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Abstract: In this paper we add a physical meaning to the Riesz potential by using Newtonian force fields due to 

a body and velocity fields of any fluid. To do this, we firstly give some properties of Newtonian force fields and 

correspondingly Newtonian potentials. Then, we introduce the Riesz potentials which is arised from fractional 

order  / 2 Poisson differential equations like Newton potentials and by using these notions we give a physical 

interpretation of Riesz potential. Finally, we cite the flow velocity of a fluid and add a physical meaning to Riesz 

potential by using velocity potential of a fluid that is irrotational in some simply connected region in the same 

way 

Keywords: Vector Fields-Flows, Potentials, Laplace’s Equations 

 

I. Introduction 
While the theory of Newtonian potentials has various aspects, it is best introduced as a body of results 

on the properties of forces which are characterized by Newtons Law of Universal Gravitation. The magnitude of 

the force between two particles, one of mass 
1m , situated at a point P , and one of mass 

2m , situated at Q , is 

given by Newton's law as 

 1 2

2

m m
F

r

 

  
 

 

where r  is distance between P  and Q . The constant of proportionality   depends solely on the units 

used. Also we shall take  1   and the components of a vector field due to a volume distribution situated at a 

point  , ,Q     with density    (we shall assume that density is continuous) and volume V  is given as 

follows 
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for some point ( , , )P x y z  [1]. 

 

II. Potentials 

A particle of mass m  , subject only to the force of a specific field  , ,X Y Z  will move in accordance 

with Newton's second law of motion [3]: 

d
m

dt
 F v  

If we rearrange this expression, then we have the change in kinetic energy of particle as follows 

  
0 0

0 0 , ,
t P

t P

E E dt d W P P C    Fv F s  

where v , E and ds represent velocity, kinetic energy and elemental displacement of the particle. The 

quantity  0 , ,W P P C  is the work required to move the particle from point 
0P  to P . This equation shows that 

the change in kinetic energy of the particle equals the work done by F  . In general, the work required to move 

the particle from 
0P  to P  differs depending on the path taken by the particle. But here we consider work 

functions independent of the paths taken by the particles which give us conservative fields that can be expressed 

by gradient of the work. 

The potential   of vector field F  is defined as the work function or as its negative depending on the 

convention used. Kellogg [1] summarizes these conventions as follows: 

)i  If particles of like sign attract each other (e.g., gravity fields), then  F  and the potential equals the work 

done by the field. 
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)ii  If particles of like sign repel each other (e.g., electrostatic fields), then  F  , and the potential equals 

the work done against the field by the particle. In the latter case, the potential   is the potential energy of the 

particle; in the former case,   is the negative of the particle's potential energy. In Newtonian fields, the 

potentials at ( , , )P x y z  due to a particle which have mass m  and a body which have volume V  and density   

at some point  , ,Q     are 

 
m

r
   

and 

 
V

dV
r


      

respectively. In the Newtonian fields, the potentials of all the distributions studied satisfy Poisson's equation 

 
 4     

at all points, even inside the mass distribution. In particular it satisfies Laplace's equation 

  
 0   

at all points outside of the mass. 

If we take fractional Laplacian  
/2

 ,  we have 

      
/2

u f u


    

The solution of this equation is 
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which is called Riesz potential. Here nC  is a constant [2,4,5]. 

 Here we firstly consider Newtonian and Riesz potentials together and interpret force field 

corresponding to them.To do this, we take 3n   and 0 2   . Then consider 

 
3

( ) ( )

V V

f y f y
U CR dy C dy

r r 
           

where ,U R  are Newtonian and Riesz potentials respectively and C  is a constant. The force field corresponding 

to them will be as follows: 

 
   
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where C  is a constant that arises after taking derivatives of   which depends on C  and  . By thinking that 

force fields are inversely proportional to square of distance between body and any point of the free space,if we 

do rearrangement then we obtain 
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where 
 x y

r


 is direction cosine and then 
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must be the density. 

As we see, the density is changed by a factor situated at a point x . When consider this result, it is 

convenient to take the body as the gas in a rigid and closed surface and the factor as a heat source that efects this 

gas body. Then C  characterizes power of the heat source 

Example 1: Let volume of the body be a sphere with center at 0  and radius   and  let the attracted unit 

particle be at (0,0, ) ,P z z  . Also let be ( ) 1f y   and 1/ 2  . 

In this case the components ,X Y  of the force due to this gas body and this source  will be zero. For the 

component Z  , by using spherical coordinates  , ,a    , we have 
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                                   (2.1) 

without the heat source the component Z  of the force is obtained as follows: 

 
3
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4

3

M
Z

z z


                                                                                                                                  (2.2) 

this says us that the body is concentrated at its center. With the source, according to Newton's 

gravitation rule since the magnitude of the force due to a body must be directly proportional to the its mass, by 

taking parentheses 
34

3


 of the result in (2.1), we see that the point where body is concentrated is changed by 

the source. Also if we take the source situated some points  0,0,P z  to infinity on the z  axes, we have the 

result in (2.2) as expected.  

By using similar mind we can also have a interpretation of the Riesz Potential on the velocity field of 

any fluid. To do this we must give some notions. 

