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Abstract: Stochastic stability of Markov chains has an almost complete theory and forms a foundation for 

several other general techniques.  A fuzzy Markov system is proposed and describe both determined and random 

behavior of complex dynamic systems.  In this paper we study the ergodic behavior of a fuzzy Markov chain, and 

Consequently their weak and strong ergodic behavior. 
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I. Introduction 
A fuzzy Markov system is proposed to describe both determined and random functioning of Complex 

dynamic systems. Most fuzzy logic applications are intended for Control and analytic purpose[5,4].  Another 

group of application is system state prediction[3] conventional fuzzy systems cannot operate with random 

phenomena. 

Control processes in real life plants consist of determined and random elements.  Stochastic processes 

can be described using a Markov modeling approach[2].  However, this approach allows simulation of a limited 

number of system states depending on state quantification.  Furthermore the transition probability matrix must 

have large size to achieve high accuracy of modeling.  This disadvantage can be avoided using a combination of 

Markov modeling with fuzzy logic. 

In order to extend the application area of both techniques a fuzzy Markov modeling approach was 

proposed[1]. 

Therefore fuzzy Markov systems could be used for smooth non-linear approximation of a 

multidimensional probability density function.  In case, a Markov model represents a fuzzy inference system 

with the transition probability matrix stored within the rule base. 

Stochastic processes with a dynamic system can often be assumed to be stationary and ergodic.  In this 

case the Markov chain is homogeneous and its dynamics are described by the transition probability matrix P.  In 

this paper we study the ergodic behavior of fuzzy Markov chains and consequently the concepts weak ergodicity 

and strong ergodicity of fuzzy Markov chains. 

 

II. Fuzzy Markov Chain 
In this paper we proposed the set of possible limiting distributions for finite state Markov chain with 

fuzzy transition probabilities by which we mean a non-stationary Markov chain defined by the stochastic 

process. 

 {X(t); t=0,1,2…}  wtth transition probabilities Pij(t)=P{X(t+1)=j|X(t)=i} 1≤ i, j ≤ n 

Which satisfy the condition αij≤ Pij(t) ≤βij for each t=0,1,2,… where  0 ≤ αij≤ βij≤1 

Let S={x;x=(x1,….xn}, 𝑥𝑖 = 1 ; 𝑥 ≥ 0}𝑛
𝑖=1  i.e. the set of all n-dimensional probability vectors.  The norm of a 

vector x∈ 𝑅𝑛  is defined by  𝑥 =  |𝑥|𝑛
𝑖=1  and we topologize the closed subsets of the metric space (S, ||  ||) 

with the Hausdorff metric d defined by 

𝛿 𝐴, 𝐵 =   | 𝑥 − 𝑦 |𝑦∈𝐵
𝑚𝑖𝑛

𝑥∈𝐴
𝑚𝑎𝑥  

                                   d(A,B)=Max[𝛿 𝐴, 𝐵 , 𝛿 𝐵, 𝑎 ] 
for any closed A,B⊆ 𝑆.  We also define 

xi(t)=Pr{X(t)=i} 

fi, denote the fuzzy states of a Markov chain without loss of generality let fr denote the initial fuzzy state, fs 

denote the terminal fuzzy state and fj denote the inter mediate fuzzy state. 

 

III. Ergodic Coefficients of Fuzzy Matrix 
Definition:3.1 Let P be a fuzzy stochastic matrix the ergodic coeffecient of P denoted as α(P) is defined by 

𝛼 𝑃 =  1 −   [𝑃𝑓𝑟𝑓𝑗 −

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 ]𝑓𝑟 ,𝑓𝑠
𝑆𝑢𝑝 +                     (1.1) 

Where [Pfrfj – Pfsfj]
+
 = max(0, Pfrfj – Pfsfj). 
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Theorem: 3.1 Let P be a fuzzy stochastic matrix, then 

𝛼 𝑃 =    min⁡(𝑃𝑓𝑟𝑓𝑗 ,

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 )𝑓𝑟 ,𝑓𝑠
𝑖𝑛𝑓   

Proof: Let fr and fs be fixed, 

Since (𝑃𝑓𝑟𝑓𝑗 − 𝑃𝑓𝑠𝑓𝑗 )+ = [𝑃𝑓𝑟𝑓𝑗 − min 𝑃𝑓𝑟𝑓𝑗 , 𝑃𝑓𝑠𝑓𝑗  ] and since      𝑃𝑓𝑟𝑓𝑗 = 1∞
𝑓𝑗 =1  

