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An Expression Involving All Ordered Compositions of the First n 
Ordered Natural Numbers and Two Classic Polynomials 

 
Soumendra Bera 

Mahishadal Raj College, Vidyasagar University, W.B., India 
 

Abstract. Decomposition of n! in terms of elementary symmetric polynomial of n of k integers: 1, …, k helps to 
find an expression that involves with all ordered compositions of the first n ordered natural numbers. The 
expression has a reduced version in terms of complete homogeneous symmetric polynomial of degree n in 1, 2, 
… , k; and thus there exists a relation between the polynomials of two kinds. In the context, we show an 
analogous pair of identities: one is a recurrence relation between Stirling numbers of both kinds and another 
one is a binomial coefficient identity.   
Keywords: recurrence; sequence; ordered composition; factorial; symmetric polynomials, Stirling number of 
kind 1 and Stiring number of kind 2.  
 

I. Introduction 
We decompose n! in terms of elementary symmetric polynomial of n of k integers: 1, …, k. By the 

process of recursive substitution, the relation further helps to find an expression that involves with the ordered 
compositions of n integers: 1, 2, …, n all. Further investigation for occurrences of the integers in the expression 
leads to reduce the coefficients in the forms of complete homogeneous symmetric polynomial of degree n in 1, 
…, k; and to obtain a relation between the symmetric polynomials of two kinds. The relation is further useful to 
find a recurrence relation between Stirling numbers of two kinds. In the context, we show an analogous pair of 
identities at the end. 
           The first n natural numbers are united in different ways in the paper. The readers can find: ‘Diversity in 
Unity’ in the paper. 
 

II. Expression Involving the Compositions of the First n Ordered Natural Numbers: 1, …, n 
from Decomposition of n! for n ≥ 2 

            For n of k variables: ݔ ݔ ,… ,  , elementary symmetric polynomial: ݁ ݔ ,… ,   or in brief ݁   
is defined formally by  

ଵ ௞ ௡ሺݔଵ ௞ሻ ௡ሼݔ௞ሽ

 ݁௡ሼݔ௞ሽ   ൌ    ෍ ௜భݔ
ଵ ஸ  ௜భ ழ ௜మ ழ  …  ழ ௜೙  ஸ  ௞

  ௜೙ݔ … ௜మݔ

௡ሺ1,
݁௡ሼ݇ሽ   ൌ    ෍ ݅ଵ

ଵ ஸ  ௜భ ழ  ௜మ  ழ  …  ழ ௜೙  ஸ  ௞

 ݅ଶ … ݅௡ 

ଵሼ4ሽ ଶሼ4ሽ ଷሼ4ሽ
ସ ଴ ௡

f the obta subsequent results as shown. 

                                         ሺ݊ ൅  1ሻ!   ൌ   ሺ1 ൅  ݊ሻ ሺ1 ൅  ݊ –  1ሻ  …  ሺ1 ൅  2ሻ ሺ1 ൅  1ሻ 

                                          ൌ 1௡  ൅  ݁ଵሼ݊ ሽ 1௡ – ଵ ൅  ݁ଶሼ݊ ሽ 1௡ – ଶ ൅ …  ൅   ݁௡ ିଵሼ݊ ሽ 1ଵ  ൅  ݁௡ ሼ݊ ሽ   

⇒ 1௡  ൌ  ሺ݊ ൅  1ሻ!  െ  ݁ଵሼ݊ ሽ 1௡ – ଵ  െ …  െ  ݁௡ ିଵሼ݊ ሽ 1ଵ  െ  ݁௡ ሼ݊ ሽ .                  (1) 
From (1), we get: 

 1 ൌ  2! െ  ݁ଵሼ1ሽ .                                                                                   
1ଶ ൌ 3! െ  ݁ଵሼ2ሽ
1ଷ ൌ  4!  െ  ݁ଵሼ3 ଶ

  1ସ ൌ 5!  െ  ݁ଵሼ4ሽ  1ଷ  െ ݁ଶሼ4
Now we plan to carry out the process of recursive substitution involvin
in succession. To maintain the order of the subsequent results, initially we re-w
(2.1): 

Substituting 1, …, k for x1, …, xk , we get ݁  …, ݇ሻ or in brief   

 
Examples:  ݁  = 1+ 2 + 3 + 4;  ݁  = 1.2 + 1.3 + 1.4 + 2.3 + 2.4+3.4 ;  ݁  = 1.2.3 + 1.2.4 + 1.3.4 + 
2.3.4; ݁ ሼ4ሽ = 4!. The special values are:  ݁ ሼ݇ሽ = 1 and for n > k, ݁ ሼ݇ሽ = 0. 
         e decompose (n + 1)! in terms o  notation ݁௡ሼ݇ሽand in the    W
 
  
 
  
 

                    (1.1) 
 1ଵ െ ݁ଶሼ2 ሽ .                                                                                    (1.2) 
ሽ 1ଶ  െ ݁ ሼ3ሽ 1 െ ݁ଷሼ3ሽ         .                                                         (1.3) 

ሽ  1ଶ െ ݁ଷሼ4ሽ 1 െ ݁ ሼ4ሽ  .                                           (1.4) ସ
g (1.1), (1.2), … to obtain (2.2), (2.3), … 

rite (1.1) by numbering it as 
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                  1 = 2!  – ݁ଵሼ1ሽ                                         (

 
2.1) 

hen the successive results are as shown.    
(i) From (1.2) 

                                      1ଷ  ൌ   3!  –  ݁ ሼ2ሽ ሾ 2! െ ݁ଵሼ1ሽ ሿ  –  ݁ଶሼ2ሽ  

 ൌ   3!  –   2! ݁ଵሼ2ሽ   ൅  ൣ ݁ଵሼ2ሽ ݁ଵሼ1ሽ – ݁ଶሼ2ሽ ൧                                              (2.2) 

ii) In the 2nd and 3rd terms of (1.3), we replace 12 and 1 by their expressions as in (2.2) and (2.1); and then 
 

  1ଷ ൌ  4! –  3! ݁ଵሼ3ሽ ൅ 2! ൣ݁ଵሼ3ሽ ݁ଵሼ2ሽ– ݁ଶሼ3ሽ൧ െ ൣ ݁ଵሼ3ሽ ݁ଵሼ2ሽ ݁ଵሼ1ሽ – ݁ଵሼ3ሽ ݁ଶሼ2ሽ – ݁ଶሼ3ሽ ݁ଵሼ1ሽ ൅ ݁ଷሼ3ሽ൧   
(2.3) 

ii) Similarly in the 2nd, 3rd and 4th terms of (1.4), we replace 13, 12 and 1 by their expressions as in (2.3), (2.2
and (2.1); and then get:  
 

