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Abstract: The objective of this technical paper was to propose an approach for solving polynomials of degree
higher than two. The main concepts were the decomposition of a polynomial of a higher degree to the product of
two polynomials of lower degrees and the n-D Newton-Raphson method for a system of nonlinear equations.
The coefficient of each term in an original polynomial of order m will be equated to the corresponding term
from the collected-expanded product of the two polynomials of the lower degrees based on the concept of
undetermined coefficients. Consequently a system of nonlinear equations was formed. Then the unknown
coefficients of the decomposed polynomial of the lower degree of the two decomposed polynomials would be
eliminated from the system of the nonlinear equations. After that the unknown coefficients in the decomposed
polynomial of the higher degree would be obtained by the n-D Newton-Raphson. Finally the unknown
coefficients for the decomposed polynomial of the lower degree would be obtained by back substitutions. In this
technical paper the formulations for the decomposed polynomials would be derived for the polynomials degree
three to nine. Several numerical examples were also given to verify the applicability of the proposed approach.
Keywords: Roots of a Polynomial of a High Degree, the n-D Newton-Raphson Method, Undetermined
Coefficients, Jacobian of the Functions, Matrix Inversion

I.  Introduction

Finding solutions to a polynomial of order higher than two has been unavoidable in engineering works.
Mostly only real roots were required. In these cases the graphical method could give good initial guesses for
some efficient numerical methods such as the Newton-Raphson method. However the determination of all
possible roots has been very challenging. There are general solutions for cubic- and quartic polynomials [1].
Beyond the quartic polynomials some special forms and sufficient conditions for solvable polynomials have
been studied [1-10].

The purpose of this technical paper was to propose a mathematical tool for solving for all possible roots
of a polynomial of degree higher than two. It included the decomposition technique and the Newton-Raphson
method for a system of nonlinear equations. The decomposition technique was applied for rewriting the original
polynomial into the form of product of two polynomials of lower degrees. Based on the concept of
undetermined coefficients each coefficient of an x power in the original polynomial would be equated to the
corresponding collected-expanded one of the product of the two decomposed polynomials. The unknown
coefficients in decomposed polynomials of the lower degree would be eliminated. Based on this a system of
nonlinear equations of unknown coefficients in the decomposed polynomial of the higher degree was obtained.
Then the n-D Newton-Raphson method was used to solve for the unknown coefficients from the system of
nonlinear equations. The eliminated coefficients were obtained by back substitutions. The formulations and the
concepts would be discussed in Section 2. In Section 3 the applicability of the proposed mathematical tool
would be demonstrated in several numerical examples. From which critical conclusion could be drawn in
Section 4.

I1.  Decomposition of the Original Polynomial Equation
2.1 Decomposition of a Polynomial Equation of Order m
A polynomial equation of order m may be generally expressed in form of (1):

m m-1 2 _
A X" +ag X +o.tayX +a1x+a0_0 Q)

Where a;,i=0,1...,m are the coefficients of x' and a, =0. Without losing generality a, =1 may be used

throughout this technical paper. Thus:

xm+am_lxm_1+...+a2x2+a1x+a0=0 2

Given r;,i=0,1...,m are all possible roots of the polynomial equation. The polynomial equation of (2)
can be rewritten as:

(x—1)-(x=1,)-(x=15)---(x~1,) =0 ©))
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In the case that a root x, is found, (x—xr) will be one factor of the original polynomial equation. The

deflated equation may be obtained by the direct long division of the original equation of (2) by (x— x,) as:

m-1 m-2

X" 4 (g + X )- X +(am_2 +a, X +xr2)« x3 +...+(a1+a2 ‘X, +8g- X, +...+x,m)=0 (4)

Further deflations can be done as soon as additional roots will be found. Real roots of polynomial
equations could be obtained in Bernstein form by numerical analysis [11]. The graphical method can be served
as a powerful tool for determining the number of real roots, approximate values of real roots and nature of the
real roots e.g. double real roots or triple real roots etc. Usually any value of a real root from the graphical
method can be used as an initial guess value of a numerical method e.g. the Newton-Raphson method.

The rest of this technical paper will be devoted for the decomposition of an original polynomial
equation into two decomposed polynomial equations of lower degrees.

2.2 Decomposition of a Polynomial Equation
2.2.1 Proposed Decomposition

An original polynomial equation of order m as in the form of (2) can always be decomposed into two
polynomial equations of lower degrees. For an original polynomial equation of an odd degree the equation will
be decomposed into two decomposed equations of lower degrees i.e. one decomposed polynomial equation with
an odd degree and the other decomposed polynomial equation with an even degree. For an original polynomial
equation of even degree, however, the function will be decomposed to two decomposed equations of even
degrees. The reason behind is that a polynomial equation of odd degree will always have at least one real root.
However no real root is guaranteed for a polynomial equation of an even degree. Therefore for the case of an
original polynomial equation of even degree it is conservative to assume both two decomposed polynomial
equations of even degrees, since a quadratic equation can always be solved in a closed form formula. Our
discussions will be focused on the polynomial equations of degree higher than two i.e. degree three onwards.
The orders of the two decomposed equations are summarized in Table 1.

Table 1 Degrees of Two Decomposed Equations for Original Equations of Degree from 3-9

Degree of Equation

Original Equation 1% Decomposed Equation 2" Decomposed Equation
3 1 2

4 2 2

5 2 3

6 2 4

7 3 4

8 4 4

9 4 5

2.2.2 Bairstow’s Decomposition
Bairstow [12] proposed decomposing a polynomial of order min form of (5) into a product of two
lower degrees, i.e. a quadratic function and a polynomial of degree m—2, plus a remainder term in form of (6).

P(x)=anX™ +an X" +... +a,x% +ayx+ag (5)
P(x)= (x2 +U-X+ v)- (bm,zxm‘2 +by, 3x™2 4. +byx? + by x+ Dby )+ cx+d (6)
where b;,i=01,..,m—2 are the coefficients of x' c,d are coefficients and b, , = 0. The latter polynomial can

be obtained by long dividing P(x) by (x2 +u~x+v) and the term cx+d is the remainder.

Once the values of uand vare assumed, Allb;’s as well as ¢ and d can be determined. By iterative
procedures, the actual uand v as well as all b;’s can be obtained as soon as cx+d approaches zero. Thus, (6)
is reduced to (7).

(x2 +u-x+v)- (bm_zx”"2 + by gX™ 2 4+ byx? +b1x+b0)= 0 @)

For the sake of further discussions a,, and b,,_, can be set to 1 without losing any generality. Thus, (7)

may be rewritten as:
( 2 m-2 m-3 2 _
X +dl-x+d0)-(x +en3X 4. +EyX +elx+e0)_0 (8)

Based on (8) a polynomial equation can be decomposed to the product of two polynomial equations,
i.e. a quadratic equation and a polynomial equation of order m—2. There can be several pairs of the
decomposed polynomials depending on the initial guess of the iterative procedures. Since any quadratic

equation and linear equation is always solved, all possible roots of a polynomial equation can be determined by
the Bairstow’s method. The convergence of the method is quadratic, only if the zeros are complex conjugate
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pairs of multiplicity one, or are real of multiplicity at most two. For higher multiplicities it is impractically slow
or subject to failure. The modifications of the Bairstow’s method were proposed [13-14], but the details are out
of the scope of this technical paper.

2.2.3 Complete Bairstow’s Decomposition

The decomposed polynomial equation of (8) can be further decomposed until the degree of the last
decomposed equation is two or one. For an original polynomial equation of an even degree or an odd degree, the
complete Bairstow’s solution can be rewritten in form of (9) or (10), respectively.

(x2 +d; X+ do)-(x2 +e1x+e0)..Q(x): 0 ©)
(x+co)~(x2 +d; x4+ do)- (x2 +e1x+e0)..Q(x): 0 (10)
where Q(x) is a quadratic function.

2.3 Decomposition of a Cubic Function
Consider a general cubic equation;

x3 +a,x% +ax+ay =0 (11)
The cubic equation may be decomposed into a product of two equations i.e. one linear equation and
one quadratic equation as shown below:

(x+d0)~(x2+elx+e0):0 (12)
where dy,e; and e, are the unknown coefficients of the equations. Expanding the product in (12) yields:
x3 +(dg +; )x? +(eg + doey Jx+doey =0 (13)

Equating each coefficient in (13) to the corresponding term in the original equation in (11) leads to 3 equations:

do+€ =a, (14.a)
gy +doe = (14.b)
doey = ay (14.c)
dy in (14.c) can be rewritten in term of ayand eg as:
do = 20 (15)
€

Thus, d, can be eliminated from (14.a) and (14.b) such that a system of two nonlinear equations in
two simultaneous unknowns e, and e is formed.

a
0
a e
G+t =a (16.h)
€o

Once e and e, are obtained from a numerical method i.e. the Newton-Raphson method in two
dimensions, d,can be obtained by back substitution via (15).

The proposed decomposition for a cubic equation has exactly the same form as the Bairstow’s method
and it is already complete.

2.4 Decomposition of a Quartic Function
Consider a general quartic equation:

x* +agx® +a,x? +ax+a; =0 17
The quartic equation may be decomposed into a product of two equations i.e. two quadratic equations
as shown below:

(xz+dlx+d0)-(x2+e1x+eo):0 (18)
where d,,dg,e,and e, are the unknown coefficients of the equations. Expanding the product in (18) yields:
x* 4+ (dy +e X3 +(dg +eg +die; )X +(dge; +dseg )x+(dgeg)=0 (19)

Equating each coefficient in (19) to the corresponding term in the original equation in (17) leads to 4
equations:
dl +el = a3 (20a)
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do+ey+die; =a, (20.b)
doe; +di8 =23y (20.c)
doeg =29 (20.d)
d, in(20.a) and d, in (20.d), respectively, can be rewritten in term of the other terms as:
dy=a3—¢ (21.a)
do =20 (21.b)
€o

Thus, d;andd, can be eliminated from (20.b) and (20.c) such that a system of two simultaneous
nonlinear equations in two unknowns e, and e is formed.

a

e—°+eO +(ag—e)-e =a, (22.a)
0

a,-e
0 11 (ag—€)-e =y (22.b)
€o

Once e and e, are obtained by the Newton-Raphson method in two dimensions, d;and d,can be

obtained by back substitution via (21.a) and (21.b), respectively.
The proposed decomposition for a quartic equation has exactly the same form as the Bairstow’s method
and it is already complete.

2.5 Decomposition of a Quintic Function
2.5.1 The Proposed Decomposition
Consider a general quintic equation:

x° +a,x* +asx® +a,x? +a;x+a, =0 (23)
The quintic equation may be decomposed into a product of two equations i.e. one quadratic equation
and one cubic equation as shown below:
(x2+d1x+d0)-(x3+e2x2 +e1x+e0)=0 (24)
where dy,dy,e,,e and e; are the unknown coefficients of the equations. Expanding the product in (24) yields:
X% 4+ (dy +€, )x* +(dg +e,+d; e, )x* +(eg +dg-€, +d; € )x* +(dg-€; +d; e Jx+(dg -€5)=0 (25)
Equating each coefficient in (25) to the corresponding term in the original equation in (23) leads to 5
equations:

d,+e, =a, (26.a)
dyp+e +d;-e, =24 (26.b)
gy +dy-e,+d; -6 =a, (26.c)
dyp-e+d;-e0=28 (26.d)
do-€ =29 (26.¢)
d, in(26.a) and d, in (26.e), respectively, can be rewritten in term of the other terms as:
dy=a,-¢e, (27.8)
do =20 (27.b)
€o

Thus, d;andd, can be eliminated from (26.b), (26.c) and (26.d) such that a system of three
simultaneous nonlinear equations in three unknowns e,,e; and e, is formed.

a
e—°+e1+(a4 —e,)-e, =a, (28.a)
0
ay-e
€ +%+(a4 —e,)-e=a, (28.b)
0
a,-e
0 1 4(a,—e,)e =2 (28.c)
€

Once e,,e and e, are obtained by the Newton-Raphson method in three dimensions, d;and d,can be
obtained by back substitution via (27.a) and (27.b), respectively.
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2.5.2 Bairstow’s Decomposition

The proposed decomposition for a quintic equation has exactly the same form as the Bairstow’s method
and the cubic equation obtained can be further decomposed by using the proposed decomposition as discussed
in Section 2.3.