We have 

1 −   [𝑃𝑓𝑟𝑓𝑗 −

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 ] 
 + = 1 −   𝑃𝑓𝑟𝑓𝑗 − min 𝑃𝑓𝑟𝑓𝑗 , 𝑃𝑓𝑠𝑓𝑗   

∞

𝑓𝑗 =1

 

                                                     = min 𝑃𝑓𝑟𝑓𝑗 , 𝑃𝑓𝑠𝑓𝑗  
∞
𝑓𝑗 =1  

Taking the infimum of both sides over fr,fs we get 

  min⁡(𝑃𝑓𝑟𝑓𝑗 ,

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 )𝑓𝑟 ,𝑓𝑠
𝑖𝑛𝑓  =   [1 −  (𝑃𝑓𝑟𝑓𝑗 −

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 )]𝑓𝑟 ,𝑓𝑠
𝑖𝑛𝑓 + 

=  1 −   [𝑃𝑓𝑟𝑓𝑗 −

∞

𝑓𝑗 =1

𝑃𝑓𝑠𝑓𝑗 ]𝑓𝑟 ,𝑓𝑠
𝑆𝑢𝑝 + 

It sometimes more convenient to use 1- α(P)  instead of α(P) itself.  In view of this we define 

         δ(P)=1- α(P) 

and δ(P) the delta coefficient of P. 

therefore δ(P)=1 −   min⁡(𝑃𝑓𝑟𝑓𝑗 ,∞
𝑓𝑗 =1 𝑃𝑓𝑠𝑓𝑗 )𝑓𝑟 ,𝑓𝑠

𝑖𝑛𝑓   

 

Theorem: 3.2 If P and Q are fuzzy stochastic matrices the δ(QP)< δ(Q)δ(P). 

Proof: In definition 3.1 we introduced the notation a
+
=max(0,a).  If we introduce a

-
 to denote max(0,-a) then we 

have a=a
+
-a

-
 . 

Employing this notation we see that for any two rows i and k of a fuzzy stochastic matrix Q we have 

  

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+ −   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )− 

This is true since 

  

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+ −   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )− 

=   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 ) 

                                             = 1 – 1 

     = 0 

If we define 

QP = R = (γfrfj)  

Then δ(QP)= δ(R) 

  [𝛾𝑓𝑟𝑓𝑙 −

∞

𝑓𝑙=1

𝛾𝑓𝑠𝑓𝑙 ]=  𝑓𝑟 ,𝑓𝑠
𝑆𝑢𝑝 + 

For the moment fix fr and fs and consider 

  [𝛾𝑓𝑟𝑓𝑙 −

∞

𝑓𝑙=1

𝛾𝑓𝑠𝑓𝑙 ] 
 + =  [  

 

𝑓𝑗

𝑞𝑓𝑟𝑓𝑗 𝑃𝑓𝑗𝑓𝑙 − 𝑞𝑓𝑠𝑓𝑗 𝑃𝑓𝑗𝑓𝑙 ]+                 (1.2)

∞

𝑓𝑙=1

 

Let E={l:   ( 
𝑓𝑗 𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )𝑃𝑓𝑗𝑓𝑙 > 0}  

That is E denotes those columns l, for which the values𝛾𝑓𝑟𝑓𝑙 − 𝛾𝑓𝑠𝑓𝑙  is positive using the set E, (1.2) can be 

written 

  

 

𝑓𝑙∊𝐸

 [𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 ]𝑃𝑓𝑗𝑓𝑙                                                        (1.3)

∞

𝑓𝑙=1

 

The order summation can be interchanged using Funinis theorem so (1.3) is equal to  

  𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗    

 

𝑓𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙 =

∞

𝑓𝑙=1

 [

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+ − (𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )−]   

 

𝑓𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙  



On The Ergodic Behaviour of Fuzzy Markov Chains 

DOI: 10.9790/5728-1205022834                                      www.iosrjournals.org                                        30 | Page 

=   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+   

 

𝑓𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙 − (𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )−   

 

𝑓𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙  

Now since all the terms in this difference are non-negative the difference is made larger if the first term is 

increased and the second decreased.  That is in place of    
𝑙∊𝐸 𝑃𝑓𝑗𝑓𝑙  we substitute 𝑠𝑢𝑝𝑓𝑗

    
𝑓𝑙∊𝐸 𝑃𝑓𝑗𝑓𝑙 in the first 

term of the difference and  

𝑖𝑛𝑓𝑙∊𝐸
    

𝑙∊𝐸 𝑃𝑓𝑗𝑓𝑙  in the second term, using the first that 

  

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+ =   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )− 