ସ ൌ  5! –  4! ݁ ሼ4ሽ  ൅ 3! ሾ݁ ሼ4ሽ ݁ ሼ3ሽ – ݁ ሼ4ሽሿ  െ  2! ሾ ݁ ሼ4ሽ ݁ ሼ3ሽ ݁ ሼ2ሽ – ݁ ሼ4ሽ ݁ ሼ3ሽ – ݁ ሼ4ሽ݁ ሼ2ሽ ൅ ݁ ሼ4ሽሿ 

ሽ ݁ଵሼ1ሽ –  ݁ଵሼ4ሽ ݁ଵሼ3ሽ ݁ଶሼ2ሽ
 
– ݁ଵሼ4ሽ

 
݁ଶሼ3ሽ ݁ଵሼ1ሽ ൅ ݁ଵሼ4ሽ ݁ଷሼ3ሽ െ ݁ଶሼ4ሽ ݁ଵሼ2ሽ ݁ଵሼ1ሽ 

൅  ݁ଶሼ4ሽ ݁ଶሼ2ሽ  ൅ ݁ଷሼ4ሽ ݁ଵሼ1ሽ  –  ݁ସሼ4ሽ ሿ                                                                                                    (2.  
   …      

 ሺ݊ ൅ 1ሻ!  –   ݊! ݁ଵሼ݊ሽ  ൅ ሺ݊ െ 1ሻ! ൣ ݁ଵሼ݊ሽ ݁ଵሼ݊ െ 1ሽ – ݁ଶሼ݊ሽ ൧  െ  …                                                     (2 ) 
                                                                                                       

 (2.4) is an alternating signs express
d 1! as the coefficients in its successive terms. The coefficient of 1! or the last term of (2.4) is again 

an expansion of 8 terms. 8 sets of bottom indices in 8 terms of this expansio
 + 2  =  1 

m efi

,    ݁ଵሼ4ሽ ݁ଶሼ3ሽ,    ݁ଶሼ4ሽ݁ଵሼ2ሽ,   and  ݁ଷሼ4ሽ. 
 

(a) Counting of the notations of the type en{ in (2.n)  
Step1. We know that the number of the compositions to k parts or summands is ൫௡ ି ଵ

௞ ି ଵ൯. Consequently the 
number of summands in the compositions of nto k su  is ݇ ൫௡ ି ଵ

௞ ି
Then the number of summands in all 2n – 1 C  

ቀ௡ – ଵ
௞ – ଵቁ

௞ ୀ ଵ
 

ൌ  ሺ݊ ൅  1ሻ 2௡ ି ଶ  .                                                               (3) 

T
and (2.1), we get: 

  ଵ
 

  ⇒  1ଷ

      
(

⇒

 
(i ) 

1 ଵ ଵ ଵ ଶ ଵ ଵ ଵ ଵ ଶ ଶ ଵ ଷ
 
        ൅ ሾ ݁ଵሼ4ሽ ݁ଵሼ3ሽ ݁ଵሼ2
 

4)
…
1௡  ൌ .n
  

ion of 5 terms with the descending order of factorial notations: 5!, 
4!, 3!, 2! an

n are: (1, 1, 1, 1),  (1, 1, 2),  (1, 2, 1),  
+ 2 + 1  =  1 + 3  =  2 + 1 + 1  =  2 + (1, 3),  (2, 1, 1),   (2, 2),  (3, 1),  4 such that 1 + 1 + 1 + 1  =  1 + 1

2  =  3 + 3 1 =  4; and evidently involve with all 2  or 8 compositions of 4 in a particular order. In like manner the 
sets of bottom indices in the 4th, 3rd, and 2nd terms of (2.4) involve with the ordered compositions of 3, 2 and 1 
respectively. We notice also similar involvements of (2.3), (2.2) and (2.1) with the ordered compositions. In 
general the particular decomposition of (n + 1)! for n ≥ 1 can yield an expression (2.n) of n + 1 terms for unity 

such that n terms except the first one of the expression involve with the compositions of the first n natural 
numbers: 1, 2, …, n in succession where the compositions of each number occur following a definite order. 

The number of terms of an expansion, which occurs as the coefficient of r! for n ≥ r ≥ 1 in (2.n), is 
equal to the composition of the integer: n – r + 1. That is, the number of terms = 2n –  r. In a definite order, all 2n –  

r compositions of the integer: n – r + 1 involve with 2n – r sets of bottom indices of 2n –  r terms of the expansion. 
The general form of the terms of the expansion is:  
             ݁௜భሼ݊ሽ ݁௜మሼ݊ െ ݅ଵሽ ݁௜యሼ݊ െ ݅ଵ െ ݅ଶሽ … ݁௜೘ሼ݊ െ ݅ଵ െ … െ ݅௠ ି ଵሽ,      ݅ଵ ൅ ݅ଶ ൅ … ൅ ݅௠ = n – r + 1. 
Example:  Let n = 4 and r = 2. Then we have: n – r + 1 = 3.  

In (2.4), the number of terms of the expansion, which occurs as the coefficient of 2!, is 24 – 2 or 4. Four 
compositions of 3 are 1+1+1, 1+2,  2+1 and  3. The co positions are written in a d nite order such that the 

ve four terms of the expansion are: successi
 

݁ ሼ4ሽ ݁ ሼ4 െ 1ሽ ݁ ሼ4 െ 1 െ 1ሽ,  ݁ ሼ4ሽ ݁ ሼ4 െଵ ଵ ଵ ଵ ଶ 1ሽ,   ݁ଶሼ4ሽ ݁ଵሼ4 െ 2ሽ, and  ݁ଷሼ4ሽ. 
Or, 

 
݁ଵሼ4ሽ ݁ଵሼ3ሽ ݁ଵሼ2ሽ

k} 
of n in

 n i ands  ଵ൯.  
(n) 

mm

=  ෍ ݇ 
௡
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Step 2: The compositions of n integers: 1, 2, … , n all occur in (2.n
e {k} is a summand of a composition among the compositions of al