2.5.3 Complete Bairstow’s Decomposition
The quintic equation of (23) can be rewritten in form of a complete Bairstow’s decomposition as:

(x+co)-(x2+d1x+d0)-(x2+e1x+e0)=0 (29)
Expanding the product in (29) yields:
X° +(Co +dy + )x* +(dg +€y +Cq -y +Cq & +d; - )x°
+(Co-dg+Co-€y+dg-€ +0d; €y +Co-dy-€ X2 +(dg € +Cq - dg - +Co - dy €9 ) (30)
+(co-dy-€9)=0

Equating each coefficient in (30) to the corresponding term in the original equation in (23) leads to 5 equations:

Co+d;+e =28, (3L.a)
dyp+ey+Cy-dy+Cy-e+d; -6, =2y (31.b)
Cp-dg+Cy-€y+dg-€ +d;-eg+Cy-d; -6 =8, (31.c)
do-eg+Cy-dy-e +Cy-di-8g =7 (31.d)
Cp-dy-eg=a0 (3L.e)

Thus, a system of five simultaneous nonlinear equations in five unknowns c,,d;,dy,e;and e is formed.

2.6 Decomposition of a Sextic Function
2.6.1 The Proposed Decomposition
Consider a general sextic equation: (32)

X% +agx® +a,x* +a;x3 +a,x? +a,x+a, =0

The sextic equation may be decomposed into a product of two equations i.e. one quadratic equation and
one quartic equation as shown below:
(x2+d1x+d0)-(x4+e3x3+e2x2+elx+eo)=0 (33)
where d;,d,e;5,€,,6,and egare the unknown coefficients of the equations. Expanding the product in (33)
yields:
X® +(dy +e3)x° +(dg +e, + dieg )x* + (e, +dges +dse, X3 +(+dge, +die; )x* +(dge; +dyeq )

+(dogg)=0

Equating each coefficient in (34) to the corresponding term in the original equation in (32) leads to 6

equations:

(34)

d; +e;=ag (35.8)
dy+e, +die; =2y (35.b)
e, +0dge; +die, =35 (35.c)
gy, +dye, +die =2, (35.d)
doe; +di8p =23y (35.e)
do€ = 2 (35.f)
d, in(35.a) and d, in (35.1), respectively, can be rewritten in term of the other terms as:
dy =ag—e; (36.a)
dy =22 (36.5)
€

Thus, d;andd, can be eliminated from (35.b), (35.c), (35.d) and (35.e) such that a system of four
simultaneous nonlinear equations in three unknowns e;,e,,e; and e, is formed.

a
e—0+62 +(a5_e3)‘es =a4 (37a)
0
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a N
(as —e3)-e, +€; + Oe 2 =a (37.b)
0
ay -e
eo+ Oe 2+(a5_e3)'el:a2 (37C)
0
a-e
Oe L+(as—e3)-e = (37.d)
0

Once ej,e,,e,and e, are obtained by the Newton-Raphson method in four dimensions, d,and d,can
be obtained by back substitution via (36.a) and (36.b), respectively.

2.6.2 Bairstow’s Decomposition

The proposed decomposition for a sextic equation has exactly the same form as the Bairstow’s method
and the quartic equation obtained can be further decomposed by using the proposed decomposition as discussed
in Section 2.4.

2.6.3 Complete Bairstow’s Decomposition
The sextic equation of (32) can be rewritten in form of a complete Bairstow’s decomposition as:

(x2 +dlx+d0)~(x2 +elx+e0)~(x2 + fix+ fo):O (38)
Expanding the product in (38) yields:

X® 4 (dy +e; + F)x° +(dg + &9 + fo +dye; +dy fy +e Fy)x*

(doey +dieg +dofy +d; fo+eq fy +e fo+die fy X3

(d
(d

(39)
080 +do To +€ fo +dgey fy +dyeq fy +dye; fo )x?

+
+
+ Oeo fl+d0e1 fo +d160 fo)x+(d0e0 f0)=0

Equating each coefficient in (39) to the corresponding term in the original equation in (32) leads to 6 equations:

d,+e+ fy=ag5 (40.a)
do+eg+ fp+dig +d, f+ef, =a, (40.b)
doe, +dieq +dofy +d; fy +efy +e,fg +die, ) =84 (40.c)
doeg +do fo +eyfp+dge fy +dieg fy +die fg =a, (40.d)
doeg fy +dge, fp+digp fo =y (40.e)
do&o fo = 2 (40.f)

Thus, a system of six simultaneous nonlinear equations in six unknowns d,,d,.e;,€;, f;and f is formed.

2.7 Decomposition of a Septic Function
2.7.1 The Proposed Decomposition
Consider a general septic equation:

x" +agx® +agx® +a,x* +agx® +a,x? +a;x+a, =0 (41)

The septic equation may be decomposed into a product of two equations i.e. one cubic equation and
one quartic equation as shown below:
(x3 +d,x? +d1x+d0)-(x4 +e3x° +e,x° +elx+e0):0 (42)
where d,,d;,dqy,€5,€,,and ejare the unknown coefficients of the equations. Expanding the product in (42)
yields:
X" +(d, +e5)x8 +(d; +e, +dyes x5 +(dg +e, +die; +d,e, X +(eg +dges +die, +dyey X3 “3)
+(dge, +die; +d,eg )x? +(doey +dyeg )x+(dgeg ) =0

Equating each coefficient in (43) to the corresponding term in the original equation in (41) leads to 7 equations:

d, +e;=ag (44.0)
d;+e, +dre5=a5 (44.b)
dy+e +de;+dse, =3, (44.c)
gy +dge; +de, +d,re; =ay (44.d)
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doe, +de; +dyep =a, (44.e)
doel + dleo = al (44f)
dogy =23 (44.9)
d, in (44.a), din (44.b) and d, in (44.9), respectively, can be rewritten in term of the other terms as:
d; = a5 —e, —(as —e3)- €3 (45.b)
do = 8 (45.c)
€o

Thus, d,,d;andd, can be eliminated from (44.c), (44.d), (44.e) and (44.f) such that a system of four
simultaneous nonlinear equations in four unknowns e;,e,,e, and e is formed.

:—g+e1 +{as—e, —(ag —€;3)-e5}-e3+(ag —€3)-€, =a, (46.a)
€ +Z—z~e3 +{as —e, —(ag —€;3)-e5}-€, +(ag —€3)-€, = a4 (46.b)
aoe—'oe2+ las —e, —(ag —e3)-e5}-€, +(ag —e€3)-eg = a, (46.c)
aoe;)el +lag—e, —(ag—e3)-e5)-60 =y (46.d)

Once e;,e,,e;and e, are obtained by the Newton-Raphson method in four dimensions, d,,d;and
d, can be obtained by back substitution via (45.a), (45.b) and (45.c), respectively.

2.7.2 Bairstow’s Decomposition
The septic equation of (41) can be rewritten in form of the Bairstow’s decomposition as:

(x2 + dlx+d0)-(x5 e x* +eyx3 +e,x +elx+eo): 0 (47)
Expanding the product in (47) yields:

X" +(dy +e, X8 +(dy +e5+die )x° + (e, +dge, +dyes )x* + (e +dges +dye, )x°

48

Equating each coefficient in (48) to the corresponding term in the original equation in (41) leads to 7 equations:

d, +e, =84 (49.a)
dy+e;+de, =ag (49.b)
e, +dye, +die5 =2, (49.c)
e, +0dge; +die, =35 (49.d)
gy, +dye, +di8 =2, (49.e)
doe; +digg =3 (49.1)
doeg =39 (49.9)

Thus, a system of seven simultaneous nonlinear equations in seven unknowns c,,d;,d,,e;,e,, f;and
f, is formed.

2.7.3 Complete Bairstow’s Decomposition
The septic equation of (41) can be rewritten in form of a complete Bairstow’s decomposition as:
(x+cg)- (x2 +dyx+ do)-(x2 X+ e0)~ (xz + fix+ fo)z 0 (50)
Expanding the product in (50) and equating each coefficient to the corresponding term in the original
equation in (41) leads to 7 equations:

Co+d,+e +f =a4 (51.a)
do +e0 + fo +C0d1 +C0el +C0 fl +dlel +d1f1 +el fl = a5 (Slb)
Codg +Co€p +Co fo +dge; +dieg +dg fy +d; Ty +ey fy +€ fy +Codie; +Cod; f; +die, Ty =2, (51.c)
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doeg +dg fp +ey fp +Codgey +Codieg +Codg f1 +Cody fo +Cpeq fy

(51.d)

+dge, fy +dqiep fy +dig o +Codie f; =as
CoUo€y +Codofy +Co8p fo + ey fr +dge; T +dieg fo +Codyieg fy +Cpdye; fy +Codie; fo =a, (51.e)
doeg fo +Cotgeg f1 +Codge; o +Codieg fy =& (51.9)
Codoeo fo =29 (51.h)

Thus, a system of seven simultaneous nonlinear equations in seven unknowns c,,d;,d,,e;,e,, f;and
f, is formed.

2.8 Decomposition of an Octic Function
2.8.1 The Proposed Decomposition
Consider a general octic equation:

X8 +a,x" +agx® +agx’ +a,x* +agx® +a,x? +a;x+a, =0 (52)
The octic equation may be decomposed into a product of two equations i.e. two quartic equations as
shown below:
(x“ +dax® +dyx® +dyx + do)- (x4 +e3x3 +e,x? +ex + e0)= 0 (53)
where dj;,d,,d;,dg,e5,e,,e,and egare the unknown coefficients of the equations. Expanding the product in

(54) and equating each coefficient to the corresponding term in the original equation in (52) leads to 8
equations:

d;+e;=ay (54.a)
d, +e, +dye; =ag (54.b)
d, +e +d,e; +dse, =ag (54.c)
dy +ey +de5+d,e, +dse; =8, (54.d)
does +d.e, +d,e; +dgey =85 (54.e)
doe, +die; +dyep =a, (54.1)
doey +dig =&y (54.9)
doey =29 (54.h)

d4 in (54.8),d, in (54.b), d,in (54.c) and d, in (54.h), respectively, can be rewritten in term of the
other terms as:

d;=a; —e; (55.8)

d2 =a6_e2_(a7_e3)'e3 (55b)

d;=as —& — (a5 —e; —(as —&;, —(a7 —€3)-85))- 63 —(a7 —€3)-e, (55.€)

do =20 (55.d)
€

Thus, ds,d,,d;andd, can be eliminated from (54.d), (54.e), (54.f) and (54.g) such that a system of
four simultaneous nonlinear equations in four unknowns e;,e,,e; and e, is formed.

% e —(a —e. —(a —e.)-e.) 0. — (20 —e. ). L.
& +e0+{a5 € (ae € (a7 e3) 93) €3 (a7 93) ez} €3 (56.2)

+(ae —€ —(37 —93)'93)'62 +(a7 —93)‘91 =38,

dg - €
L3 +{as —€ —(as —€ —(a7 —e3)~e3)~e3 —(a7 —93)'92}'92 (56.b)

0
+(a7 —93)'90 +(ae —€ —(37 —ea)'es)'el =a3

a,-e
Oe 2 +{a5 _el_(as —€ —(37 —93)'63)'5‘3—(37 —e3)~ez}~e1+(a6 —€ —(37 —e3)~e3)~eo =3, (56.c)
)
a, -e
Oe L +{as _e1_(ae —€ _(37 _‘33)'93)‘93 —(37 _93)“32}'90 =aq (56.d)
0

Once ey,e,,e;and e, are obtained by the Newton-Raphson method in four dimensions, dj,d,,d; and
d, can be obtained by back substitution via (55.a), (55.b), (55.c) and (55.d), respectively.
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2.8.2 Bairstow’s Decomposition
The octic equation of (52) can be rewritten in form of the Bairstow’s decomposition as:

(xz + dlx+d0)~ (x6 +egx° +e,xt +eyx% +e,x? +elx+e0)= 0 (57)
Expanding the product in (57) and equating each coefficient to the corresponding term in the original
equation in (52) leads to 8 equations:

d; +es =ay (58.a)
dy +e, +de5 =ag (58.b)
e;+does +de, =as (58.c)
e, +dge, +die53 =2, (58.d)
e, +doe;+die, =34 (58.e)
gy +dge, +0di8 =a, (58.1)
doey +digy =2y (58.9)
do€y =3y (58.h)

Thus, a system of eight simultaneous nonlinear equations in eight unknowns d;,dg,es,e,,e;3,e,,e and
e, is formed.