We get 

  [𝛾𝑓𝑟𝑓𝑙 −

∞

𝑓𝑙=1

𝛾𝑓𝑠𝑓𝑙 ] 
 + ≤   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+[𝑠𝑢𝑝𝑓𝑗
   

 

𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙 − 𝑖𝑛𝑓𝑓𝑗
   

 

𝑙∊𝐸

𝑃𝑓𝑗𝑓𝑙 ] 

=   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+𝑠𝑢𝑝𝑓𝑗1𝑓𝑗 2
   

 

𝑙∊𝐸

(𝑃𝑓𝑗1𝑓𝑙 − 𝑃𝑓𝑗 2𝑓𝑙 ) 

<   

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+𝑠𝑢𝑝𝑓𝑗1𝑓𝑗 2
   

∞ 

𝑙=1

(𝑃𝑓𝑗1𝑓𝑙 − 𝑃𝑓𝑗 2𝑓𝑙 )+ 

The last expression is simplified to  

  

∞

𝑓𝑗 =1

(𝑞𝑓𝑟𝑓𝑗 − 𝑞𝑓𝑠𝑓𝑗 )+𝛿(𝑝) 

So taking the supremums of both sides over fr and fs we get 

𝛿 𝑄𝑃 < 𝛿(𝑄)𝛿(𝑃) 

Theorem: 3.3 For all matrices A and B the following inequality holds∥ 𝐴𝐵 ∥<∥ 𝐴 ∥. ∥ 𝐵 ∥ 

Proof: The case where∥ 𝐴 ∥ 𝑜𝑟 ∥ 𝐵 ∥ is either zero or infinite, is easily done.  Therefore assume that 0<∥ 𝐴 ∥<
∞ and 0<∥ 𝐵 ∥< ∞. Note that the (fr,fj)th element of AB is given by 

  

∞

𝑓𝑘=1

𝑎𝑓𝑟𝑓𝑠 − 𝑏𝑓𝑠𝑓𝑗  

Then 

∥ 𝐴𝐵 ∥=    

∞

𝑓𝑗 =1

𝑓𝑟
𝑠𝑢𝑝

  

∞

𝑓𝑠=1

𝑎𝑓𝑟𝑓𝑠 − 𝑏𝑓𝑠𝑓𝑗  

<    

∞

𝑓𝑗 =1

𝑓𝑟
𝑠𝑢𝑝

  

∞

𝑓𝑠=1

𝑎𝑓𝑟𝑓𝑠  𝑏𝑓𝑠𝑓𝑗  

By Funinis theorem the last expression is equal to  

   

∞

𝑓𝑠=1

𝑓𝑟
𝑠𝑢𝑝

𝑎𝑓𝑟𝑓𝑠   

∞

𝑓𝑠=1

𝑏𝑓𝑠𝑓𝑗   

<    

∞

𝑓𝑠=1

𝑓𝑟
𝑠𝑢𝑝

𝑎𝑓𝑟𝑓𝑠    

∞

𝑓𝑗 =1

𝑓𝑠
   𝑠𝑢𝑝

𝑏𝑓𝑠𝑓𝑗   

= ∥ 𝐴 ∥. ∥ 𝐵 ∥ 

 

IV. Weak Ergodicity 
In this section we give several theorems in which the ergodic coefficient can be used to determine 

whether a non-stationary Markov chain is weakly ergodic. 

Definition: 4.1 A non-stationary Markov chain is called Weakly ergodic if for all m lim𝑓𝑠→∞ ∥𝑓 0 𝑔(0)
𝑠𝑢𝑝

𝑓(𝑚,𝑓𝑠) −

 𝑔(𝑚 ,𝑓𝑠) ∥= 0 
Where f

(0) 
and g

(0)
 are starting vectors. 

 

 

Theorem: 4.1 A non-stationary fuzzy Markov chain is weakly Ergodic if and only if for all m 

𝛿 𝑃 𝑚 ,𝑓𝑠  → 0 𝑎𝑠 𝑓𝑠 → ∞ 

Proof: Assume that for all m, 𝛿 𝑃 𝑚,𝑓𝑠  → 0 as 𝑓𝑠 → ∞.  
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Let f
(0)

 and g
(0)

 be any two starting vectors and let m and fs be fixed.  Define a fuzzy stochastic matrix Q such 

that the first row is f
(0)

and the remaining row are g
(0).

 

Consider the matrix QP
(m,fs)

=R.  The first row of the matrix R is f
(m,fs)

    and the remaining rows are g
(m,fs)

 .  

