𝑛

𝑣 𝛷 𝑋(𝑡) 𝐺 𝑦𝑛 (𝑡)   ≤ 𝐶 𝑘1, … , 𝑘𝑛 ; 𝐺  𝛷 ∞. 

 

III. Remarks 
1. All the results which we have established in this work can be extended by replacing the Brownian motion 

𝑊 by another process𝑍: [0, 𝑎] × 𝛺 → 𝐑𝐝, (𝑑 ∈ 𝐍) which is a continuous martingale adapted to {ℱ𝑡}𝑡∈[0,𝑎] 

and has independent increments and satisfies with some constant 𝐾 the inequalities  |𝑍(𝑡) − 𝑍(𝑠)ℱ𝑠| ≤
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𝐾(𝑡 − 𝑠) and 

𝐄(|𝑍(𝑡) − 𝑍(𝑠)|2ℱ𝑠 ≤ 𝐾(𝑡 − 𝑠)for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑎 . Observe that the above properties of 𝑍 which we have 

just mentioned are the only properties of 𝑊 which we have used (in case of Brownian motion) to prove 

the results which we have obtained in this work.See [1], [15], [16], [17], [18],  and [19]. 

 

2. All the lemmas and theorems in this work hold for any delay interval 𝐽′ = [−𝑟, 0) (𝑟 ≥ 0) inplace of 

𝐽 = [−1,0). See [1], [15], [16], [17], [18],  and[19]. 
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