). The bottom index of a notation of the type 
l n integers. Then from (3), we get:  

otatio  of the type en{k} in (2.n) 
                                                  = Number of t mmands of the compositions of all n integers: 1, 2, …, n 

ൌ   ෍ ሺ݅ ൅  1ሻ 2௜ ି ଶ  
௡

௜ୀଵ
                                                      

ൌ ݊ 2௡ ି ଵ  .                                             

                                  
III. Ordered Compositions 

The significant order of the

n
Number of the n ns

he su

                                                                  (4) 
 
Remark 1: (4) implies a curious number- sum relationship: 

Number of t : 1, 2, …, n he summands of the compositions of all n integers
                                 = Sum of the summands of the compositions of n. 
                                                                                                                                                                              

 compositions of n or in brief SOC(n) is demonstrated in the paper: 
S
M

oumendra era, "Relationships bet
  (2.1), (2.2), (2.3), … involve with the 

ns of a positive 

1   r – 2
+ (xr – 1

f 2! in (2.4). We find that 1, 2 and 3 occur as the bottom 
s 
r 

of distinct
a symbo

 

f 1!  in (2.4) is: 
E [(1, 2, 3, 4), (1, 2, 3, 1, 2, 3) , 2) ), (1)

ween Ordered Compositions and Fibonacci Numbers", Journal of 
athematics Research (JMR) under CCSE, Vol. 7, No.3, 2015.

compositions of the integers in a definite order. Rule for the significant order of compositio
elow.  integer n is stated b

st Rule for SOC(n): Under SOC(n), the summands of the 1  C(n) are all 1; the last C(n) is n 
itself; and  for n ≥ r ≥ 2,  if any kth n (k + 1)th  C(n) is: x  + … + x   C(n) is: x1 + …  + xr  the

 + 1) + the  sum of xr – 1 summands which are all 1 such that if r ≥ 3 then the first r – 
2 summands of kth C(n) appear also in (k + 1)th C(n) in the same order, but if r = 2 then such 
common summands of kth C(n) and (k + 1)th C(n) cannot exist. The number of summands of kth 
C(n) and (k + 1)th C(n) under SOC(n) are r and r + xr – 2 respectively. 
Example:  We use the symbol of equivalence (≡) between SOC(n) and its implication. We show an example 
below for n = 5. 
SOC(5) ≡ 1 + 1 + 1 + 1 + 1,   1 + 1 + 1 + 2,   1 + 1 + 2 + 1,   1 + 1 + 3,   1 + 2 + 1 + 1,   1 + 2 + 2,   1 + 3 + 1,   1 
+ 4,   2 + 1 + 1 + 1,   2 + 1 + 2,   2 + 2 + 1,   2 + 3,   3 + 1 + 1,   3 + 2,   4 + 1,   5.    
            In Topic II, the sets of bottom indices in the successive two terms except the 1st one of (2.2) involve with 
SOC(1) and SOC(2); in like manner three terms of (2.3) with SOC(1), SOC(2) and SOC(3); four terms of (2.4) 
with SOC(1), SOC(2), SOC(3) and  SOC(4); and so on. 
 
IV. Another Way of Analysis for Occurrences of the Integers in the Recurrence Expressions 

and a Reduced Version of (2.n) 
We have noticed that the terms in the expansions that occur as the coefficients of 1!, 2!, … in (2.1), 

(2.2), (2.3), .. involve with the ordered compositions of 1, 2, 3, …; and with the ordered integers that have close 
connection with the summands of compositions. Here we investigate occurrences of the integers in the 
successive expressions in a different way.  

Let us confine our attention to the coefficient o
indices; and 2, 3 and 4 occur inside the braces. Although the numbers of occurrences of the distinct integers a
the bottom indices and inside the braces {} are different yet the distinct integers are consecutive; and the numbe

s is equal to the number of distinct int integers as the bottom indice egers inside the braces. So we use 
lic abbreviation for the coefficient of 2! in (2.4) in the form: 

E [Set of distinct integers as the bottom indices, this inside the braces {}]. 
Using the notation, which is indeed an arithmetic function, we may write a recurrence relation for the coefficient 
of 2! in the following form. 

E [(1, 2, 3),  (2, 3, 4)]  =  ݁ଵሼ4ሽ E [(1, 2),  (2, 3)]  –  ݁ଶሼ4ሽ E [(1), (2)]  + ݁ଷሼ4ሽ .      (5.1) 
                                                                       
In like manner the coefficient of 3! in (2.4) is:  
  

E [(1, 2), (3, 4)]  =  ݁ ሼ4ሽ  E [(1), (3)]  –  ݁ ሼ4ሽ.                                    ଵ ଶ                       (5.2) 
                                                                                                                                
The last term or coefficient o

 4)] =  ݁ଵሼ4ሽ E [(1, 2, 3), ( ] – ݁ଶሼ4ሽ E [(1, 2), (1 ] + ݁ଷሼ4ሽ E [(1 ] – ݁ସሼ4ሽ. 
(5.3) 
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4! in (2.4) is:  

  
                                          (5.4) 

e rel or th 1! in nd 2
in (2.2), an  (2.3). sid

e consecutive integers in the 2nd set start with

ntegers as the bottom indices; this inside the braces] 
           ),  (k

 as shown.  

ଵ ଶ ଷ ) 

ଵ ଶ                                    (6.2) 

ଶ ଷ ସ

ଵ ) 

 als sim

    
k)  =                   

ሺ݊ܨ ൅ 1, ݇ሻ  ൌ ෌  ଵ௡ ݁
              

at the coefficients of 3!, 2! and1! in (2.3) are F(1, 3), F(2, 2) and F (3, 1); 
, 2) and F(2, 1) respectively. Thus the reduced forms of (2.1), (2.2), (2.3) 

 

1   =   2!  – F(1, 1) .                                                                                       
                      

12   =   3!  – 2! F(1, 2)  + F (2, 1).                                                                           (8.2) 

e can verify the results by
f (1.3) by thei
ed versions o

                                                 
௝ ୀ ଵ

 to solve F(n, 
 

The coefficient of 

E [(1), (4)]  =  ݁ଵሼ4ሽ .                                                     
                      

Similarly we can find th ations of the same kind f e coefficients of (i)  (2.1),  (ii) 1! a ! 
d  (iii) 1!, 2! and 3! in We further notice that in e the brackets: [ ] of the arithmetic functions, 

 the consecutive integers of the 1st set start with unity and th
 have:  different integers. In other words we

              E [set of distinct i    
                                = E [(1, 2, …, n , k + 1, …., k + n – 1)] , which contains two variables: n and k. 
 