2.8.3 Complete Bairstow’s Decomposition
The octic equation of (52) can be rewritten in form of a complete Bairstow’s decomposition as:

(x2 +d;x+ do)- (x2 +e X+ eo)- (x2 + fix+ fo)- (xz + X+ go)z 0 (59)
Expanding the product in (59) and equating each coefficient to the corresponding term in the original
equation in (52) leads to 8 equations:

d+e+f+9,=23; (60.a)
dy +eg+ fy +09p +die +d; f; +dy0, +&, f; +€,0, + f10; =8¢ (60.b)
do; +dieg +dg fy +d; fo +dgg; +d;19g +€o F; +€ fo +€00; +€90 + fo9; + f19

(60.c)
+d.e f; +die9; +d; f19, +6,f10, =25
doeg +dg fo+dp0g +€ofp +€090 + foUp +dgey Ty +die fy +die; fo +dpe 07 +d1800; (60.d)
+d.e,0o +dg f19; +dy fo9; +d; f190 +€0 F19; +€ fo9y +e, 100 +die; f19, =2,
do€o fy +doey fo +dieg fo +doegg; +doe; 9o +digdo +dg fo0y +do f190 +d; fo g +do o 0s (60.€)
+e 190 +€ fo9g +doe f,9, +di8 19, +die; fog; +die; f190 =25
do€g fo +doGo +do folo +€o foo +do€g f19; +dge; fogo +di€g fo 0y (60.f)
+dyeo fog; +dieg f190 +die; 9o +doey fo 9y =2,
do€o fo 91 +doeo f190 +does fodo +di€y fo Qo =2 (60.9)
do€o foo =29 (60.h)

Thus, a system of eight simultaneous nonlinear equations in eight unknowns d,,d,e;,eg, f;, fy,0; and
g, is formed.

2.9 Decomposition of a Nonic Function
2.9.1 The Proposed Decomposition
Consider a general nonic equation:

x? +agx® +a;x’ +agx® +agx® +a,x* +a;x® +a,x? +ax+a, =0 (61)
The nonic equation may be decomposed into a product of two equations i.e. one quartic equations and
one quintic equation as shown below:
4 3 2 5 4 3 2 _
(x +d3x® +dyx” + d1x+d0)- (x +€,X" + 83X +e,X +elx+e0)— 0 (62)
where dj,d,,d;,dg,€e4,€5,€,,€,and g are the unknown coefficients of the equations. Expanding the product in

(62) and equating each coefficient to the corresponding term in the original equation in (61) leads to 9
equations:

d2 +E3 + d3e4 = 8.7 (63b)
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dy +e +de, +dye; +0dse, =85 (63.d)
ey +dge, +die5+dye, +dge; =2y (63.e)
does +d.e, +dye; +dseg =8, (63.1)
doe, +die; +dyey =a, (63.0)
doe, +digp =3 (63.h)
doey =y (63.1)

d4 in (63.a),d, in (63.b), d;in (63.c) and d, in (63.i), respectively, can be rewritten in term of the
other terms as:

d3 =a8_64 (64a)

d, =a; —e;—(ag —e,) e, (64.b)

d; =a5—&, _(a7 —€3 _(as _64)'94)‘34 _(as _94)'93 (64.c)

dy =22 (64.d)
€o

Thus, ds,d,,d;andd, can be eliminated from (63.d), (63.e), (63.f), (63.9) and (63.h) such that a
system of five simultaneous nonlinear equations in five unknowns e,,e;,€e,,eand e, is formed.

8o —e,—(ar —e.—(as —e,)-e,)-e, —(a: —e, ) e, -
& +ey+{ag —€, (a7 —e; —(ag —&4)-€,)- €5 —(ag —4)-€5-e, (65.a)

+(a7 —€3 _(as —94)'94)‘93 +(as —e4)-e2 =85

a-e
&g +——++{ag —&, —(a7 —e3—(ag —€4)-&4) & — (a5 —€4)- €3} &5 (65.b)

0
+(a; —es—(ag —e4)-e4) 0 +(ag —€4)- € =y

a,-e
— +{aa ) —(37 —€3 —(as —94)'94)'94 —(as —34)'53}"32 (65.0)

€o
+(a7 —€3 —(as —94)'94)'el+(as —54)'60 =83

a, -e
Oe 2 +{ae —€ —(a7 —63—(5‘8 _84)'94)'64_(3-8 —64)'63}'el+(a7 —63_(5‘8 —94)‘94)'60 =3, (65.d)
0
dpy - €
208 gy (o ey (g ) ) ey (g ) e} =2y (652)
0

Once e,,e;,6,,8;and e, are obtained by the Newton-Raphson method in five dimensions,
ds,d,,d; and d,can be obtained by back substitution via (64.a), (64.b), (64.c) and (64.d), respectively.

2.9.2 Bairstow’s Decomposition
The nonic equation of (61) can be rewritten in form of the Bairstow’s decomposition as:

(x2 +d;x+ do)- (x7 +egx® +egx® +e x* +ex3 +e,x2 +ex+ e0)= 0 (66)
Expanding the product in (66) and equating each coefficient to the corresponding term in the original
equation in (61) leads to 9 equations:

d, +e5 =ag (67.a)
dy +e5+de5 =2y (67.b)
e, +dgeg +die5 =ag (67.c)
e;+does +de, =as (67.d)
e, +dge, +die53 =2, (67.e)
e, +doe; +die, =24 (67.1)
€y +doe, +die; =a, (67.9)
doe; +diep =&y (67.h)
do&y = g (67.0)

Thus, a system of nine simultaneous nonlinear equations in nine unknowns d,d;,€eg,€5,€,4,€3,€,,€and e is
formed.
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2.9.3 Complete Bairstow’s Decomposition
The nonic equation of (61) can be rewritten in form of a complete Bairstow’s decomposition as:

(x+co)-(x2 + dlx+d0)-(x2 +elx+e0)-(x2 + fx+ fo)-(x2 O X+ go)z 0 (68)
Expanding the product in (68) and equating each coefficient to the corresponding term in the original
equation in (61) leads to 9 equations:

Co+d,+e +f +0; =ag (69.a)
dy +eg + o +0g +Cod; +Cpe; +Co Ty +Co0; +dye; +dqf; +0,09, +€, F; +€,0, + f,0; =38 (69.b)
Codg +Cpep +Co g +CoUg +dgey +diep +do fy +dy fg +dy0; +d19g +e9 fy +€,fo +€001 +€,00 (69.)
Cod1€ +Cody fy +Cod19y +Coey fy +Co€ 91 +Co f19y + e fy +di€,9, +d; F19, +€, 9, =84
doeg +dg fo+dggg +€ofp +€000 + Tog +Codge; +Codq€g +Codg Ty +Cod; fy +Codo9; + €010,
+Co€p f1 +Cpey fp +Cop 01 + €100 +Cp Tg01 +Cp f19p +dgey fy +dieq fy +die; fo +dpe 0q (69.d)

+d1e00; +die 9o +dofi9y +dy fo Gy +dy F190 +€ F191 +e1fo 0y +e F190 +Codiey fy +Codie fy
+Cod1€,9; +Cod; f10; +die; 10, =285

Cod o€y +Codofg +Cod g8o +Cp€ o +Co€0 90 + Co fod go+d0e0 fdge fo+diey fo +dpee0;
+dyeg f19 +doe,go +d1807o +do Fo 9y +do f1 9o +d1 fodo +€o Fo 91 +€0 f190 +€1 o 9o
+doe; f10; +die fo gy +dye; f190 +Codgey fy +Codyeg fy +Codye fo +Cody fo 0y +Codieg9s (69.¢)
+Cod1€190 +Codg F19; +Cody foGs +Cody f190 +Coeo F191 +Co; Fo01 +Coes f1 G0
+Codiy f19; =24

dogo f g+deoUo +do folo +€ foGo +do€o f101 +doe; f190 +dieg fo 0y +dieg f19 +dse; fo o
+dg foe19; +Codoeg 1 +Codoey fo +Codieg fo +Codoeods +Codoer o +Codi€oUo +Codo fo s

(69.1)
+Codo F190 +Cods foo +Co€o o 01 +Co€o F190 +Cos fo g +Codo€; F19; +Codi€g f194
+Cods€; o9y +Codie; f190 = a3
Codo€o fo +Codo€oGo +Colo foGo +Colo foGo + o€ foTs +do€o f190 +do€; fo Qo + 10 frgo
(69.9)
+CoUoeo f191 +Codo€ fo Gy +Codoy F190 +Cod1€g fo 91 +Codi€g F190 +Codi€; fodo =,
do€o fodo +Colo€o fo 91 +Codo€o F190 +Codo€; foGo +Codi€o fodo =& (69.h)
Codoo fo90 =29 (69.1)

Thus, a system of nine simultaneous nonlinear equations in nine unknowns c,,d;,dy.€;,€p, f1, fg, 0;
and g, is formed.

I11.  N-D Newton-Raphson Method and the Jacobian of the Functions
3.1 Newton-Raphson Method for a Nonlinear Function
The prediction of the Newton-Raphson method was based on a first order Taylor series expansion:

F(x1)= F06)+ 000 = %) £10) (70)

where x; is the initial guess at the root or the previous estimate of the root and x;; is the point at which the
slope intercepts the x axis. At this intercept f(xi+1)= 0 by definition and (70) can be rearranged to:

f'(xi ) (71)

f'(x;)

which is the Newton-Raphson method for a nonlinear equation.

Xisg =X —

3.2 Newton-Raphson Method in more than one Dimension
3.2.1 Newton-Raphson Method in two Dimensions

The Newton-Raphson method for two simultaneous nonlinear equations can be derived in the similar
fashion. However, a multivariate Taylor series has to be taken into account for the fact of more than one
independent variables contributing to the determination of the root. For the two-variable case, a first order
Taylor series can be written for each nonlinear equation as:

ou; ou;

Uiy = U +(Xi+1_xi )a_)(l+(yi+l_yi )E' (72.9)
OV, OV;

Vi =V + (Xi+1 =X )a_xl + (Yi+1 =i )E' (72.b)
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Just as for the single-equation case, the root estimate corresponds to the points which u;; =0
andv;,; =0. (72.a) and (72.b) can be rearranged to:
ou; ou; ou; ou;

o +Eyi+l =—U; +X; §'+ yia (73.2)
&'Xm +Elyi+l =—Vj + X 6_xl+ Yi E' (73.b)

In (73) only x;,; and y; are unknown. Thus (73) is a set of two simultaneous linear equations with
two unknowns. Consequently, with simple algebraic manipulations, e.g. Cramer’s rule, x;,; and y;,; can be
solved as:

Xis1 = Xi 5U.§Vyi auiayavi (74.a)
oxX oy oy oOx

Vi =Y~ 8\2 A )évi (74.b)
X oy oy ox

The denominator of each of (74) is the determinant of the Jacobian of the system. (73) is the equation
for the Newton-Raphson method in two dimensions.

For the benefits of further discussions on the method for more than two dimensions, (74) should be
rewritten in term of the matrix notation i.e. the Jacobian of the function — [Z].

el

u(xi,yi)  ov(x, i)

[Z]: au(iixy Yi) 3"(3-)( Yi) (76)
oy oy

where [Z] is the Jacobian of the function and [Z ] is the inverse of [Z].