 

III. Velocity Fields and Riesz Potential 
Now let's consider velocity field of a fluid in place of Newtonian field. The motion of a single particle 

may be described by giving its coordinates as function of time: 

 ( ) , ( ) , ( )x x t y y t z z t    

If, however, we have a portion of a gas, liquid or elastic solid in motion, we must have such a set of 

equations or the equivalent, for every particle of the medium. To be more specific, let us talk of a fluid. The 

particles of the fluid may be characterized by their coordinates at any given instant, say 
0t t . Then the 

equations of all the paths of the particles may be united in a single set of three, dependent on three constants: 

 

0 0 0 0 0 0 0 0 0( , , , ) , ( , , , ) , ( , , , )x x x y z t y y x y z t z z x y z t                                                                   (3.1) 

for these will tell us at any instant the exact position of the particle of the fluid which at 
0t  was at 

0 0 0( , , )x y z  . 

The functions occurring in these equations are supposed to satisfy certain requirements as to continuity, and the 

equations are supposed to be solvable for 
0 0,x y  and 

0z  . In particular, x  must reduce to 
0x  , y  to 

0y  and z  to 

0z  when 
0t t  . The velocities of the particles are the vectors whose components are the derivatives of the 

coordinates with respect to the time : 

 0 0 0 0 0 0 0 0 0'( , , , ) , '( , , , ) , '( , , , )
dx dy dz

x x y z t y x y z t z x y z t
dt dt dt

                                                         (3.2) 

These equations give the velocity at any instant of a particle of the fluid in terms of its position at 
0t t  

. It is often more desirable to know the velocity at any instant with which the fluid is moving past a given point 

of space. To answer such a question, it would be necessary to know where the particle was at 
0t t  which at the 

given instant t  is passing the given point  , ,x y z  . In other words, we should have to solve the equations (3.1) 

for 
0 0 0, ,x y z  . The equations (3.2) would then give us the desired information. Let us suppose the steps carried 

out once for all, that is, the equations (3.1) solved for 
0 0 0, ,x y z , in terms of , ,x y z  and t  , and the results 

substituted in (3.2). We obtain a set of equations of the form 
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 ( , , , ) , ( , , , ) , ( , , , )
dx dy dz

X x y z t Y x y z t Z x y z t
dt dt dt

    

The right hand members of these equations define the velocity field[1]. As the field is changing, there 

will be one set of field lines at one instant and another at another. We mean by the field lines,a family of curves 

depending on the time, which at any instant have the direction of the field at every point at that instant. The lines 

of flow can be found like Newton field lines: 

 
( , , , ) ( , , , ) ( , , , )

dx dy dz

X x y z t Y x y z t Z x y z t
                                                                                                (3.3) 

on the assumption that t is constant. 

Divergence of the velocity field of a flow 

 
X Y Z

divV V
x y z

  
   
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states flux density of the flow. Integral of this over a control volume gives total flux of the flow. If this field is 

conservative, then we have expression 

 , , 0
Z Y X Z Y X

rotV V
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which state that the flow is irrotational. If a irrotational flow occupy a simply connected flow region (It 

show that the field is conservative), then there exist a scalar field    which is called velocity potential for the 

flow such that 

  , ,V X Y Z    . 

Now we give physical interpretation of the field corresponding to the sum of a velocity potential and 

the Riesz potential 3, 0 3n    . Also we take Riesz potential as 
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where k  is a suitable constant and r u v  . In this case, let's consider function that is linear combination of a 

potential and the Riesz potential: 
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where   is velocity potential of field of a flow that is been irrotational, C  is a constant. Corresponding 

that we have velocity field as 
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u u C f v dv C k C

r
  

 
 

 
       

 
  V   . 

Let us take divergence of this f,ield in order to control flux density of the fluid. Then we obtain 

    
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2
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C f v dv C C k
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where V  is volume of source that will be determined later. This shows that flux density of the fluid is 

changed. Here our fluid and second term which was formed by Riesz potential can be thought as any gas body 

and as corresponding in the field of a source which effects this fluid such that as source approaches the fluid,the 

changing at flux is increased and as source diverges the fluid,the changing at flux is decreased. According to this 

review, it is convenient to think this source as a heat source. In this case V  is volume of the heat source. 

Therefore we can think that the Riesz potential which formed the second term play a role in such system. 

Example 2: To illustrate the above considerations,let us examine the flow given by 

 

0 0 0, ,tx x t y y e z z     

Here , ,x y z  reduce to 
0 0 0, ,x y z  for 

0 0t t  . The velocities of given particles are furnished by 

 01 , , 0tdx dy dz
y e

dt dt dt
    

and the differential equations of the flow are obtained from these by eliminating ,x y  and z  

 1 , , 0
dx dy dz

y
dt dt dt

    
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The field    , , 1, ,0X Y Z y V  is stationary, since the velocities at given points are independent of 

the time. Now let us take Riesz potential that represents a heat source as 

 1/2

3 5/2

1
k

V

C dv
r     

with 1/ 2   and   1f v   in equation. The divergence of this flow field is found as 

 1
X Y Z

x y z

  
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  
V . 

If the Riesz potential is included into the system,  then the flow field is 
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and flux of flow is 
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