Then we can write a reduced version: F(n, k) for the arithmetic function such that     
                       

F(n,  k)  =  E [(1, 2, …, n),  (k, k + 1, …., k + n – 1)] .                                                  (6) 
                                                                     
Using (6), we can immediately write the reduced forms of (5.1), (5.2), (5.3) and (5.4) in succession
 

F(3, 2)  =  ݁ ሼ4ሽ F(2, 2)  –  ݁ ሼ4ሽ F(1, 2)  + ݁ ሼ4ሽ .                                                    (6.1
                                                                                      

F(2, 3)  =  ݁ ሼ4ሽ F(1, 3)  –  ݁ ሼ4ሽ .                                           
 

F(4, 1)  =  ݁ଵሼ4ሽ F(3, 1)  –  ݁ ሼ4ሽ F(2, 1)  +  ݁ ሼ4ሽ F(1, 1)  – ݁ ሼ4ሽ .                        (6.3) 
 

F(1, 4)  =  ݁ ሼ4ሽ .                                                                                                        (6.4
  
             We obtain the a  for n
general we obtain: for a  

bove results (2.4). We ca o obtain the ilar results for (2.3), (2.2) and (2.1). In 
ll n, k ∈ Գ,  

  
F(1,  ݁ଵሼ݇ሽ .                                                                            (7.1) 

and  
ሺെ1ሻ௜ ି

௜ ୀ ଵ ௜ሼ݊ ൅ ݇ሽ ܨ൫݊ ൅ 1 –  ݅, ݇൯  ൅  ሺെ1ሻ௡ ݁௡ ା ଵሼ݊ ൅ ݇ሽ.       (7.2) 
   
           We find that the coefficients of 4!, 3!, 2! and1! in (2.4) are F(1, 4), F(2, 3), F(3, 2)  and F (4, 1) 
respectively. Similarly we can find th

these of  2! and 1! in (2.2) are F(1and 
and (2.4) are: 
 

         (8.1) 

                       
13   =   4! – 3! F(1, 3)  +  2! F(2, 2)  –  F(3, 1) .                                                     (8.3) 

                      
14   =   5!  – 4! F(1, 4)  +  3! F(2, 3)  –  2! F(3, 2) +  F(4, 1).                                (8.4) 

 
W  the process of recursive substitution. For instance, replacing 12 and 1 from the 2nd 

r expressions as in (8.2) and (8.1) and then applying (7.1) and (7.2), we get (8.3). and 3rd terms o
Thus the reduc f (2.1), (2.2), …are (8.1), (8.2), … in succession. The general form of (8.1), (8.2), … 
is:         

    1 ൌ   ሺ݊ ൅  1ሻ!   ൅   ෍ ሺെ1ሻ௝ ሺ݊ ൅ 1 െ ݆ሻ! ,ሺ݆ܨ  ݊ ൅ 1 െ ݆ሻ
௡

                         ሺ9ሻ 

Now we need k).  
 
(a) Solution for F(n, k) 
The solution of F(n, k) is Theorem 3 which is the consequence of Theorem 1 and Theorem 2. 
Theorem 1: F (n, 1) = 1.  
Proof:  We have: 
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  ሺݔ –  1ሻሺݔ –  2ሻ … ሺݔ  –  ݊ሻ  ൌ    ෍  ሺെ1ሻ௜  ݁௜ሼ݊ሽ ݔ௡ ି ௜ 
௡

௜ ୀ ௢
 . 

Putting x = 1, we get;   
                                         

 

                       ෍  ሺെ1ሻ௜ ି ଵ  ݁௜ሼ݊ሽ ൌ 1
௡

௜ ୀ ଵ
.                                                                            ሺ10ሻ 

theorem by induction. From (7.1) and (7.2), we have F(1, 1) = F(2, 1) = 1. Hence the 
n = 1 and for n = 2. To complete the proof, we assume that the theorem holds for all n ∈ Գ 

with 1 ≤ n ≤ r. Then we deduce that 
 

    F(r + 1, 1) =  ෍  ሺെ1ሻ௜ ି ଵ ሼݎ ൅ 1ሽ ܨሺݎ ൅  1 –  ݅, 1 ሻ  ൅ 
௥

ሺെ1ሻ௥  ݁௥ ା ଵሼݎ ൅ 1ሽ 

                        ൌ  ෍  ሺെ1ሻ௜ ି ଵ ݁௜ሼݎ ൅ 1ሽ · 1 ൅ ሺെ1ሻ௥  ݁௥ ା ଵሼݎ ൅ 1ሽ 

 1.  
he theorem follows. ▮ 

Theorem 2: F(n + 1, k + 1)  =  F(n + 1, k )  +  (k + 1) F(n, k + 1).  
Proof. To prove the theorem, first we derive the fundamental identity (11) below. We have defined the notation 
en{xk} in Topic II. By the definition, the following laws hold. The n mber of terms of en{xk} is ቀ݇

݊ቁ. A term of en 

+ 1{xk} for k ≥ n + 1 is also a term of en +1{xk + 1}, which does not contain xk + 1 as a factor; and if xk + 1 is 
multiplied with a term of en{xk} then the product is a term of en + 1{xk + 1}, which contains xk + 1 as a factor. This 

݇
1ቁ s of en + 1{xk +1} where none of these terms has a factor xk + 1; 

 of remaining
 
ቀ݊ቁ

 
terms of en + 1{xk +1} where xk + 1 is a common factor of these terms.  

Su  g  

݁௡ ሼ  ݁     ) 

ሼ݇ሽ = 0] 
sing (11.1) we shall now prove the theorem by induction on n. 