3.2.2 Newton-Raphson Method in More Than Two Dimensions
Consider a system of n simultaneous nonlinear equations:

f1(X;, Xp 1000y Xy ) =0
f2(Xg, Xg,00 Xy ) =0

(77)

Xy, g0y Xy ) =0
The solution of this system consists of a set of x values that simultaneously result in all the equations
equaling zero. Just for the case of two nonlinear equations a Taylor series expansion is written for each equation
flia="fi+ (Xl,i+1 =Xy )%Ill + (Xz,m —Xa,i )fo_! oot (Xn,i+1 —Xnji )zfx_lr:
where the subscript, I, represents the equation or unknown and the second subscript denotes whether the value
of function under consideration is at the present value (i) or at the next vale (i+1).
Equations in the form of (78) are written for each of the original nonlinear equations. All f,;,; terms
are set to zero and (78) can be rewritten as:
= fi + X i+X2i %‘F""F Xn,i %Z X1i+1%+ X2i+l%+"’+xni+l%
' T O0Xy T OXy T Xy, T 0%y T OXy T OX,
Notice that only the X;;,;, j =12,.., nterms on the right-hand side are unknowns. As a result, a set of

(78)

(79)

n linear simultaneous equation is obtained.
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The partial derivatives can be expressed in term of matrix notation as:

i i M
X, 0%, oxn
Foi Mo Mo
X, 0% OX
[Z]: . . .
afn,i afn,i afn,i
| 0% 0% 0%y |

The present and the next values can be expressed in the vector form as
T
Xif' = {xl,i Xaj Xn,i}

Xia)' = {Xl,i+l Xojs1 o Xn,i+1}
The function values at i can be expressed as
{Fi }T = {fl,i foi - fn,i}

Using these relationships, (79) can be rewritten as
[2]Xi.a}= i}
{Wi}: —{Fi}+[z]{xi}

Assumed that the inverse of [Z] can be obtained. Then {XM} in (84) can be solved.
Xiaf=[2"- Wil =[z]* R zix D=z AR 2] 2] %3}

In (86) [Z]™"-[z]=[1] is a unit matrix. Thus, (86) can be rewritten as:
Xiaf= X 3=z AR

3.3 Functions from the Decomposed Equations and the Jacobian of the Functions

For the benefits of applications the system of simultaneous nonlinear equations derived for the
decomposed equations discussed in Section 2.3 — Section 2.9 are summarized in the following subsections.

3.3.1 Original Cubic Equations

)
—+e -a,
€o

=1 e e
s

0
a
(e—ozj ©)
z]=|, V7
L% [@J
3.3.2 Original Quartic Equations

(2—0+eo +(33 _el)'el —azJ

0

{Fi= [a@z_;)eu(ag—el)'%‘al}
) e

[2]-=
ady -€ a,
[ma-2en) (-]
0

(80)

(81)
(82)

(83)

(84)
(85)

(86)

(87)

(88)

(89)

(90)

(91)
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3.3.3 Original Quintic Equations
3.3.3.1 The Proposed Decomposition

(2—0“31 +(a4 —ez)'ez —asj

0

{Fi=1leo+ %0 =2 +(ay ;) -6 -2,

(§+(a4—ez)'eo‘alJ
| (57 e (o)
[ee) (2] e

3.3.3.2 Bairstow’s Decomposition
d;+e —a,
dy+e +d;-e,—ag
{Fl={e;+dy-e,+d;-e, —a,
dyp-e,+dy-e—3
dy-ey—al
0 1 0 0 1]
1 e 0 1 d
[z]=]le, & 1 d; d,
e, e d; d; O
g 0 dy 0 O

3.3.3.3 Complete Bairstow’s Decomposition
Co+0d,+e —ay,
do+€y+Cy-d; +Co-€ +d; -6, —ag
{Fl=14co-dg+Cy-€y+dg-€ +0d; -y +Co-d; - —a,
do-€y+Cy-dy-€+Cy-dy-€g—23y
Cp-dp-ep—al

1 0 1 0 1
d; +e 1 Co+6€ 1 Cp+0d;
[Z]=|dy+ep+die; co+e, ep+Coe Co+d;  dg+Cod;
doe; +diy €y +Cpe;  Cpey Oy +Cyd; Codp
| dog Co€ 0 Cody 0

(92)

(93)

(94)

(95)

(96)

(97)
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3.3.4 Original Sextic Equations
3.3.4.1 The Proposed Decomposition and Bairstow’s Decomposition

(?Jrez +(as _93)'93 —a4J

0

ao ‘63
(as—e3)-e, +& + —a3j
fFl=lt s (%8)
( ao '82
8 +—2—2+(as—€;)-€, -2,
€o
ay-e
[_0 L+(as—e3)-& _alj
€
s 0) O -2
€
dg - € a
Ep] 0 e (2 (9
| o °
dg-€ a
2E) e (2]
€y 0
2] (5] 0 )
AN € J
3.3.4.2 Complete Bairstow’s Decomposition
d+e +f—ag
dy+eg+ fo+de,+d, f,+e,f; —a,
{F}— doe; +diep +dofy+d; fy+egfy+e, o +die f; —ag (100)
doeg i +doe Ty +diegfp—ay
dogo fo — a9
[ 0 1 0 1 0 1 ]
1 e+ f; 1 d;+ f; 1 d;+e
[Z]= e+ f; e+ fo+efy d; + f; do+ fo+di f; d; +e dy +ep +die (101)
e, fo 0 do fo 0 doe 0 ]
3.3.5 Original Septic Equations
3.3.5.1 The Proposed Decomposition
a
(e_0+el +las—e, —(as —e;)-e3f-e5+(ag —e3) e, —34J
0
a,-e
(eo +%+{a5 —e, —(as —83)-e3f-€, +(as —€3)-& —33)
[F}= 0 (102)
a,-e
( Oe 2 +{as —e, —(ag —€3)-85)-€; + (a5 —€3) € —azJ
0
ag-e
%Jr{as —e, (a5 —€3)-e3} € _alJ
0
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a,
{‘ eozj () (s —2e5) (as —2e, —2(as —e3)-e5—€;)
0
(1—6‘04&3] (ae —93) (35—292 —(as —e3)'e3) [ai—el—as‘ez+292'93] (103)
€ €
[2]=
ag-e, o
(*as ea] (as—ez *(ae *93)'93) [77e1] (—e07a6~el+291-e3)
€ €o
ag - € a,
[_ ° 21+a5—e2—(a6—e3)-e3j [*O) (~eo) (—ag-eq +2¢5-€5)
AN €o ]
3.3.5.2 Bairstow’s Decomposition
d;+e,—ag
do+e;+de, —ag
e, +dpe, +die; —ay
{F}: el + d0e3 + dlez _a3 (104)
gy +dge, +d.e —a,
doe, +diep — &y
doey —ag
[0 1 0 0 0 0 1]
1 ¢ 0 0 0 1 d
e, &5 0 0 1 d; dg
[z]=|e; e, O 1 d; d, © (105)
e, g 1 d dg 0 O
e & d dy 0 0 O
& 0 dy 0 0 0 0]
3.3.5.3 Complete Bairstow’s Decomposition
(co+d; +e, + f, —ag)
(dg +€g + fo +Cody +Coly +Cofy +diey +dy fy +6,f —ag)
(codg +Cop +Co fo + oy +dieg +dofy +d, fo+eofy +e o +Codiey +Cody fy +Coey fy +die; f —ay)
fF) do€o +dg fo + € Fo + Cololy +Coty8y +Coly y +Coly fo +Cop fy +Coly o + Aoy fy + e Ty +dye, fy )| (106)
- +code; f) —ay
(codo€o +Colg To +Cog fo + Ao 1 +doe; fo + i€ fo +Codoey fy +Codieg 1 +Codiey o —a,)
(dogo fo + Codoo F1 +Codoey fo + Codiey fo —ay)
(Codoeo fo _ao)
[ 1 0 1 0 1 0 1 1
di+e +f; 1 Co+e +f; 1 Co+d;+e 1 Co+d; +€;
31 Co+e + T Z33 Co+dy+ 1 235 Co+d;+e Z37
[Z]: Z41 Z42 Z43 Z44 Zy5 Za6 Z47 (107)
Z5, Z5 Z53 Z54 Zs5 Z5 Zs7
Zg1 Zg2 Coo fo Zg4 Codo fo Zg6 Codo€o
doeg fo Coe To 0 Codo o 0 Codo& 0 ]
Z3,l :do +e0 + fO +d1e1+dl fl +elfl (108&)
Z33 =€+ fo+Coe +Cofy+erfy (108.b)
23‘7 :eo + fO +doel +d0fl +e1f1 (108d)
24, =6+ fo+coey +cofy+ef) (108.1)
24‘3 = Coeo + CO fo + eO fl + el fo + Coel fl (1089)

DOI: 10.9790/5728-1204044476 www.iosrjournals.org

59 | Page



Beyond the Quadratic Equations and the N-D Newton-Raphson Method

244 =0y + fo+Cod; +Cofy +d; fy (108.h)
Z45 =Cody +Cofg +do fy +d; fg +cod; (108.1)
246 =6+ fo+doe; +dofy+e,f) (108.))
247 =o€y +do o +eofy+€ fo+doe; fy (108.k)
Z51 =dgeg +do fo +eq o +doe; f +diey fy +dye fy (108.1)
Zg, =Co€y +Cofp +e€ofy +6 fo +Coey fy (108.m)
Z53 =€ fo +Coeg f1 +Coey fy (108.n)
Z5 4 =Cody +Co fg +do fy +d; fg +cody (108.0)
Zss =doey +dofo+egfy+e.fp +dge; ) (108.9)
57 =€ fo +dgey fy +dge; fo (108.r)
251 =o€ f; +doey fo +dieg fy (108.s)
Zg2 =8 fo +Coep fy + oy (108.1)
254 =g fo +Codo f; +Cody fo (108.u)
Zg6 =€ fo +doey fy +dge; fy (108.v)

3.3.6 Original Octic Equations
3.3.6.1 The Proposed Decomposition

0
+(a7 —e3)-e -a,
ag - €3

{F}= N
+(a6 ) —(37 —93)‘33)'31 —a3

ay - e
(Oez*'{as —€ —(ae ) —(a7 —es)'es)'es —(37 —93)'92}'91+(36 ) —(a7 —es)'es)'eo —32]

0
a,-e
(01*{5‘5 —e; —(ag —e; — (a7 —€5)-€5)-e3—(a; —e3)-€, |- € _alJ

a
{;*eo +1as —e (a5 —€, —(a7 —5)-e3)- €5 — (a7 —e5)-e, f-e5 + (a5 —€, (& —e3)-e3)-e2]

+{a5 ! —(ae ) —(a7 —es)'es)'es —(37 _93)'92}'92 +(a7 —es)'eo (109)

€o
% g (@r-2e)  (2e, 4367 -2 )
_?+ a; — 263 28, +3€3" —2a7-€3+35) 714
0
g€, 2
a7 —8g—— (a5 -2¢, ~a e ve?) 223 241 (110
o (110)
[2]=
a,-e a
02 vag—e, -y ety 23, [O—eo—a7-el+291-e3] 234
€ €
)
2y, ?—eo (—ay & +2ey-€5) Zaa
0 ]
a,
2,4 =e—°—e0 —a; €, —ag €y +26,° +2€ €, +2a; €, €5 —30, -8;° (111.c)
0
Z3, =85 26 —8; €, —dg €3 +8; €3 +2€, €3 — 65 (111.d)
234 =87 €y —ag €y + 260 €5 +2€; -€, + 23y €, €5 —36; - €57 (111e)
dg - €
Z4,l - 0 21 +3.5 _el_a.7 'e2 —ae 'Es +a.7 'e32 —633 +ZE2 'e3 (lllf)
0
24’4 = _a6 'eo +2€0 '62 +26\7 'eo '63 _360 '632 (lllg)
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3.3.6.2 Bairstow’s Decomposition
d; +e5—ay
dy +e, +die; —ag

e; +dyes +die, —ag

e, +dpe, +die5—ay
{F} e, +dge; +die, —ag
ey +dge, +d.e —a,

doe, +diep — &y

dogy — 2
[0 1. 0 0 0 0 0 1]
1 & 0 0 0 0 1 d
es e, 0 0 O 1 d; dg
z]- e, & 0 0 1 d; dg
e e, 0 1 d; dy O
e g 1

e € d, dp 0 0 O
& 0 dy 0 0O 0 ©

3.3.6.3 Complete Bairstow’s Decomposition
(dy+e +f+9,-27)
(do+eq+ fo+0o+die; +d; f, +d,g; +e f, +,0; + f,0, —ag)

+d.e f; +de 9, +di f19;, +€ 19, —as

+e 190 +e,fo0o +doe; f10; +diep f10; +die; fog; +die; f190 —ag
(doeo fo +doeodo +do folo +€o foo +doeo f10; +doe; fogo +diey fo0;
+d,€g fo0; +di€g f190 + 18 fogo +doe; fo 91 —a,
(doeo fo0; +doeq f190 +doe; fogo +diey fo 9o _al)
(doeo fodo —ao)

