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Abstract: General relativistic mechanics in gravitational fields exterior to homogenous spherically symmetric 

solution is developed using our coordinate displacement approach. In curved Schwarzschild spacetime, the 

coordinates provide a reference frame for an observer making measurements at an infinite distance from the 

gravitational source of the Schwarzschild spacetime. The Schwarzschild metric describes the spacetime 

surrounding a spherical non-rotating mass. However, physical quantities measured by arbitrary observers are 

not specified directly by these coordinates but rather are computed from the metric. It is well known that 

Newton’s theory of gravity is an approximation to Einstein’s theory when the curvature of space time is 

negligible. In this paper, we seek to deduce that in the limit of weak field approximation, Schwarzschild 

gravitation may be replaced with Newton’s gravitation. Here, we present Schwarzschild gravitation and show 

its reduction to the classical Newtonian gravitation – using power series expansions.  
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I. Introduction 
The Newton’s dynamics theory suggested that all interactions of particles in nature manifest through 

force.This theory successfully explained the gravitational phenomena on earth and the experimental fact of the 

solar system. The Newton’s dynamical laws of motion and gravitation are founded in terms of invariant rest 

masses of particles and bodies, thus cannot be applied to a photon which has no measurable rest mass (Chifu, 

2008; Bergman, 1987; Chifu, 2010). At the end of the nineteenth century, there were several attempts to extend 

Newton’s theory of gravitation to Einstein’s gravitational field equations of motion in order to provide better 

agreement with the experimental data or better consistency to all physical theories. In 1915, Einstein published 

his geometrical theory of gravitation which is popularly known as general relativity (Misner et al., 1973).The 

General relativity tries to describe the gravitational field and the motion of test particles in terms of a 

manifestation of the geometrical curving of space and time.This theory offered a resolution of the anomalous 

orbital precession as well as some gravitational phenomena involving light such as bending of light and the 

spectral shift by the Sun (Anderson, 1967b). The mathematical expression of the Einstein’s field equation 

includes important two aspects: establishing the theory of solutions and finding exact solution with physical 

background. Upto now, very few results on the theory of solutions for the Einstein’s field equations have been 

established. The exact solutions are very helpful to understand the theory of general relativity and the universe. 

Typical examples of exact solutions are the Schwarzschild solution and Kerr solution. These solutions provide 

two important physical spacetimes: the Schwarzschild solution describes a stationary, spherically symmetric and 

asymptotically flat spacetime, while Kerr solution provides a stationary, axisymmetric and asymptotically flat 

spacetime. The investigation on exact solutions of the Einstein’s field equations has debatable long history. In 

December, 1915, Schwarzschild discovered the first nontrivial solution to the vacuum Einstein’s field equations 

which is a static solution with zero angular momentum (DeXing and KeFeng, 2010; Gruberetal, 1988 and 

Markley, 1973). 

After Einstein’s theory of special relativity which elegantly describes mechanics in electromagnetic and 

empty spaces, Einstein expected gravitation to have the same nature as electromagnetism and hence fit into 
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special relationship. In special relativity, spacetime has four dimensions (α = 0, 1, 2, 3) and there always exist a 

global coordinate system in which the world-line element takes the form. 

𝑐2𝑑𝜏2 = 𝑛𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽                                                                                      (1) 

where𝑛𝛼𝛽 is a special relativistic metric tensor given by 𝑛00 = 1, 𝑛11 = 𝑛22 = 𝑛33 = −1  𝑛𝛼𝛽 = 0, 𝛼 ≠

𝛽.Such a coordinate system is said to be Cartesian. In a non-Cartesian coordinate system such as a spherical or 

spheroidal coordinates, the world-line element of space time may be expressed as 

𝑐2𝑑𝜏2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽                                                                                      (2) 

where 𝑔𝛼𝛽 is the corresponding metric tensor which is generally different from the Cartesian metric tensor 

𝑛𝛼𝛽 . In practical calculations, the metric is most often written in coordinates which it takes the following form 

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽                                                                                      (3) 

According to the philosophy of general relativity, the effect of gravitation contain the metric tensor field 𝑔𝛼𝛽 . 