When n = 1 and k is a fixed positive integer, from (7.2) we deduce tha

ሺ1, ݇ ൅ 1ሻ  െ ݁ଶ ሼ݇ ൅ 2ሽ    

݇ ൅ 1ሽ  ൅ ݇ ൅ 2ሿ ܨሺ1, ݇ ൅ 1ሻ  െ ሾ݁ଶሼ݇ ൅ 1  ൅ ሺ݇ ൅ 2ሻ ݁ଵሼ݇ ൅ 1ሽሿ  

                               ൌ  ݁ଵሼ 1ሽ ሾܨሺ1, ݇ሻ ൅  ݇ ൅ 1ሿ   ൅ ሺ݇ ൅ 2ሻ ݁ଵሼ݇ ൅ 1ሽ  െ ݁ ሼ݇ ൅ 1ሽ  െ ሺ݇ ൅ 2ሻ ݁ ሼ݇ ൅ 1ሽ  

                                ൌ  ݁ଵሼ݇ ൅ 1ሽ ܨሺ ݇ሻ  െ ሼ ሽ ሺ 1ሻ ݁ ሼ 1ሽ    
 

ence the theorem is true for n = 1 and a fixed k.  We assume that the theorem is true for all n ∈ Գ with 1 ≤  n  
 is, by inductive assumption, we have:  

                 

                                             

                                                                                     
 (10) is useful to prove the 
theorem is true for 

                                         ݁௜
௜ ୀ ଵ

௥

௜ ୀ ଵ
௥ ା ଵ

                        ൌ   ෍  ሺെ1ሻ௜ ି ଵ ݁௜ሼݎ ൅ 1ሽ 
௜ ୀ ଵ

 

                                                          =
T
 

u

implies that en + 1{xk } is the sum of ቀ݊ ൅  term
݇and xk + 1 en{xk}is the sum

We have then the following fundamental identity from the laws.  
 

݁௡ ା ଵሼݔ௞ ା ଵሽ  ൌ ݁௡ ା ଵሼݔ௞ሽ  ൅  ௞ሽ .                                                           (11)ݔ௞ ା ଵ ݁௡ ሼݔ
   

bstituting 1, …, k + 1 for x1, …, xk  + 1, we et:
 
                                           ݁௡ ା ଵሼ݇ ൅ 1ሽ  ൌ  ݁௡ ା ଵሼ݇ሽ  ൅ ሺ݇ ൅ 1ሻ ݁௡ ሼ݇ሽ 
 

⇒ ݁௡ ሼ݇ሽ  ൌ ݇ െ 1ሽ  ൅  ݇ ௡ ି ଵ ሼ݇ െ 1ሽ .                                                     (11.1
 

[ ݁଴ ሼ݇ሽ = 1 and for n > k , ݁௡ 
U

t: 
 
,ሺ2ܨ                                    ݇ ൅ 1ሻ ൌ  ݁ଵሼ݇ ൅ 2ሽ ܨ
 
                                  ൌ ሾ݁ଵሼ ሽ
 
  ݇ ൅ ଶ ଵ
 
  1,   ݁ଶ ݇ ൅ 1  ൅ ݇ ൅ ଵ ݇ ൅

                                  ൌ ,ሺ2ܨ  ݇ሻ   ൅ ሺ݇ ൅ 1ሻ ܨሺ1, ݇ ൅ 1ሻ . 
 
H
≤  m and a fixed k. That
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ሺ݉ܨ                                 ൅ 1, ݇ ൅ 1ሻ ൌ ሺ݉ܨ  ൅ 1, ݇ሻ  ൅ ሺ݇ ൅ 1ሻ ܨሺ݉, ݇ ൅ 1ሻ,   

ሺ݉, ݇ ൅ 1ሻ  ൌ ,ሺ݉ܨ  ݇ሻ  ൅ ሺ݇ ൅ 1ሻ ܨሺ݉ െ 1, ݇ ൅ 1ሻ,   
                              …  … , 

2, ݇ ൅ 1ሻ  ൌ ,ሺ2ܨ  ݇ሻ  ൅ ሺ݇ ൅ 1ሻ ܨሺ1, ݇ ൅ 1ሻ . 

at the theorem holds for n = m + 1 fixed k.   

          ൅ ሺെ1ሻ௠ ݁௠ ା ଵሼ݉ ൅ ݇ ൅ 2ሽ ܨሺ1, ݇ ൅ 1ሻ   ൅  ሺെ1ሻ௠ ା ଵ ݁௠ ା ଶሼ݉ ൅ ݇ ሽ . 

                                    ൌ ሾ݁ଵሼ݉ ൅ ݇ ൅ 1ሽ ൅ ሺ݉ ൅ ݇ ൅ 2ሻሿ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ     

ሾ݁ଶሼ݉ ൅ ݇ ൅ 1ሽ   ൅ ሺ݉ ൅ ݇ ൅ 2ሻ݁ଵሼ݉ ൅ ݇ ൅ 1ሽ ܨሺ݉, ݇ ൅ 1ሻ  ൅ …  

                                        ൅ ሺെ1ሻ௠   ሾ ݁௠ ା ଵሼ݉ ൅ ݇ ൅ 1ሽ  ൅ ሺ݉ ൅ ݇ ൅ 2ሻ ݁௠ ሼ݉ ൅ ݇ ൅ 1ሽሿ ܨሺ1, ݇ ൅ 1ሻ  

              ൅ ሺെ1ሻ  ሾ݁௠ ା ଶሼ݉ ൅ ݇ ൅ 1ሽ  ൅ ሺ݉ ൅ ݇ ൅ 2ሻ ݁௠ ା ଵሼ݉ ൅ ݇ ൅ 1ሽሿ . 

                             ݁ଵሼ݉ ൅ ݇ ൅ 1ሽ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ  െ ݁ଶሼ݉ ൅ ݇ ൅ 1ሽ ܨሺ݉, ݇ ൅ 1ሻ  ൅ …  

ሺെ1ሻ௠ ݁௠ ା ଵሼ݉ ൅ ݇ ൅ 1ሽ ܨሺ1, ݇ ൅ 1ሻ  ൅ ሺെ1ሻ௠ ା ଵ ݁௠ ା ଶሼ݉ ൅ ݇ ൅ 1ሽ  

൅ ሺ݉ ൅ ݇ ൅ 2ሻ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ  െ ሺ݉ ൅ ݇ ൅ 2ሻ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ. 

ሼ݉ ൅ ݇ ൅ 1ሽ ሾܨሺ݉ ൅ 1, ݇ ሻ ൅ ሺ݇ ൅  1ሻ ܨሺ݉, ݇ ൅ 1ሻሿ    

ଶሼ݉ ൅ ݇ ൅ 1ሽ ሾܨሺ݉, ݇ሻ ൅ ሺ݇ ൅  1ሻ ܨሺ݉ െ 1, ݇ ൅ 1ሻሿ  ൅ …   

                                    ൅ሺെ1ሻ௠ ݁௠ ା ଵሼ݉ ൅ ݇ ൅ 1ሽ ሾܨሺ1, ݇ ሻ  ൅ ሺ݇ ൅  1ሻሿ  ൅ ሺെ1ሻ௠ ା ଵ ݁௠ ା ଶሼ݉ ൅ ݇ ൅ 1ሽ .  