0 1 0 1 0 1 0
1 e+ fi+0; 1 dy+fi+0; 1 dy+e +0; 1
e+ f+0; 232 d+f+9; Z34 dy+e +0; 236 dp+e + f;
z]- 241 Z42 243 Z44 Z45 Z46 Z47
Zs1 Z52 Z53 Z54 Zs55 Zs56 Zs57
Zg Zg2 Zg3 Zga Zg5 Zg6 Zg7
271 €0 fodo 273 do oo 275 do€edo 277
| e folo 0 do fo90 0 doeo 9o 0 doeg fo

232 =6+ fo+go+ef+e0; + 101

234 =0+ fo+go+dify +digy + f10y

Z36 =do +€y + 0o +di& +d19; +€,0;

Z3g =dg+€y+ fo+de, +d fy +e f;

240 =6+ fo+go+e fy+e9 + £10

2, =¢f+e fo+e00s +€ 9o+ fo0y + F190 +€.F10;
243 =do+ fo+9go+d; fy +di9; + £10

244 =dofy+d; fo+dggy +digg + fo 91 + f190 +d; 19y

Zy5=0g +€9+do+0d.& +019; +€,0;

)

[doel +dieg +dofy+d; fo +dog; +di 9o +€o fy +6 o +€00; +€.90 + fo 0y + flgoj

(doe0 +dofo+dggo +eyfo+€990 + ToGg +dge; fy +dyeg fy +die fo +does0; +dleoglj
{F}: +d,8,9g +dg 19y +dy fo0; +dy F190 +€0 F19; +€fo0; +€,F190 +die; f9, —a,
(doeo fy+doe fo +dieg o +do€o 9y +dg€19o + 018090 +dg fo0; +dg f190 +d; fogo +do ngl)

1
dy+e + f;
Z38
Z48
Zsg
Zgg
dogo fo
0

(112)

(113)

(114)

(115)

(116.a)
(116.b)
(116.c)
(116.d)
(116.¢)
(116.1)
(116.9)
(116.h)
(116.i)
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2,6 =o€ +di8y +do0; +d;9o +€99; +€90 +01€,9; (116.j)
247 =0y +€y+ fo+de; +d; fy +e f) (116.k)
248 =006 +diey +dofy+d; fo+egfy+e fy+dig f; (116.1)
25, =¢gf +e fo+ey0; +€.90 + fo9; + f19o +€, 10y (116.m)
Z5, =€y fo +€00g + fo9p +€ F10;, +&, fo9; +€, 190 (116.n)
Z55=0dof +d; fo +do0; +d19g + fo9y + F19 +d; F10; (116.0)
254 =dofo +dogo + oo +do f10; +d; fo9; +d; f19 (116.p)
Zg55 =o€ +d.€g +do0y +d19 +€99; +€,9o +01€,0; (116.9)
Zsg =o€y +dgYo +€99o +do€ 9y +d1800; + 16,9 (116.r)
Z5, =doe; +di€g +dofy +d; fo +eofy +€,fp +die; fy (116.5)
Zsg =dgey +dofo +e fo +doe; f; +diey fy +dse fy (116.u)
Zg1 =€ofo +€000 + foo +€ F10; +€,F190 +€, Ty, (116.v)
Zgo =€ fo0; +eo f10 +e1fy00 (116.w)
Zg3 =dofo +do9o + fo9o +do f19; +d; fo0; +d; 190 (116.x)
Zg4 =dof190 +d; fogo +do fo0; (116.2)
Zgs =o€y +dgJo +€0J0 +0d1€00; +d18,0g +do€,9; (116.aa)
Zg6 =0dg€00; +do€9o +d1€0Y (116.ab)
Zg7 =o€ +dofo+eqfy +doe f; +diey fy +dsg fy (116.ac)
Zgg =g fy +dieg fo +dge; fy (116.ad)
27, =€ fo0; +€0 F190 +€ o9 (116.ae)
273 =dyfo0; +dg f190 +d1 fo 9 (116.af)
275 =001 +dg€1 9o +d1870 (116.ag)
Z;7 =doey fy +doe; fo +dieg Ty (116.ah)

3.3.7 Original Nonic Equations
3.3.7.1 The Proposed Decomposition

0
+(ag —e4)-82 - 25

ag-e
{eo +%+{ae —e;— (a7 —e3—(ag—ey)-€s)-e4 — (a5 —€4)- €5} €3 + (a7 —e3— (g _94)'34)‘6"2}

a
[eo+91+{ae —e, (a7 —e;—(ag —e4)-24)-04 — (a5 —€4)-€3}- &4 + (a7 —&5 —(ag —34)'e4)'93J

0
+(ag—e,)-& -3,

Fi= [aoes

o *{as ) 7(a7 —€ *(as *94)'94)'94 *(as *94)'33}'32 +(a7 —€ *(as 94)'94)'91}
o

(117)

+(ag —e4)-€0 -2

a,-e
[ Oe 2 +{ae—ez—(a7—93—(38—‘34)’94)'94—(38—94)'93}'314'(37—93—(38—94)'94)'90—32J

o

ay-e

(Oe 1+{ae—ez—(a7—es—(as—94)'64)'34—(38—94)'93}'90—31]
0
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)
- (1) (ag —2¢,) Z14
€o
Ao €4 2
1-——— (38—94) (a7 —2e3-ag-€4+e ) Z34
€o
=|| @€ ( 2)
[Z] ————ag—€ | (@7 —-€;—85-€,+e, Z33 234
€o
)
Zy1 242 [e__elJ Z44
0
d
Z51 (_} (_ eo) (aa € +2€ 'e4)
€o
Zl,5 = a6 —262 —2&8 '63 - 2&7 '64 +388 ’e42 + 663 . 94 —4643

22’4 :a6 —282 —288 ~63 —764 +a8 'e42 +4e3 ‘e4 _643

a
22‘5 :e_o_el_ag‘ez_a7 'e3 +262 '84 +2a8'63‘e4_3e3'642+2e32

0
Zaq =85 —26,—8q €4 — 8y -, +8g €42 +20,-€, —€,°
33 =8 —<€y—dg-€3—87 €y +ag €y +<LE3-€4—8y

4
Z34 =e——e1—a8~e2 +2e,-8,
0

23'5:—eo—aa-el—a7~e2+2e1-e4+2e2-e3+2ag-e2-e4—3e2-e42

a-e
Zy=—"7%+a, —ag-e,+e,’

0
2 3

Z44="€ —a3-€ 126 €
24’5:—as-eo—a7~el+2e0~e4+2e1-e3+2a8-el-e4—3e1-e42

a-e

€

25’5 =_a7 'eo —290 '63 +2&8 'eo ‘64 —380 '642

3.3.7.2 Bairstow’s Decomposition
d; +e5 —ag
do +e5+deg —ay
e, +dgeg +d.e5 —ag
e; +dye; +die, — a5
{Fl=1e, +dqe, +d.e5—a,
e, +dgye; +de, —ag
ey, +dge, +d, —a,
doe, +diep — &y
do€ —ag

(118)

(119.a)
(119.b)
(119.c)

(119.d)
(119.e)
(119.f)
(119.9)

(119.h)

(119.i)
(119,)
(119.K)

(119.1)

(119.m)

(120)
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10 0 0 0 O 0 1
1 ¢ 0 0 0 0 0 1 d
g & 0 0 0O 0 1 d; dg
e ¢4 0 0O 0 1 d dy O

[z]=|le, & O 0 1 d dy 0O 0 (121)

e &6 0 1 dp dg 0O O O
e, e 1 d, dy 0 0 0 O
e & d, dp 0 0 O O O
& 0 dgp 0 0 O 0 0 O]

3.3.7.3 Complete Bairstow’s Decomposition
(co+dy+e€ + f +9;—ag)

(dg +eg + fo + Qg +Cody +Co8y +Co fy +Co0y +die, +d,fy +dyg; +ef) +e,9; + 0, —ay)
Codg +Coeg +Co fg +Co0g +dgey +diey +dofy +d; Ty +dggy +d19g +egfy +€, g +€001 +€,0¢
[ Cod1€y +Cody fy +Cod 9y +Coey fy +Co€,0; +Co f19y + ey fy +die gy +d; 19, +e, 10, —ag j
doeg +dg fg +dg0g +€o Ty +€000 + fo9g +Codoe; +Codieg +Codg fy +Cod; Ty +Codg0; +Cod;10,

+Cp€g T +Cpey Ty +Co€p 01 + €100 +Co Tg0y +Co F10q +dge; Ty +dqey fy +die Ty +dgey0q
+die00; +di€.9g +dofi9y +d; fo9y +d; 190 +€0f19; +efo0; +eF190 +Codiey i +Codiey f
+Cod1€.0; +Cod; F,0; + i 10 —ag
Cod &g +Codofy +Cod g +Coeg fo +Co€eJg + Cp fpd go+d0e0 frdge, fo +diey fo +dge0;
+diey 105 +doe9o +di€oUo +do fo 0y +do F190 +dy fo Qo + €0 fo 01 +€9 f190 +€1f 90
{F}: +doe; f10; +die; fogy +diey F19o +Codoey fy +Codieg fy +Codse; fo +Cod; fo 9y +Codi€09y
+Cod1€19g + Codg f19s +Cody fo0y +Cody f190 +Coo F101 +Cor fo9s +Coe1 F19g
+Codi€y 19, -2,
doeo f o+dgeolo +do folo +€o folo + doo f19; +doe; f190 +dieg fo; +dieg f190 +die; fo g
+do foe 9y +Codoeg i +Codoey fo +Codieg fo +Codo€ 9y +Codo€1 9o +Cod1€o Yo + Codo fo9s
+Codo f190 +Cody fo 9o +Co€o Fo U1 + Coo F190 +Co€s fo o + Codoey F19; +Codseg 10,
+Cod,€ fog; +code; f190 —ag
[Codoeo fo +Codo€0To +Codo foGo +Coo foJo +dogo fo 9y +doeo f190 +doey fogo +dseg fogoj
+Codoeq f19; +Codoer fo 9y +Codoer f1G0 +Codi€g fo 91 +Codi€p f190 +Codi€ fo g — @,
(dogo foGo + Codoey fo 1 +Codoeo F1Gg + Codoes foJo + Codieo foGo — 2y
(codoeo fodo —ay)
1 0 1 o0 1 0 1 0 1]
Zp 1 2,35 1 7,5 1 7,7 1 I

(122)

Z31 232 133 34 I35 Z3s Z37 I3g I3g
Zg1 Zap 243 Zaa Zas Zas Za7 Zag Zag
[2]=|2s1 252 Zs3 Zsu Zss Zss 27 Zsg Zsg (123)
Zs1 Zs2 Zs3 Zea Zes Zes L7 Zes Z69
Z710 Z72 73 I74 I35 I76 Z17 Z1g Z79

Zg1 Zg2 Zg3 Zga Zgs Zgps Zg7 Zgg Zgg
Zg1 Zgp 0 Zg4 0 Zgg 0 0 Zgg|

Zy;=d;+e +f+0; (124.3)
Z;3=Co+e +f +0g; (124.b)
Zy5=Co+dy+f+0 (124.c)
Zy7=Co+d; +€ +0 (124.d)
Zy9=Co+d;+e + ) (124.e)
231 =dg +€y+ fy +9o +dse +d; f; +d;g; +& f) +€,9; + f10; (124.9)
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23, =Co+& +f +0; (124.9)

Z33 =€y + fo+ 0o +Co€ +Co fy +Co0y +6 F; +€/0; + F10; (124.h)

Z34=Co+dy+f +0; (124.1)

235 =g + fo + 9o +Cody +Co f; +Co0y +dy f; +y 9y + 10y (124.))

Z36=Co+0d; +€ +0; (124.k)

Z37 =dg +€g + 0o +Cody +Co€y +CoQy +0i€ +d;09; +€,0; (124.)