Therefore, Einstein’s theory of gravity, the gravitational field is promoted to a spacetime metric 𝑔𝛼𝛽 . 

Einstein’s physical intuition motivated formulation of special relativity.but, the generalization to 

general relativity would not have occurred without the mathematical formulation given by Hermann Minkowski 

in 1909 (Synge 1960). The Minkowski metric was originally derived based on Hermann Minkowski’s 

fundamental axiom for spacetime set out in an address given in September 1908: the substance at any world-

point may always, with the appropriate determination of space and time, be looked as at rest in space time 

(Ref……..). Therefore,Minkowski took the three spatial dimensions with an absolute time manifold that 

represented spacetime.  Thus, the Minkowski metric appears in Cartesian coordinate as given by 

𝑑𝑠2 = −𝑐2𝑑𝜏2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2                                                             (4) 
Eq.4 is arranged to provide information useful to obtain values of time coordinate of the local reference frame 

from the reference coordinate (x, y, z, t). The Cartesian coordinates used to express the Minkowski metric can 

also be converted to Minkowski metric spherical coordinates which have the form 

𝑑𝑠2 = −𝑐2𝑑𝜏2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑∅2                                                   (5) 
 

The mathematical description of general relativity is given by Einstein’s field equations (Einstein, 

1916), which includes a metric tensor  𝑔𝛼𝛽 containing the information about the curvature of spacetime, or in 

other words how distances have been measured. One of the simplest, but nevertheless most important solution 

of Einstein’s field equations is the Schwarzschild metric. The Schwarzschild metric is the unique spherically 

symmetric vacuum solution for Einstein’s field equations formally by Schwarzschild (1916). In the spherical 

coordinates 𝑥𝜇 =  𝑡, 𝑟, 𝜃, ∅ =  𝑡, 𝑥, 𝑦, 𝑧 the line element is given by 

𝑑𝑠2 =  −  1 −
2𝑀

𝑟
 𝑑𝑡2 +  1 −

2𝑀

𝑟
 
−1

𝑑𝑟2 + 𝑟2 𝑑𝜃2 + sin2𝜃𝑑𝜙2                 (6) 

 Several authors have published works in line with the research: Thesolutions of the Einstein Equation 

and General Relativity (Anderson, 1967a and 1967b,Bergamann, 1987);The static solutions of Einstein’s Field 

Equations (EFE) for charged spheres of fluid (Nduka, 1978); TheSchwarzschild Black Hole (SBH) as a 

gravitational mirror (Stuckey,1993 );The motion in the Schwarzschild Metric (Markley, 1973); The dynamical 

system’s approach to Schwarzschild null geodesics (Belbruno  and Pretorius, 2011); The motion of test particles 

and orbits exterior to static homogenous prolatespheroidal spacetime (Chifu, 2010);The general relativistic 

equations of motion for test particles exterior to astrophysically real or hypothetical spherical distributions of 

mass whose tensor field varies with azimuthal angle(Chifu and Lucas, 2008), The time-periodic solutions of the 

Einstein’s field equations ( Dexing and Kefeng, 2010);The impossibility of a simple derivation of the 

Schwarzschild metric (Gruber et al.,1988); TheRiemannian Laplacian in Cartesian coordinate using great metric 

tensor of all gravitational fields in nature in Cartesian coordinate as the Fundamental Quantities of Riemannian 

Geometry (Omonile, et al., 2015).In this work,the determination of Newtonian gravitation from the 

schwarzschildspacetime far away from the gravitating compact massis investigated using power series 

expansion. 