Therefore since the value of δ(R) is determined by the rows of R we have 

𝛿 𝑄𝑃 𝑚 ,𝑓𝑠  = 𝛿(𝑅) 

=
1

2
  𝛾𝑓𝑟𝑓𝑙 −

∞

𝑓𝑙=1

𝛾𝑓𝑗𝑓𝑙𝑓𝑟𝑓𝑗
𝑠𝑢𝑝

 

=
1

2
  𝑓𝑙

(𝑚 ,𝑓𝑠) −

∞

𝑓𝑙=1

𝑔𝑙
(𝑚,𝑓𝑠)

𝑓𝑟𝑓𝑗
𝑠𝑢𝑝

 

=
1

2
∥ 𝑓𝑙

(𝑚 ,𝑓𝑠) − 𝑔𝑙

(𝑚,𝑓𝑠)
∥ 

Using theorem 3.2 and the fact that δ(Q)<1, we note that 

∥ 𝑓𝑙
(𝑚 ,𝑓𝑠) − 𝑔𝑙

(𝑚 ,𝑓𝑠)
∥ 

= 2𝛿 𝑄𝑃 𝑚 ,𝑓𝑠   

≤ 2𝛿(𝑄)𝛿 𝑃 𝑚 ,𝑓𝑠   

< 2𝛿 𝑃 𝑚 ,𝑓𝑠   

By assumption the right hand side goes to zero for each m as fs→∞.  Further more it goes to zero independently 

if f
(0)

 and g
(0)

. So the chain is Weakly ergodic. 

Conversely assume that for all m,  ∥𝑓 0 𝑔(0)
𝑠𝑢𝑝

𝑓(𝑚,𝑓𝑠) − 𝑔(𝑚 ,𝑓𝑠) ∥ → 0 𝑎𝑠 𝑘 → ∞. Define f
(0)

 to be a starting vector 

with a one in the ith position and zero elsewhere and define g
(0)

 to be starting vector with a one in the jth 

position and zeros elsewhere. 

Note that the vectors 

𝑓 0  𝑝 𝑚 ,𝑓𝑠 = 𝑓 𝑚,𝑓𝑠  𝑎𝑛𝑑 

𝑔 0  𝑝 𝑚 ,𝑓𝑠 = 𝑔 𝑚 ,𝑓𝑠  

Are the ith and jth rows of  𝑝 𝑚 ,𝑓𝑠 respectively./ So 

 𝑃𝑓𝑟𝑓𝑙
(𝑚,𝑓𝑠) −

∞

𝑓𝑙=1

𝑃𝑓𝑗𝑓𝑙
(𝑚 ,𝑓𝑠) 

= ∥ 𝑓(𝑚 ,𝑓𝑠) − 𝑔(𝑚 ,𝑓𝑠) ∥ 

<  ∥𝑓 0 𝑔(0)
𝑠𝑢𝑝

𝑓(𝑚,𝑓𝑠) − 𝑔(𝑚,𝑓𝑠) ∥ 

Since the Inequality holds for all fr, fj it follows that 

  

2𝛿 𝑃 𝑚 ,𝑓𝑠  =  𝑓𝑟𝑔𝑗
𝑠𝑢𝑝

 𝑃𝑓𝑟𝑓𝑙
(𝑚 ,𝑓𝑠) −

∞

𝑓𝑙=1

𝑃𝑓𝑗𝑓𝑙
(𝑚,𝑓𝑠) 

<  ∥𝑓 0 𝑔(0)
𝑠𝑢𝑝

𝑓(𝑚,𝑓𝑠) − 𝑔(𝑚,𝑓𝑠) ∥ 

And the last term tends to zero for all m as fs→ ∞ by assumption. 

 

Theorem: 4.2 Let {Xn} be a non-stationary fuzzy Markov chain with transition matrices {𝑃𝑛}𝑛=1
∞ .  The chain 

{Xn} is weakly ergodic if and only if there exists a subdivision of P1,P2…. In to blocks of matrices 

[P1P2P3….Pn] [Pn1+1Pn2+1….Pnj+1] such that 

 𝛼(𝑃 
(𝑛𝑗 ,𝑛𝑗 +1)) = ∞∞

𝑓𝑙=0  𝑤𝑕𝑒𝑟𝑒 n0=0. 

Proof: The first part of the proof depends on the following result from analysis. 