Z3g =Co+d;+e + f; (124.m)

Z39 =g +€y+ fo +Cody +Co; +Co fy +die +dy fy +6 f) (124.n)

247 =doey +diey +dg fy +dy fo +dog; +d19g +ep fy +€ o +€09; +€,90 + f0; + F190 (124.0)
+dye fy +die g +di f0; +ef10;

230 =C+ fo+0o+Coe +Cofy+CoGy +erfy +€.9 + 10 (124.p)

243 =Co€ +Co fo +Colo +€ fr +€ fo +e90y +e.90 + fo 9 + F100 +Coey fy +Coe1 91 +Co F10; (124.)
+ef,0,

244 =0+ fo+9go+Cod; +Cofy +Co0; +d; fy +0d;9; + 105 (124.r)

245 =CoUo +Co fo +Co0o +do fy +dy fo +dogy +d1 9o + fo 01 + f190 +Cody fy +Cod101 +60 F19; (124.)
+d, f,0;

246 =Uo +€9+ 0o +Cody +Co€ +Co0; +di€ +0;0; +€0; (124.1)

247 =Colo +Co€g +CoJg +dge; + i€ +dgGy +d190 +€00; +€ 7o +Cod1e; +Cod19; +Co€10; (124.4)
+0d1€10y

248 =0+ + fo +Cody +Co& +Co fy +di6 +d; fy +€ ) (124.v)

Z49 =Colg +Co€y +Cq fy +doe +diey +dg fy +d; fo +eo )+ fy +Codie +cod; fy +Coey fy (124.)
+dq.e fy

251 =doeg +dg fo +doGo +€09o + foGo +doer fy +dieg fy +dye; fo +doey 9 +diep9; +die 9o (124.X)
+dof gy +dyfogy +d; f190 +€0 F10; +€,fo0; +€F190 +die; 195

257 =Co€ +Co fo +Colo +€o fr +€, fo +€00; +€,90 + o 91 + f190 +Coe 1 +Coer0; (124)
+Co f10; +€, 110,

253 =€ fo +€000 + foUo +Coo f1 +Coey fo +Colo 01 +Co€190 +Co fo 91 +Co f1 90 +€0 F101 (124.2)
+e f +e 01,90 +Coe F10;

254 =CoUo +Co fo + oo +do fy +dy fo +dogy +d1 9o + fo 01 + f190 +Cody fy +Cod101 +C0 F19; (124.22)
+dy 10y

255 =do fo +dggo + foGo +Codo f1 +Cody fo +Codo0s +Cod1 9o +Co fo 91 +Co f190 +do F19; (124.b)
+d, fo0; +dy f,90 +Cod; 105

Z56 =CoUg +Co€y +CoJo + o€y +d1ey +dog; +d1 7o +€99; +€9g +Cod1€ +Cod1 9y +Co€1 0y (124.20)
+d,8,0,

257 =dgey +doUo + €Yo +Coto® +Cod1€y +CoUg Uy +Cod1 9o +Co€0 1 +Co€19o +doe1 s (124.ad)
+d,800; +d1€,9 +Cod1€10;

Zgg =Codg +Co€y +Co fo +dgey +di€y +do fy +d; f +eq fy +€) fy +Codie) +Cod; fy +Coey fy (124.26)
+d.e f;

Zg9 =o€y +do fy +€y fo +Codo€; +Codieq +Codg fy +Cod; fo +Coeg fy + o€y fo +dgey fy +dig fy (124.46)
+die, fy +Cpdie; Ty

Zg1 =g fy +doey o +dyey fo +doeg 0y +dge o +di€do +do fo 9 +do f190 +d1 fo 9o (124.9)
+eofo01+€f100 +€ fogo +doe; f10; +dieg 19, +dse; fo0; +diey f19g
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Zg, =€ofo+€000 + folo +Co€ f1 +Coey fo +Co€o U1 +Co€1 90 +Co foly +Co F190 +€0 f19: +€, o0, (124.ah)
+e f100 +Coer 10

26,3 =Co€ fo +Co€0Uo +Co foo +€0 fo1 +€9 F190 +€ foTo +Coey f191 +Coey Fo 01 +Coer f190 (124.ai)

26,4 =do fo +doGo + fo0 +Codg fy +Cody o +Codo Gy +CodiGo +Co fod1 +Co f1 9o +do F10; (124.2j)
+d,; f59; +d; f190 +Cody F19;

Zg5 = Colg fo +CodoGo +Co foGo +do fo 91 +dg f190 +d1 foGo +Codo f191 +Cody fo 91 +Codi F1go  (124.2K)

Zg6 =o€ +dg Yo +€0Jg +Cotoey +Cod1€y +Codo Ty +Cod1Jg +Co€e T +Co€1Tg + o€, 9; +d1800; (124.20)
+ 01819 +Cod1€10y

Zg7 =CoUoe +CooTo +Co€o Yo +dg€0T1 + o€ dg +d18000 +Colge 91 +Cod1€0; +Cod1€10g (124.am)

Zgg =o€y +do fy +€y o +Codoe; +Codieg +Codg fy +Cod; fo +Coeg fy +Co€y fp +doe; f; +di€00;

(124.an)

+de, fy +Cpdie; Ty
Zg 9 =Colo€y +Codg fo +Co€g fo +do€q fy +dge; fo +dieg fy +Codoey i +Codi€ fy +Codye; fy (124.a0)
277 =o€ fo +dg€oGg +do fo 9o +€o foGo +do€o F19; +doe; fody +do€; f190 + 018 fo 0y (124.ap)

+0dq&0 f190 +ds€ fr 90
27, =Co€ fo +Co€0 G0 +Co FoGo +€0 Fo91 +€9 F190 +€ fo g +Co€0 F191 +Co; Fo 91 + o€ F190 (124.aq)

2753 =09 fo9o +Coo fo 91 +Coo f190 +Co€1 fo o (124.ar)
27,4 = Colo fo +CodoGo +Co FoGo +do fo 91 +do f190 +d1 oo +Codo 191 +Cods fo 91 +Cods f19o  (124.25)
275 =dofa9g +Codg fo 9y +Codg 190 +Cod1 fo 9o (124.at)
Z76 =Colg€y +CoUo Qg +CooJo +do€00; + g€ 9o + 180T +CoUo€ 95 +Cod1€00; +Cod1€:7g (124.au)
277 =do€oTo +CoUoeyTy +CoUoe g +Codi€0dg (124.av)
Z78 = CoUo€y +Codg fo +Coey Ty +doeq f; +dge fy +dseq fo +Codoey fy +Codieg fy +Cods€; fy (124.aw)
Z79 =o€ fo +Codoeq f; +Codoe; o +Codyeg Ty (124.ax)
2g1 =doeq o0y +doeg 190 +doe; fogo +diey o9 (124.ay)
25, =€ fo9q +Coo fo 91 +Coo 190 + 016 f G0 (124.az)
23 =Coo fo 0o (124.ba)
g4 =y fpgg +Codg o9y +Codg f190 +Cody fg (124.bb)
25 =Codo fo 9o (124.hc)
Zgs =Up€0 U0 +CoUo€0 91 +CoU€190 +Cod1€090 (124.bd)
27 = Coo€oUo (124.be)
Zgg =o€y fy +Codoey fy +Codo; fo +Cod;€g fo (124.bf)
Zg9 =Codoey fo (124.hg)
291 =doe fo9o (124.bh)
292 =Co€ oo (124.hi)
294 =Codo fo 9o (124.bj)
296 = CoUo€o Yo (124.bk)
299 =Codgey fo (124.hl)
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V. Numerical Examples

Seven numerical examples will be demonstrated in this section to verify the applicability of the
proposed procedures. The first four examples are selected from real applications in civil engineering. They are
the cubic-, quartic-, quintic- and sextic equations, respectively. The last three examples are beyond the sextic
equation demonstrated in technical papers of the other author [7-9]. The intention is just to serve the researchers
to exercise some challenging problems and the formulas given herein should be useful for some existing
applications, if any. All calculations in this technical paper were done in the environments of Software Mathcad
Prime 3.0. Only results from the proposed decomposition will be shown rather in details. The results from the
other two alternative decompositions were also calculated to verify the correctness of the equations and to
compare the efficiency with the proposed method, but the results from the alternative methods will be excluded
because of the space limitation.

Example 1: Roots of a Cubic Equation
The required depth of a square timber section could be determined by solving the a cubic equation,

x® —1.40368 x102x —355872 x10™ =0. This equation can be decomposed to the product of a linear equation
and a quadratic equation as shown in (12). Firstly the two unknown e; and e, may be obtained by the Newton-

Raphson method in 2 dimensions via (75). In this case {F}and [Z] are calculated via (88) and (89),
respectively. The results of calculation are summarized as shown below.

. e| [0.01
Initial guess =
& 0.2
e| [0.01 - 1 3.55872 x10 1.00000
Iteration 1: 0l— ,{F}= 1.55872 10 , . 12]= ) J
e,] |02 ~4.71376 x10° 811744  —355872 x10
2] - 1.71241 x10  4.81188 x10
3.90601 x10% 171241

€| _[0.01| |171241x107 481188 x10 | |-155672 x10™ | _ |149374 x107

e 0.2] 390601107  —1.71241 —4.71376 x107? 1.80165 x107*

e 2 _ 2 1.59494 x10 1.00000
lteration 2- o| _ J149374 x10l ()= 5.80779 ><102 2l x )

e 1.80165 x 10" —1.39488 x10° 387353  —2.38243 x10

[z} - 3.10480 x10% 1.30321 x10™
5.04802 x10"  —2.07855

{eo} _ {1.49374 x10'2}+{3.10480 x10? 130321 xlo'lH— 5.80779 x10'2} {1.85584 xlO'z}

e 1.80165 x107" | | 5.04802 101  —2.07855 ~1.39488 x107 1.80489 x10*
e 2 — 2 1.03327 x10 1.00000
lteration 3: o| _J185584 x10 L )= 1.12685 x10 Lz x .
e | ]1.80489 x10° —2.01510 x10° 286494  —1.91758 x10

2] - 3.95678 x1072 2.06342 x107
591159 x10?  —2.13207

{eo} _{1.85584 xlo'z}{agse?s x102 206342 ><10'1{—1.12685 xlO'Z} {1.94201 xlO'Z}

& 1.80489 x101| |5.91159 101  —2.13207 ~-2.01510 x10° 1.82855 x10™*
e 2 — 4 9.43609 1.00000
Iteration 4: 0 _ 1.94201 x10 Y {F}Z 3.95045 x10 ) ,[Z]= R
e,] ]1.82855 x10° ~5.11779 x10° 272543 —1.83250 x10

[z} - 4.11372 x102  2.24487 x10™
6.11825 x10* 211828

{eo} ~ {1.94201 ><10'2}+{4.11372 x10?  2.24487 xlo'lH— 3.95045 ><10'4} ~ {1.94478 xlO'z}

e, | |182855 x10*| |6.11825 x107  —211828 1.82988 x10*

—5.11779 x10°°
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— e| [1.94478 x1072 —3.73362 x107' 9.40920 1.00000
Iteration 5: = 10 {F}= 8 z]= 1
e ] [1.82988 x10° —3.34315 x10° 272177 —1.82988 x10

] - 4.11807 x10?  2.25046 x10™"
6.12523 x101  —2.11750

{eo} ~ {1.94478 x10'2}+{4.11807 10?2 2.25046 x10‘1H—1.55872 xlO'l} ~ {1.94478 xlO'Z}
er] (182988 x10™| |6.12523 x107  —2.11750 —4.71376 x102|  |1.82988 x10™

Then the estimates of e and ejare 0.019447 and 0.182998, respectively. Then djcan be obtained
from (9).
2, _ -355872 x10°
e 194478 x107
(x—0.18299 )- (x2 +182988 x10x +1.94478 x10?)=0

. x=0.183,-0.091 + 0.105i . However, for the design purpose only the positive real root x =0.183m
is taken.

dy = =-0.18299 . The decomposed equation becomes,

Example 2: Roots of a Quartic Equation
The minimum anchored length of a sheet pile can be obtained from the equilibrium of the lateral earth

pressure acting on a sheet pile in form of a quartic equation x* +5.971x° —12.132x? —87.925x —109.496 =0 .
This equation can be decomposed into the product of two quadratic equations as shown in (18). Firstly the two
unknown e; and e, may be obtained by the Newton-Raphson method in 2 dimensions via (75). In this case

{F}and [Z] are calculated via (90) and (91), respectively. The results of calculation are summarized as shown
below.