 

II. Method 
The Schwarzschild metric, describing a non-rotating blackhole of mass M, has the following line 

element in standard (spherical polar) Schwarzschild coordinates: 

𝑑𝑠2 = 𝑔𝛼𝛽 𝑑𝑥
𝛼𝑑𝑥𝛽  

𝑑𝑠2 = − 1 −
2𝑀

𝑟
 𝑑𝑡2 +  1 −

2𝑀

𝑟
 
−1

𝑑𝑟2 + 𝑟2 𝑑𝜃2 + sin2𝜃𝑑𝜙2      (7) 

In order to determine the radial distance between two concentric circles in the Schwarzschild geometry, we set 

(t, θ, ∅) to be a constant, such that we have 

𝑑𝑡 = 𝑑𝜃 = 𝑑∅ = 0                                                                (8) 
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Substituting equation (8) into equation (7) 

𝑑𝑠2 = (1 −
2𝑀

𝑟
)−1𝑑𝑟2

     (9) 

Then equation (9) becomes 

𝑑𝑠 = (1 −
2𝑀

𝑟
)−1/2𝑑𝑟     (10) 

We have to restrict equation (10) to the null case in which ds = 0, that is the interval is a null curve 

(1 −
2𝑀

𝑟
)−1/2𝑑𝑟 = 0     (11) 

The solution to equation (11) becomes 

𝑑𝑟 ≠ 0     (12) 

It has been known since 1916 that it is possible for a spherical body to have a point outside it at which the 

Schwarzschild metric has a singularity. This singularity is denoted by ɤ𝑠 and is called the Schwarzschild 

singularity. It is given by the condition 

(1 −
2𝑀

𝑟𝑠
) = 0     (13) 

Thus 

𝑟𝑠 = 2𝑀                                                                   (14) 
For most physical bodies in the universe, the Schwarzschild radius is much smaller than the radius of their 

surface. It is however, speculated that there exist some bodies in the universe with the Schwarzschild radius in 

the exterior region.  

 

III. Theory 
Let us consider Schwarzschild gravitation which is a solution of Einstein’s theory of relativity as an 

improvement to Newtonian gravitation. The line element of Schwarzschild metric is given by 

𝑑𝑠2 = − 1 −
2𝐺𝑀

𝑟𝑐2
  𝑐𝑑𝑡 2 +  1 −

2𝐺𝑀

𝑟𝑐2
 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2                  (15)  

The metric given in equation (15) can be represented by 

𝑑𝑠2 = −𝑒
2𝜙

𝑐2  𝑐𝑑𝑡 2 +  𝑑𝑙 2                                                  (16) 

𝑑𝑙in equation (16) represents the spatial part of the metric. The relativistic gravitational potential 𝜙 is obtained 

by the comparison of equations (15) and (16) as 

− 1 −
2𝐺𝑀

𝑟𝑐2
  𝑐𝑑𝑡 2 = −𝑒

2𝜙

𝑐2  𝑐𝑑𝑡 2                                                       (17) 

If we take 𝜙 = 0 in equation (16), then we recover Minkowski metric which is special relativity. We take the 

logarithm of equation (17) as 

𝐼𝑛  1 −
2𝐺𝑀

𝑟𝑐2
 =

2𝜙

𝑐2
                                                             (18) 

Therefore 

𝜙 =
𝑐2

2
𝐼𝑛  1 −

2𝐺𝑀

𝑟𝑐2
                                                                                 (19) 

Equation (19) represents the exact expression of the relativistic gravitational potential equivalent to 

Schwarzschild curved spacetime. As the particle tends to move in flat space in equation (19), then the logarithm 

function can be expanded in power series. The logarithm expansion is given by 

𝐼𝑛 1 + 𝑥 = 𝑥 −
1

2
𝑥2 +

1

3
𝑥3 −⋯𝑓𝑜𝑟 𝑥 < 1                                          (20) 

The logarithm expansion in equation (20) is only valid for the weak gravitational field. 