                                ൌ ሺ݉ܨ  ൅ 2, ݇ ሻ  ൅ ሺ݇ ൅  1ሻ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ. 

Thus the theorem holds for n = m + 1 and is proved by induction for all n ∈ Գ. k can be given any 
btain the result. Hence we have the theorem for all n, k ∈ Գ. ▮ 

 
plete homogeneous symmetric polynomial of degree n in 1, 2, …, k  roof: Complete homogeneous symmetric polynomial: ݄௡ሺݔଵ, … , ௞ ሻݔ  or in brief ݄௡ ሼݔ௞ሽ  is the sum of all 

degree n in the variables: ݔଵ, … ,   ௞ . Formallyݔ

݄௡ሼݔ௞ ሽ   ൌ  ෍ ௜భݔ
ଵ  ஸ  ௜భ  ஸ  …   ஸ  ௜೙  ஸ  ௞

 . ௜೙ݔ  … ௜మݔ 

y substituting 1, …, k for x1, …, xk , we have hn (1, …, k) or in brief  

݄௡ሼ݇ሽ    ൌ    ෍ ݅ଵ  ݅ଶ  …  ݅௡ . 

            S me special values of hn{k } are: h0{k} = 1; hn{0} = 0, n ± 0;  h1{k} = 1 +  e1{k}; and hn{1} = 
with the terms of 

w that the n s of hn  
ence j hn{j}

 
is the  sum of ቀ ݊ ቁ among ቀ݇ ൅ ݊

݊ ൅ 1ቁ terms of hn + 1{k}. Since j ∈ (1,…, k), we have: 

݄௡ ା ଵሼ݇ሽ  ൌ  ෍   ݆ ݄௡ሼ݆ሽ 
௞

௝ ୀ ଵ
 

 
ܨ                                
  
ሺܨ                               
 
Then we shall show th and a 
We deduce that  
 
ሺ݉ܨ         ൅ 2, ݇ ൅ 1ሻ  ൌ  ݁ଵሼ݉ ൅ ݇ ൅ 2ሽ ܨሺ݉ ൅ 1, ݇ ൅ 1ሻ െ ݁ଶሼ݉ ൅ ݇ ൅ 2ሽ ܨሺ݉, ݇ ൅ 1ሻ ൅ …   
  

൅ 2                                  
 
  
 
                                          െ 
 
  
 

௠ ା ଵ                             
  
         ൌ     
 
                                         ൅ 
 
                                                               

 
                                   ൌ  ݁ଵ
  
                                       െ ݁
                      
  
 
   
 

positive integer-value to o

Theorem 3: F(n, k) is com  
P
distinct monomials of 
 

 
B
  

ଵ ஸ ௜భ  ஸ  ௜మ  ஸ  …   ஸ  ௜೙  ஸ  ௞
 

 … + k  = o
1. Let j be a definite integer in (1,…, k). According to the definition of hn{k}, if j is multiplied  
hn{j} then the products are some terms of hn + 1{k}. We kno umber of term {k} is ቀ݇ ൅ ݊ െ 1

݊ ቁ. 
݆ ൅ ݊ െ 1H
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                                                                      ֜   ݄௡ሼ݇ሽ  ൌ  ෍   ݆ ݄௡ ି ଵሼ݆ሽ 
௞

௝ ୀ ଵ
.                                                              ሺ12ሻ 

rom (12),  

 

 ... +  k .                                           (13) 
          

෍  ሾܨሺ݊ ൅ 1
௞

௜ ୀ ଵ
, ݅ ൅ 1ሻ  െ ሺ݊ܨ  ൅ 1, ݅ሻ  ൌ   ෍  ሺ݅ ൅ 1

௞

௜ ୀ ଵ
ሻ ܨሺ݊ , ݅ ൅ 1ሻ  

,ሺ2ܨ                                            ݇ ൅ 1ሻ  ൌ  ሺ݇ ൅ 1ሻ ܨሺ1, ݇ ൅ 1ሻ   ൅ ,ሺ1ܨ ݇   ݇ሻ  ൅  …  ൅  1 · ,ሺ1ܨ 1ሻ 
 

                                         ൌ ሺ݇ ൅ 1ሻ ݄ଵሼ݇ ൅ 1ሽ  ൅  ݇ ݄ଵሼ݇ሽ  ൅  …  ൅ · ݄ଵሼ1ሽ 

                                           ൌ  ݄ଶሼ݇ ൅ 1ሽ . 
                                                                      [By (12) ] 

,ሺ3ܨ                                           ݇ ൅ 1ሻ ,ሺ2ܨ 1ሻ  ൅

                                          ൌ  ሺ݇ ൅ 1ሻ  ݄ଶ ሼ݇ ൅ 1ሽ  ൅ … ൅  1 · ݄ଶ ሼ1ሽ  
 

                                        ൌ ݄ଷሼ݇ ൅ 1ሽ.   
…   …  
In general for all n, k ∈ Գ, 

,ሺ݊ܨ ݇ ൅ 1ሻ   ൌ   ݄௡ሼ݇ ൅ 1ሽ. 

By Theorem1, for all n, k ∈ Գ, 
,ሺ݊ܨ ݇ሻ   ൌ   ݄௡ሼ݇ሽ. 