€0 4
Initial guess { } = { }
e
. —3.35750 7.84338  —2.02900
Iteration 1: z]=
—13.68500 29.34450 —31.37350
0 16819 -0.01088
0.15731 —-0.04205
€o
S
eo}

4 0 16819 —0.01088 —3.35750 3 4,41585
4 0.15731 —0.04205 ~13.68500 [ ]3.95276
€

. 4.41585 —0.27022 6.61516 -1.93451
Iteration 2: [Z]z

3.95276 -1.17411
019954 —0.01321 }

2421361 —29.21154
[z]" =
0.16540 —0.04519
ey| [441585 . 019954 —001321| [-027022) (445425
e, |395276 | |016540 —0.04519 | |-1.17411 | |3.94440
) 4.45425 -0.00193 651875  —1.91780
Iteration 3: 1z]=
3.94440 —0.00882 23.79475 —29.03616
_[020214 -0.01335
1016565 —0.04538

e| [445425 . 020214 —001335] [-000193 | [4.45452
e, 394440 | |0.16565 -0.04538 | |-0.00882 | |3.94432

4.45452 - 8 6.51808  —-1.91763
Iteration 4: { } { } { 9.831%0 Xlo_ }[Z]:{ }

3.94432 — 461274 x107 2379173 —29.03493
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2] - 020215 -0.01335
1016565 —0.04538

€| _[446462| [0.20215 -—001335] [-0.83190 x10°| _ [445452
e 394432 0.16565 —0.04538 | |-4.61274 x107 | |3.94432
Thus the estimates of e, and ejare 3.94432 and 4.45452, respectively. Then d;and d,from can be
obtained from (15.a) and (15.h), respectively.
d, =2.02668 and d, =—24.58043 . The decomposed equation becomes,

(x? +2.02668 x — 24.58043 ). (x2 +3.94432 x + 4.45452 ) = 0

X =-6.074,4.047 1.972 + 0.752i . However, for the design purpose only the positive real root
X =4.497 m is taken.

Example 3: Roots of a Quintic Equation

The diameter of a circular steel column subjected to an axial force may be determined by solving a
quintic equation x° —5.866 x10°x3 +4.951 x10°x? +9.850 x10 ™ =0 . This equation can be decomposed into
the product of two equations i.e. one quadratic equation and one cubic equation as shown in (24). Firstly the
three unknown e,,e;and e, may be obtained by the Newton-Raphson method in 3 dimensions via (87). In this
case {F}and [Z] are calculated via (92) and (93), respectively. The results of calculation are summarized as
shown below.

€o 1
Initial guess je, r =41
€, 1
Iteration 1:
&| L 5.86581 x10°3 -9.84984 x10®  1.00000 — 2.00000
e, r =11, {F}=1{-4.94163 x10° | ,[z]=| 10.00000 x10? ~ -1.00000  —10.00000 x10*
&) |1 ~10.00000 x10* ~1.00000  9.84984 x10° —1.00000

250000 x10' 250000 x10*  —7.50000 x10°*
[z]* =| 500000 x10?  -5.00000 x10* —5.00000 x107*
—250000 x10? —2.50000 x10% —2.50000 x10*

e] (1] | 250000 x10? 250000 x10" 750000 x10 | | 5.86581 x1073 248546 x10*
e +=41t+| 500000 x10?  —5.00000 x10? —5.00000 x107? |-{ —4.94163 x107° | = 14.97042 x107*
e,] |1 [-250000 x10% —2.50000 x10? —2.50000 x10* | |-10.00000 x10™" | |7.51454 x10*

Iteration 2:

eo] [248546 x10* -6.17748 x107? —1.59447 x10°° 1.00000 ~1.50291

et =14.97042 x10* }  {F}={-1.25008 x10* { ,[Z]=| 9.99999 x10? —7.51454 x10" —4.97042 x107

e,| [7.51454 x10* -1.86771 x10™ — 751455 x10"  3.96299 x107"  —2.48546 x107
1.26993 x10™"  1.68996 x10* -1.10586

[z]*=| 422957 x10" 767902 x10?  -1.02189

~3.83951 x10? —5.10944 x107  —6.79939 x10™*

€| [248546 x10™| | 1.26993 x10  1.68996 x10™* —1.10586 -6.17748 x107 | [7.09744 x1072

e, +=4497042 x101 L +| 422057 x10"  —7.67902 x101  -1.02189  |-{-1.25008 x107 } = 2.36318 x10*

e,| |7.51454 x10"| |-3.83951 x10? —5.10944 x10? —6.79939 x10? | |-1.86771 x10?| |5.36871 x10*
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Iteration 3:
eo] [7.09744 x10% - 460452 x107 —1.95536 x107° 1.00000 ~1.07374
e 1 =1236318 x10™ |, {F} = { - 559467 x10?},[Z]=| 9.99990 x10? -5.36871 x10? -2.36317 x107
e,| [5.36871x107 —3.81038 x1072 —5.36876 x10"  1.38780 x10°  —7.09744 x1072

751075 x10%2  1.39894 x10' —1.60206
[z]*=| 389974 x10?  -113627 -211644
568132 x101  -1.05823  —1.97105

7.09744 x1072 751075 x102 139894 x101 —1.60206 | |-4.60452 x107? 2.12147 x107
=12.36318 x10™" } +| 3.80974 x10* ~-1.13627  —2.11644 |-{-559467 x1072} =1.10060 x10*
536871 107 | |-5.68132 x101  -1.05823  —1.97105 | |—3.81038 x107? 3.76402 x10*

After 13 cycles of iteration the estimates of e,,e;and ejare 1.00751x107, 2.12283x10° and

4.55564x107°, respectively. Then d; = —1.00751 %10 and dy =2.16212 %107 can be obtained from (27.a) and

(27.b), respectively.
The decomposed equation becomes,

(x? —1.00751 x 10 x +2.16212 x10% ) (x® +1.00751 x10x? + 2.12283 =103 x + 455564 x10°°)=0

. x=-8.157 x1072,3.100 x102,6.975x10%,-9.59 x10 > +2.160 x10?i. However, for the design
purpose the larger value of the positive real roots x =0.06975 m is taken.

@D
LS
—
I

Example 4: Roots of a Sextic Equation
The critical water height (unit in m) in an open channel of a trapezoidal section may be considered by

solving a sextic equation x® +30x° +300x* +1000 x> —7.964 x10*x—3.982 x10° =0. This equation can be
decomposed into the product of one quadratic equation and one quartic equation as shown in (33). Firstly the
four unknown e;,e,,e; and e, may be obtained by the Newton-Raphson method in 4 dimensions via (87). In
this case {F} and [Z] are calculated via (98) and (99), respectively. The results of calculation are summarized
as shown below.

€ —2000
o e -100
Initial guess =
€ 20
€3 1
€ —2000 -51.90000
. e -100 —320.90000
Iteration 1: = : {F}= )
e, 20 —918.00000
€ 1 1.73000 x10°
0.09955 0 1 1
[Z]— 0.09955 1 29.00000 179.10000
1299100  29.00000 199.10000 100.00000
19.04500 199.10000 0 2.00000 x10 3
10.12801 —0.10085 -0.03618  0.00578
[Z]’l _|-098312 -004122 001094  0.00364
| -0.00967 000498 000435 —0.00066
0.00143  0.00506 —0.00074  0.00008
€ —2000 1012801 -0.10085 -0.03618  0.00578 -51.90000 —1.54993 x10°
e | |-100 N —098312 -0.04122 0.01094  0.00364 —320.90000 | | -160.49717
e, | 20 —-0.00967 0.00498  0.00435 —0.00066 | | —918.00000 | | 26.22340
e, 1 0.00143  0.00506 —0.00074  0.00008 1.73000 x10° 1.87166
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€ —1.54993 x10° 35.78562
lteration 2: e|_| -160.49717 (F)= 57.98137 |
e 26.22340 672.75595
€ 1.87166 -5.19106 x10°
0.16576 0 1 1
2] 0.31025 1 2812834  230.69222
534679 2812834 25691562  160.49717
152433  256.91562 0 1.54993 =10 °
6.81178 003127 -0.02309  0.00265
2] - —-0.08827 —0.02633 0.00323  0.00364
—0.13705 000079  0.00434 —0.00048
000793  0.00439 —0.00051  0.00004
e| [-1.54993 x10° 6.81178 —003127 -0.02309  0.00265 35.78562 -1.76259 x10°
el _| -16040717 | -008827 -002633 000323 000364 | | 5798137 | | -139.07837
e, 26.22340 —0.13705 000079  0.00434 —0.00048 672.75595 25.68058
e, 1.87166 000793  0.00439 —0.00051 0.00004 | |-5.19106 x10° 1.87966

After 8 cycles of iteration the estimates ofe;, e,, e and eyare 1.96104, 24.95821, -131.34117 and
-1.80954x10°, respectively. Then d; =28.0389%6 and d, =220.05627 can be obtained from (36.a) and (36.b),

respectively.
The decomposed equation becomes,

(x? +28.03896 x+ 220.05627 - (x* +1.87966 x® +125 68058 x —139.07837 X ~1.76259 x10° )= 0

Again the quartic equation can be decomposed further to two quadratic equations as discussed earlier in
Example 2.
.. x=-5.198,5.983,-14.019 + 4.949i,—1.375 + 7.505i . However, for the design purpose the larger value

of the positive real roots x =5.983 m is taken.

Example 5: Roots of a Septic Equation

Let’s consider a septic equation x” —x® +14x° —28x* +14x3 —35x2 + 28x—35=0. This equation can
be decomposed into the product of one cubic equation and one quartic equation as shown in (42). Firstly the
four unknown e;,e,,e and e;may be obtained by the Newton-Raphson method in 4 dimensions via (87). In

this case {F} and [Z] are calculated via (102) and (103), respectively. The results of calculation are
summarized as shown below.

€0 1
" e | |1
Initial guess =
€, 1
e, 1
€ 1 7.00000
. € 1 - 35.00000
Iteration 1: =3t {Fl= :
e, 1 13.00000
e, 1 - 48.00000
35.00000 1 —3.00000  17.00000

_|36.00000 -2.00000 14.00000  -33.00000
13300000 1500000 -36.00000  2.00000
50.00000 -35.00000 —1.00000  3.00000

[2]
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0.01655 0.00872  0.00199  0.00083
[Z ]—l _ 0.02527 0.01071  0.00282  -0.02725
0.02725 001154 -0.02527 -0.01071
0.02808 -0.01655 -0.00872 -0.00199
€9 1| |0.01655 0.00872  0.00199 0.00083 7.00000 1.20319
el N 0.02527 0.01071  0.00282  -0.02725 - 35.00000 | |-0.14689
€ 1| 1002725 0.01154 -0.02527 -0.01071 | | 13.00000 1.0274
€3 1/ 002808 -0.01655 —-0.00872 -0.00199 | |-48.00000 0.24219
€9 1.20319 0.70239
. & —0.14689 -6.02241
Iteration 2: = , {F}=
e, 1.0274 1.66935
€3 0.24219 - 7.75658
24.17667 1 —1.48439  12.60556
[Z] _ 6.85544 124219 12.24605 -27.41728
2359696 1327345 -2894235 -1.42123
0.72217  -29.08923 -1.20319  1.78601
0.03189 0.01459  0.00444 0.00250
[Z ]—l _ 0.01070  0.00265  0.00196  -0.03323
0.02988 0.01442 -0.02944 —0.01302
0.02084 -0.02650 -0.01213 -0.00369
€9 1.20319 0.03189 0.01459  0.00444 0.00250 0.70239 1.28065
e | ]—0.14689 N 0.01070  0.00265  0.00196  -0.03323 - 6.02241 | |-0.39944
e, 1.0274 0.02988 0.01442 -0.02944 -0.01302 1.66935 1.04138
€3 0.24219 0.02084 -0.02650 -0.01213 -0.00369 | |-7.75658 0.05959

After 5 cycles of iteration the estimates of ej,e,,e;and ejare 0.04747, 1.04274, -0.41342 and
1.29095, respectively. Then d2=-1.04747 ,d, =13.00698 and d, =-27.11172 can be obtained from (45.a),

(45.b) and (45.c), respectively.

The decomposed equation becomes,

(x® ~1.04747 %2 +13.00698 x - 27.11172 )- (x* + 0.04747 x® +1.04274 X - 0.41342 X +1.29095 )= 0

Again the cubic equation can be decomposed further to one linear equation and one quadratic equation
as discussed earlier in Examplel. Whereas the quartic equation can be decomposed further to two quadratic
equations as discussed earlier in Example 2.

. x=1.86552,-0.40902 +3.79022i,—0.57489 +1.01612i,0.55115 +0.80211i.