Let us substitute 𝑥 = −
2𝐺𝑀

𝑟𝑐 2  into equation (20), then expansion of 𝜙 is obtained as 

𝜙 = −
𝐺𝑀

𝑟
−

1

𝑐2
 
𝐺𝑀

𝑟
 

2

−
4

3

 1

𝑐4
 
𝐺𝑀

𝑟
 

2

−⋯                                                      (21) 

The first term in equation (21) represents the Newtonian gravitational potential𝜙 = −
𝐺𝑀

𝑟
. It shows that the 

Newtonian gravitation equilibrate the first term in otherwise curved spacetime in Schwarzschild metric. In this 

case, the Schwarzschild metric can be reduced to a corresponding Newtonian gravitation. We can reduce the 

coordinate distance in the metric by power series expansion using binomial expansion as 

 1 + 𝑥 𝑛 = 1 +
𝑛

1!
𝑥 +

𝑛(𝑛 − 1)

2!
𝑥2 + ⋯                                                   (22) 

We expand the term  1 −
2𝐺𝑀

𝑟𝑐2  
−1

using power series expansion where n = - 1, 𝑥 =
−2𝐺𝑀

𝑟𝑐2  

 1 −
2𝐺𝑀

𝑟𝑐2
 
−1

= 1 +
2𝐺𝑀

𝑟𝑐2
+

4

𝑐4
 
𝐺𝑀

𝑟
 

2

+ ⋯                                                    (23) 

The first two terms of equation (23) is given by 
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 1 −
2𝐺𝑀

𝑟𝑐2
 
−1

≅ 1 +
2𝐺𝑀

𝑟𝑐2
                                                                            (24) 

Minkowski’s metric in spherical coordinates 𝑟, 𝜃 𝑎𝑛𝑑 ∅ is given by 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝑑∅                                 (25) 
The metric in equation (25) can be written in matrix form as 

𝑔𝛼𝛽 =  

−1 0 0           0
0 1 0           0
0
0

0
0

𝑟2

0
        0

𝑟2𝑠𝑖𝑛2𝜃

                                                       (26) 

 

Substituting the first two terms of equation (23) into the diagonal of Minkowski metric tensor in equation (26) 

then we have 

𝑔𝛼𝛽 =

 
 
 
 
 
 −1 +

2𝐺𝑀

𝑟𝑐2
0 0           0

0 1 +
2𝐺𝑀

𝑟𝑐2 0           0

0
0

0
0

𝑟2

0

        0
𝑟2𝑠𝑖𝑛2𝜃 

 
 
 
 
 

                                                      (27) 

Considering equation (27), the Schwarzschild metric becomes slightly curved and corresponds to Newtonian 

gravitation. Let us consider a coordinate with the metric tensor field. The weakness of the gravitational field 

allows us to decompose the metric tensor into the Minkowski metric plus a small perturbation as given below: 

𝑔𝛼𝛽 = η
𝛼𝛽

+ 𝑕𝛼𝛽 ,  𝑕𝛼𝛽  ≪ 1                                                    (28) 

Equation (24) is equivalent to equation (28) which is substituted to equation (26) to become equation (27) as 

shown above in equation (27). 

We have determined a Minkowski metric from a Schwarzschild metric with a perturbation 
2𝐺𝑀

𝑟𝑐2  as given in 

equation (27). 

It is observed that for a single gravitating body, we will recover the Newtonian gravitation as shown in equation 

(21) given by  

𝜙 = −
𝐺𝑀

𝑟
                                                                                  (29) 

 

We have determined that Newtonian gravitation can be expressed in terms of a curved spacetime. It 

shows that Newtonian gravitation corresponds to Schwarzschild spacetime modified to be just slightly curved, 

which occurs far away from the gravitational source as described by equation (27). We have shown that the 

curvature of spacetime is sufficient to describe gravity in the Newtonian limit as given in equations (27) and 

(29). 

 

IV. Conclusion 
In this paper, we have investigated the relationship between Newton’s gravitation and Schwarzschild 

gravitation. We have been able to show that Newtonian gravitation can be expressed in terms of a curved 

spacetime. We have shown that Newtonian gravitation corresponds to Minkowski’sspacetime slightly modified 

to be flat and also Newtonian gravitation corresponds to Schwarzschild’s spacetime modified to be just slightly 

curved, which occurs far away from the gravitational source (the mass M). Thus Schwarzschild spacetime is 

asymptotically flat in the region of large radius. This is what one might expect physically when one gets far 

away from the source of gravity. 
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