 

           From (9) and Theorem 3, we get an identity for ݄௡ሼ݇ሽ : 

 ௝݄ሼ݊ ൅ 1 െ ݆ሽ
୨ ୀ ଴

,   ݊ א Գ, ݊ ൒ 1.                                ሺ14ሻ 

ince h0{1} = 1, (14) holds for n = 0 also.  (14) is the reduced version of  (2.n)    

rom (7.1), (7.2) and Theorem 3, we get a recurrence relation for ݄௡ሼ݇ሽ and ݁௡ሼ݇ሽ:   

ሺ ௝  
௝݁ሼ݊ ൅ ݇ െ 1ሽ ݄௡ – ௝ ሼ݇ሽ , ݊ ښ ݇, ݊, ݇  ∈ Գ .                                       ሺ15ሻ 

 
e can find the genera  (15) by substituting the variables: ݔଵ, ݔଶ,   .ଷ,,  … for 1, 2, 3, … as shownݔ 

 
௝݁ሼݔ௡ ା ௞ – ଵሽ ݄௡ – ௝ ሼݔ௞ ሽ , ݊ ښ , ݊, ݇  ∈ Գ .                                  ሺ16ሻ 

ሽ ሺ ሻ,    ݄  ሼ݇ݔ ሽ ൌ   ݄݊ – ݆ ሺ1ݔ, ,2ݔ … ,  ሻ൧ ݇ݔ

F
F(1, k)  =  ݁ଵሼ݇ሽ  =  ݄௡ሼ݇ሽ  = 1 +

From Theorem 2,   

 

ሺ݊ܨ  ⇒   ൅ 1, ݇ ൅ 1ሻ – ሺ݊ܨ  ൅ 1, 1ሻ  ൌ   ෍  ሺ݅ ൅ 1
௞

௜ ୀ ଵ
ሻ ܨሺ݊, ݅ ൅ 1ሻ. 

By Theorem 1,  

ሺ݊ܨ ൅ 1, ݇ ൅ 1ሻ ൌ   ෍ ,ሺ݊ܨ  ݅  ݅ሻ
௞ ା ଵ

௜ ୀ ଵ
. 

Then 

  
 

 1

Similarly 
 ൌ ሺ݇ ൅ 1ሻ ݇ ൅  … ൅  1 · ,ሺ2ܨ 1ሻ  

 
 

  

 

This completes the proof. ▮
 
(b) Two identities 
  
 

                                     1 ൌ    ෍  ሺെ1ሻ௝ ሺ݊ ൅ 1 െ ݆ሻ! 
୬

 
S
     
F
 

୬
               0 ൌ  ෍  െ1ሻ

୨ ୀ ଴

l forW m of
                                 

1ሻ௝ 
୬

               0   ൌ    ෍  ሺെ
୨ ୀ ଴

݇

 
ൣ݁ ሼ݆ ൅ ݇െ 1 ݊ݔ  ൌ  ݆݁ ,1ݔ ,2ݔ … , ൅ ݇ െ 1 ݊ݔ ݊ – ݆

 
Remark 2: In the description of complete homogeneous symmetric polynomial in Wikipedia:      
                    https://en.wikipedia.org/wiki/Complete_homogeneous_symmetric_polynomial, 
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the  relation between complete homogeneous and  elementary symmetric polynomials is given as: 
 

௠

௜ ୀ ଴

 .  

                                                                  ෍ሺെ1ሻூ ݁௜

௠

௜ ୀ ଴

ሼܺ௡ሽ  ݄௠ ି ௜ሼܺ௡ሽ   ൌ    0 .                                                         ሺ17ሻ 

V. An Analogous Pair of Identities with the Same Integer Sequences and Different 
Mathematical Notations. 

One of the pair is a recurrence relation between Unsigned Stirling numbers of kind 1 and Stir ng 
umbers of kind 2. The second one is a binomial coefficient identity. First we will show (i) the relation between 

 ෍ሺെ1ሻூ ݁௜ ሺ ଵܺ, … ,  ܺ௡ሻ  ݄௠ ି  ௜ሺ ଵܺ, … ,  ܺ௡ሻ   ൌ    0

Or in brief’,   
 

 
Obviously (16) is different from (17) 
 

li
n
en{k} and the ‘unsigned’ or ‘absolute value of’ Stirling numbers of the first kin : |s(n, k)| (with a small s); and  d
(ii) the relation between hn{k} and Stirling numbers of the second kind: S(n, k) (with a capital S). Then we will 
obtain the desired recurrence relation from (15).    

 
(i) Relation between en{k} and |s(n, k)| (with a small s); 
Other notations for unsigned Stirling numbers of the first kind are: c(n, k) and ൣ௞൧ . We use here the notation: ൣ௡

௞൧ 
to show the relation.   
Relation between signed and unsigned 1st kind is:  

௡

,ሺ݊ݏ                                                                                         ݇ሻ ൌ  ሺെ1ሻ௡ ି ௞  ቂ
݊
݇ቃ .                                                       ሺ18.1ሻ 

 
The generating series for the unsigned 1st kind is: 
 

                                                                       ሺݔሻሺ௡ሻ  ൌ   ෍   ቂ
݊

݇ ൅ 1ቃ
௡ିଵ

௞ ୀ ଴
 ௞ ା ଵ .                                                         ሺ18.2ሻݔ

 
 ሺݔሻሺ௡ሻ is the notation of rising factorial. 
                                                                  ሺݔሻሺ௡ሻ  ൌ ݔሺ ݔ   ൅  1ሻ ሺݔ ൅  2ሻ  …  ሺݔ ൅  ݊ െ  1ሻ .                       (
  

18.3)                  

From the definition of ݁௞ሼ݊ሽ,  

ݔሺ ݔ                                                   ൅  1ሻሺݔ ൅ 2 ሻ …  ሺݔ ൅  ݊ െ  1ሻ   ൌ  ෍  
௡ିଵ

௞ୀ଴
݁௡ ି ௞ ି ଵሼ݊ െ 1ሽ ݔ௞ ା ଵ .         ሺ18.4ሻ 

 
From (18.2), (18.3) and (18.4),  

݊
      ቂ ቃ  ൌ    ݁ ሼ݊ െ 1ሽ,     ݊ ൐ ݇ ൒  0 

                     ⇒ ݁௞ሼ݊ሽ ൌ  ൤݊ െ ݇ ൅ 1൨   ,    ݊ ൐ ݇ ൒  0 .                                                     ሺ18.5ሻ 

݇ ൅ 1 ௡ – ௞ିଵ

                                      

                                         
݊ ൅ 1

 
Remark 3: In the description of Stirling numbers of the first kind in Wikipedia:   
                         https://en.wikipedia.org/Stirling_numbers_of_the_first_kind ,  
the relation between rising factorial. and unsigned Stirling number is given as:  
 

                                                                             ሺݔሻሺ௡ሻ  ൌ  ෍  ቂ
݊
݇ቃ

௡

௞ ୀ ଴
  ௞  .                                                                  ሺ19ሻݔ 

 
In fact, (18.2) is (19) with a minor variation by the inclusion of the extra term in (19): ൣ௡