Example 6: Roots of an Octic Equation

Let’s consider an octic equation x® —x” +10x® —25x° +14x* —30x° + 28x2 —35x—20=0. This
equation can be decomposed into the product of two quartic equations as shown in (52). Firstly the four
unknown ej,e,,e; and e, may be obtained by the Newton-Raphson method in 4 dimensions via (87). In this
case {F} and [Z] are calculated via (109) and (110), respectively. The results of calculation are summarized as
shown below.

€ 1

- € 0
Initial guess =

€, 0

€3 0
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€ 1 - 33.00000
. & 0 29.00000
Iteration 1: =1+, {F}=
€ 0 —18.00000
es| |0 10.00000

21.00000 —-1.00000 10.00000  —25.00000
-1.00000  10.00000  -25.00000 - 21.00000
10.00000 -25.00000 -21.00000  1.00000
-25.00000 -21.00000 1.00000  —10.00000
0.01501 -0.00703 0.01449 -0.02132
[Z ]_1 |- 0.00703  0.01449 -0.02132 -0.01501
0.01449  -0.02132 -0.01501 0.00703
-0.02132 -0.01501 0.00703  -0.01449

€ 1 0.01501 -0.00703 0.01449 -0.02132 | |(-33.00000 2.17302
e | 0| |[-000703 001449 -0.02132 -0.01501 | | 29.00000 | |-0.88578
e[ |0 001449 -002132 -0.01501 000703 | |-18.00000 [ | 0.75608
€3 0j |-002132 -0.01501 0.00703 -0.01449 | | 10.00000 0.00320
€y 217302 -13.22536
. e -0.88578 1.91850
Iteration 2: = , {F}= :
€, 0.75608 5.84943
€3 0.00320 -7.66411

523550  -1.00640 849426  -21.76576
—-0989%65 849104 -21.73860 -18.69062
[ ] 7| 1244951 2249952 -12.26825  12.26825
-27.13699 -11.37681 218691  -18.45816
0.02682  0.00091  0.01232  -0.02606
1 |—0.01003 0.01195 -0.03108 -0.01663
[ ] T| 002128 -003076 -001234 000043
-0.03072 -0.01234 -0.00042 -0.00567

€o —1.54993 x10° 0.02682  0.00091 001232 -0.02606 | |-13.22536 2.25417

€ | | —160.49717 N 0.01003 0.01195 -0.03108 -0.01663 191850 | |-0.98694
e 26.22340 0.02128 -0.03076 -0.01234 —0.00043 584943 | | 1.16540
€3 1.87166 -0.03072 -0.01234 -0.00042 -0.00567 - 7.66411 -0.42048

After 5 cycles of iteration the estimates of e;,e,,e;and ejare -0.47893, 1.26342, -1.02269 and
2.28307, respectively. Thend, =-0.52107 , d, =8.48702 , d; =—-19.25428 and d, =—8.76012 can be obtained
from (55.2), (55.b), (55.c) and (55.d), respectively.

The decomposed equation becomes,

(x* —052107x ® +8.48702 x? ~19.25428 x —8.76012 ) (x* - 0.47893 X° +1.26342 X -1.02269 X + 2.28307 )= 0

Again each of the quartic equations can be decomposed further to two quadratic equations as discussed
earlier in Example 2.

. x =-0.38643,2.03588 ,—0.56419 +3.28887 i,—0.55552 +1.14734i ,0.79499 +0.87919i.

Example 7: Roots of a Nonic Equation

Let’s consider a nonic equation x° +x8 —x” +10x® —25x° +14x* —30x> +28x?> —35x—20 = 0. This
equation can be decomposed into the product of one quartic equation and one quintic equation as shown in (62).
Firstly the five unknown e,,e;,e,,e,and e, may be obtained by the Newton-Raphson method in 5 dimensions
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via (87). In this case {F} and [Z] are calculated via (117) and (118), respectively. The results of calculation are

summarized as shown below.

€ 1
e| |0
Initial guess je, r =10
€3 0
€4 0
e [1 1.46880 x10*
e| |0 -1.88700 x10°
Iteration 1: e, t=10F, {F}=1-254.00000 x10°,
es| |0 1.00561 x10*
e,] |0 —1.88607 x10*
[-1.34400 x10* 1 2.00000 ~56.00000  —172.70100 |
1.00000 2.00000 —56.00000 —172.70100  1.34400 x10*
[z]=|  2.00000 _5600000 —172.70100 1.34400 x10*  —1.00000
—56.00000  —172.70100 1.34400 x10*  —1.00000 —2.00000
| -17270100  1.34400 x10*  —1.00000 —2.00000 56.00000 |
[ 000007  -956129 x107 -3.22306 x107 2.94706 x10°  4.37329 x107 |
—9.56129 x107" -3.22306 x107  2.94706 x10°  4.37329 x10°° 0.00007
[Z]" =| -3.22306 x107 294706 x10° 437329 x10°  0.00007 956129 x1077
2.94706 x10°  4.37329 x10°° 0.00007 956129 x10"  3.22306 x10~'
| 4.37329 x10°° 0.00007 956129 x10”  3.22306 x107"  -2.94706 x107° |
€ 1 —0.00007 -0.56129 x1077 -3.22306 x1077 2.94706 x10°  4.37329 x10°° 1.46880 x10* 2.09103
e | |0] |-956129 x107 -3.22306 x107 294706 x10°  4.37329 x10°° 0.00007 -1.88700 x10° 141672
e, =407 +| -3.22306 x107 294706 x10°  4.37329 x10°° 0.00007 956129 x107" |-4-254.00000 x10° p =1—0.72545
es| |0 2.94706 x10°  4.37329 x10°° 0.00007 956129 x1077  3.22306 x10°7 1.00561 x10* 0.01533
e, (0] | 437329 x10°° 0.00007 956129 x107"  3.22306 x107  -2.94706 x10° | | —1.88607 x10* 0.13728
e 2.09103 7.65213 x10°
e 1.41672 -962.57836
Iteration 2: e, +=4-072545 }, {F}=1 -11413033 |,
€ 0.01533 5.09890 x10°
e, 0.13728 ~9.92559 x10°
| -3.07383 x10° 1 1.72543 5652325 15582024 |
-420.98764 1.86272 -56.28638  —16357998  6.42816 x10°
[z]=] -45.25232 _56.27105  —16355353  6.42730 x10®  — 4554030
217364 x10°  —164.27898 642604 x10°  —4.53548 76.46979
|—451904 x10°  6.42746 x10°  —2.09103 ~360793 11819168 |
[ 000032  -7.88201 x10° -3.05244 x10°® -596497 x10® 244886 x10°® |
—0.00023 -8.39269 x10® -2.12775 x10® —1.59255 x10°® 0.00016
[z]*=] o0.00010 6.06794 x107  1.04307 x10°® 0.00016 3.97029 x10°
-1.77027 x10°  9.85295 x10°" 0.00016 396985 x10®  1.46370 x10°°
| -0.00002 0.00016 3.76944 x10° 145978 x10°®  2.85265 x107 |
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€ 2.09103 —0.00032 -7.88201 x10®  -3.05244 x10® -596497 x10®  2.44886 x10® | | 7.65213 x10° 4.56508
e 1.41672 —~0.00023  -8.39269 x10°® -212775 x10® -1.59255 x10°® 0.00016 -962.57836 4.69446
e, =4-072545 t+|  0.00010 6.06794 x107  1.04307 x10°® 0.00016 397029 x10°® |-4 -114.13033 | =1-—227552
e; 0.01533 -1.77027 x10® 985295 x1077 0.00016 396985 x10°  1.46370 x10°° | | 500890 x10° 0.04187
e, 0.13728 -0.00002 0.00016 3.76944 x10° 145078 x10® 285265 x10® | |-9.92559 x10° 0.43521

After 10 cycles of iteration the estimates of e,,e;,e,,e;and ejare 1.87305, 20.41547, -20.31628,
71.49813 and 49.90072, respectively. Then d; =0.12695 , d, =-76.65326 d; =-11.40134 and d, = 269.3348

can be obtained from (64.a), (64.a), (64.c) and (64.d), respectively.
The decomposed equation becomes,

(x4 +0.12695 x° — 76.65326 x* -11.40134 X + 269.3348 )
(x5 +1.87305 x* +20.41547 x* - 20.31628 x° + 71.49813 X + 49.90072 ): 0

Again the quartic equation (x4 +0.12695 x* — 76.65326 x? -11.40134 x + 269.3348 )= 0 can be
decomposed further to two quadratic equations as discussed earlier in Example 2. Whereas the quintic equation
(x5 +1.87305 x* + 20.41547 X3 - 20.31628 x2 + 71.49813 X + 49.90072 = o) can be decomposed further to one

quadratic equation and one cubic equation as discussed earlier in Example 3. Finally the cubic equation can be
decomposed to one linear equation and one quadratic equation as discussed earlier in Examplel.
.. X =—-852604 ,—2.00192 ,—0.56031,1.84408,8. 55692 ,—1.65546 + 4.42289,0.99909 +1.73063i .

V.  Conclusion

1) An approach for solving polynomial equations of degree higher than two was proposed.

2) The main concepts were decomposition of a polynomial of higher degrees to the product of two
polynomials of lower degrees and the n-D Newton-Raphson method for a system of nonlinear equations.

3) The coefficient of each term in an original polynomial of order m will be equated to the corresponding term
from the collected-expanded product of the two polynomials of the lower degrees based on the concept of
undetermined coefficients. Consequently a system of m nonlinear equations was formed. Then the unknown
coefficients of the decomposed polynomial of the lower degree of the two decomposed polynomials would
be eliminated from the system of nonlinear equations. Therefore the number of nonlinear equations would
be reduced to the number of unknown coefficients in the decomposed polynomial equation of higher
degree.

4) The unknown coefficients in the decomposed polynomial of the higher degree would be obtained by the
Newton-Raphson method for simultaneous nonlinear equations. Then the unknown coefficients for the
decomposed polynomial of the lower degree would be obtained by back substitutions.

5) The formulations for the decomposed polynomials would be derived for the original polynomials of degree
from three to nine.

6) The system of nonlinear equations and supplementary equations for determining the unknown coefficients
of the decomposed polynomials were also summarized for the original polynomial for degree from three to
nine.

7) For the case of an original polynomial equation of an odd degree the original polynomial equation will be
decomposed to two polynomial equations i.e. one equation of an odd degree and the other equation of an
even degree. Whereas for the case of an original polynomial equation of an even degree, two decomposed
polynomial equations of even degrees were proposed to guarantee obtaining all possible roots i.e. complex
conjugates, distinct real roots, double real root, triple real root etc.

8) Two alternative forms of decomposed polynomial equations were also given i.e. Bairstow’s decomposition
and complete Bairstow’s decomposition. For the polynomial equation of degree five or higher the vector of
nonlinear equations and the corresponding Jacobian matrix from the Bairstow’s decomposition were
simpler than the proposed decomposition. Whereas those from the complete Bairstow’s decomposition
were more complex than the proposed decomposition. Both alternative forms involved larger systems of
simultaneous nonlinear equations.

9) Seven numerical examples were also given to verify the applicability of the proposed approach. Four
numerical examples for polynomial equations of degree three, four, five and six were demonstrated. These
problems were selected from the real applications in civil engineering. The other three problems for
polynomial equations of degree seven, eight and nine were given to challenge to the researchers. Numerical
results were given rather in details so that the readers can keep track for all steps of calculations.

10) For a given polynomial equation there exist several possible pairs of decomposed polynomial equations, but
any pair of decomposed equations will always give the same final results.

11) The Newton-Raphson method in two and more dimensions were proved to be a very efficient tool for
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12)

13)

solving a system of simultaneous nonlinear equations at least in the extent of numerical examples shown in
this technical paper and author’s experience on finding roots of a polynomial equation.

The decomposed polynomial equations can always decomposed further to the equations of lower degrees.
Finally the original polynomial equations can be rewritten in form of a product of linear equations and
quadratic equations. Therefore all possible roots can always be determined.

The method proposed can be extended for a polynomial equation of any degree beyond nine, but with
longer equations and a larger system of simultaneous nonlinear equations. Further extension was not shown
in this technical paper because of the limitation of the paper space, but it can be done systematically in form
of matrix notations and computer programming.
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