଴൧ ݔ଴  which is equal to 0  .   
 (ii) R (with a capital S). 

numbers of the second kind is ൛௡
௞ൟ. Here we 

lation (7) in the paper: Soumendra Bera, ‘Pairs of Comparable Relations for Complete Homogeneous 

elation between en{k} and S(n, k) 
Other notation for the Stirling use ൛௡

௞ൟ. We recall the 
re
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Symmetric Polynomial’, Journal of Mathematics Research (Canadian Center of Science and Education) Vol. 7, 
No. 4, 2015, page 30: 
 

                                               ݄ ሼ݊ሽ  ൌ  ൜
݊ ൅  ݇

݊
ൠ ,    ݊ ښ ݇, ݊, ݇  א  Գ .                                                       ሺ20ሻ 

 
[The special values are: ݄଴ሼ݊ሽ ൌ 1 ; and  ݄௞ሼ0ሽ ൌ 0, ݇ ് 0.] 

 
and (20), we get the relation recurrence relation between unsigned Stirling numbers of 

kind 1 and Stirling numbers of kind 2: 
                                                        

                                                    ⇒  0 ൌ  ෍  ሺെ1ሻ௝  

௝ ୀ ଴
൤
݊ െ  ݆

൨  ൜
݇

ൠ ,     ݊ ൐ ݇ ൒  0 .                                 ሺ21ሻ 

 

௞

          From(15), (18.5) 

  

0 ൌ  ෍  ሺെ1ሻ௝  
௡

൤
݊ ൅  ݇

൨  ൜
݊ ൅  ݇ െ ݆

ൠ 
௝ ୀ ଴ ݊ ൅  ݇ െ  ݆ ݇

 
௡ ି ௞ ݊ ݊ െ ݆

 (21) has a mathematical beauty in its triangular representation involving the ordered integers. For exampl  e,
when n = 4 and k ∈ (0, 1, 2, 3) then the triangular picture of the relation is: 
 

൤
4
4൨ ൜

4
0ൠ  െ ൤

4
3൨ ൜

3
0ൠ ൅ ൤

4
2൨ ൜

2
0ൠ െ ൤

4
1൨ ൜

1
0ൠ ൅  ൤0 ൜

0
0ൠ 

 
4 4 4 3 4 2 4 1

4
൨

ൌ  ൤4൨ ൜1ൠ  െ ൤3൨ ൜1ൠ ൅ ൤2൨ ൜1ൠ െ ൤1൨ ൜1ൠ  
 

ൌ ൤
4
4൨ ൜

4
2ൠ  െ ൤

4
3൨ ൜

3
2ൠ ൅ ൤

4
2൨ ൜

2
2ൠ 

4൨ ൜
4
3ൠ  െ ൤3 3

= 0 
: { } from the above relation by the parentheses of combinatorial notation: 

 ( ), other relation with the same ordered integers in triangular frame is:  
 

൬
4
4൰ ൬

4
0൰ െ ൬

4
3൰ ൬

3
0൰ ൅ ൬

4
2൰ ൬

2
0൰ െ ൬

4
1൰ ൬

1
0൰ ൅ ൬

4
0൰ ൬

0
0൰ 

 

ൌ  ൬
4

൰ ൬
4

൰ െ ൬
4

൰ ൬
3

൰ ൅ ൬
4

൰ ൬
2

൰ െ ൬
4

൰ ൬
1

൰ 

4 2 3 2 2 2
 

ൌ ൬
4
4൰ ൬

4
3൰  െ ൬

4
3൰ ൬

3
3൰  

 
= 0 

ൣ௡
௞൧ , ൛௡ 

௞ ൟ and ൫௡
௞൯ imply different integers. Clearly if bstitute the integer-values for the notations: 

ൣ௡
௞൧ , ൛௡ 

௞ ൟ and ൫௡
௞൯, the initial sameness of  the integer sequences of the a ove two triangular pictures will vanish; 

zero is yet the value of each expansion.  
The second triangular picture is owing to the binomial coefficient identity:  
        

                                       ෍  ሺെ1ሻ௝  
௡ ି ௞

௝ ୀ ଴
൬

݊
݊ െ ݆൰  ൬

݊ െ ݆
݇ ൌ   0,     ݊ ൐ ݇ ൒ 0.                                                     ሺ22ሻ 

 

ൌ ൤
4 4

൨ ൜
3

ൠ 
 

Replacing all brackets: [ ] and braces

4 1 3 1 2 1 1 1
 

ൌ ൬
4

൰ ൬
4

൰ െ ൬
4

൰ ൬
3

൰ ൅ ൬
4

൰ ൬
2

൰  

 
 we su

b

     ൰  

 



An Expression Involving All Ordered Compositions of the First n Ordered Natural Numbers and Two  

DOI: 10.9790/5728-1205015564                                           www.iosrjournals.org                                   64 | Page 

(22) is the identity (1) with minor variation in the paper: Soumendra Bera, "A Typical Sequence of + 
and – signs, and an Application of the Powers of Twos in the Expression of a Positive Integer in Binary Scale", 
IOSR Journal of Mathematics (IOSR-JM) Volume 12, Issue 3 Ver. I (May. - Jun. 2016), page-3. 
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Annexure 
1. Below is a triangular array of valu

sequence A008275 in the On-Line Encyclopedia of Integer Sequences) : 
 

n \ k 0 1 2 3 4 5 6 7 8 9 
0 1          
1 0 1         
2 0 1 1        
3 0 2 3 1       
4 0 6 11 6 1      
5 0 24 50 35 10 1     
6 0 120 274 225 85 15 1    
7 0 720 1764 1624 735 175 21 1   
8 0 5040 13068 1960 322 28 1  13132 6769 
9 0 40320 109584 118124 67284 22449 4536 546 36 1 

 
2. Below is a triangular array of values for the Stirling numbers of the second kind (Sloane's 

sequence A008277 in the OEIS ) : 
 

n \ k 0 1 2 3 4 5 6 7 8 9 10 
0 1           
1 0 1          
2 0 1 1         
3 0 1 3 1        
4 0 1 7 6 1       
5 0 1 15 25 10 1      
6 0 1 31 90 65 15 1     
7 0 1 63 301 350 140 21 1    
8 0 1 127 966 1701 1050 266 28 1   
9 0 1 255 3025 2646 462 36 1  7770 6951 

 