If {∊ 𝑗}𝑗=1
∞  is a sequence of numbers with 0<∊ 𝑗<1 for all j then the product    𝑛=1

∞ (1 −∈𝑗 ) diverges to zero as 

n→∞  if and only if 

 ∈𝑗
 =∞

𝑗=𝑚  ∞. If  𝛼(𝑃 
(𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1)) = ∞∞

𝑓𝑙=0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

Using δ(P)=1- α(P) we see that 

 𝛿

𝑓𝑙

𝑓𝑗 =𝑖

(𝑃(𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1)

 

 

) =  [1 − 𝛼

𝑓𝑙

𝑓𝑗 =𝑖

(𝑃(𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1)

 

 

)]             (1) 

As fl→∞. 

Finally let m given and define fr=min{fj:nfj>m} and for fs>m define l=max{fj:nfj<k} and note that fl→∞ as 

fs→∞.  Then using (1) and theorem we have 
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𝛿(𝑃(𝑚 ,𝑓𝑠)
 

 
) ≤ 𝛿(𝑃(𝑚 ,𝑛𝑓𝑟 )

 

 
)  𝛿

𝑓𝑙−1

𝑓𝑗 =𝑖

 𝑃 𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1  

 

 

. 𝛿 𝑃 𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1  → 0      𝑎𝑠 𝑓𝑠 → ∞ 

Conversely assume that the chain is Weakly ergodic that is for all m  

𝛿(𝑃(𝑚 ,𝑓𝑠)
 
) → 0      𝑎𝑠 𝑘 → ∞

 
 

This implies that for all m 

𝛼(𝑃(𝑚,𝑓𝑠)
 
) → 1      𝑎𝑠 𝑘 → ∞ 

Hence for m=0=n0 there exists n1 such  that 𝛼(𝑃(0,𝑛1)
 
) > 1/2. Likewise given n1 there exists n2>n1 such that 

𝛼(𝑃(𝑛1,𝑛2)
 
) > 1/2 

Proceeding this way we get  

 𝛼(𝑃 
 𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1 

) >
𝑓𝑠 + 1

2

𝑓𝑠

𝑓𝑙=0

 

Which diverges as  

𝑓𝑠 → ∞ 
Hence we have constructed a partition of the original sequence of matrices p1,p2,…. In to blocks satisfying 

 𝛼(𝑃 
(𝑛𝑓𝑗 ,𝑛𝑓𝑗 +1)) = ∞

∞

𝑓𝑙=0

 

 

V. Strong Ergodicity 
In this section we present some theorems that give sufficient conditions for a chain to be strongly ergodic. 

Theorem: 5.1 A non- stationary fuzzy Markov chain is strongly ergodic if and only if there is a sequence of  

constant fuzzy stochastic matrices {Qm} and for each m , there is a sequence of constant stochastic matrices 

{Qmk} such that 

 𝑖  lim
𝑓𝑠→∞

∥ 𝑃(𝑚 ,𝑓𝑠)
 − 𝑄𝑚𝑓𝑠 ∥ = 0   𝑎𝑛𝑑       

 𝑖𝑖  lim
𝑓𝑠→∞

∥ 𝑄𝑚𝑓𝑠 − 𝑄𝑚 ∥ = 0                        

Proof: Assume sequence of constant matricas {Qm} and {Qmfs} satisfying conditions (i) and (ii) exist.  Since  

 ∥ 𝑃(𝑚,𝑓𝑠)
 − 𝑄𝑚 ∥<  ∥ 𝑃(𝑚 ,𝑓𝑠)

 − 𝑄𝑚𝑓𝑠 ∥ + ∥ 𝑄𝑚𝑓𝑠 − 𝑄𝑚 ∥ 

It follows that for all m, 

lim
𝑓𝑠→∞

∥ 𝑃(𝑚 ,𝑓𝑠)
 − 𝑄𝑚𝑓𝑠 ∥ = 0 

Clearly if Qm=0 for all m, then by theorem, 

A non stationary fuzzy Markov chain with transition matrices {pn} is strongly ergodic if and only if there exists 

a constant matrix Q such that for each m 

 

lim
𝑓𝑠→∞

∥ 𝑃(𝑚 ,𝑓𝑠)
 − 𝑄 ∥ = 0 

The chain will be strongly ergodic. 

In other words, it suffices to show that Qm is the same constant matrix for all m.  It is easy to show that  

PmQm=Qm 

We also know from theorem that for any two matrices A and B, 

∥ 𝐴𝐵 ∥<∥ 𝐴 ∥. ∥ 𝐵 ∥ hence we get 

∥ 𝑄𝑚−1 − 𝑄𝑚 ∥<∥ 𝑄𝑚−1 − 𝑃(𝑚 ,𝑓𝑠) ∥ +∥ 𝑃𝑚𝑃(𝑚 ,𝑓𝑠) − 𝑃𝑚𝑄𝑚 ∥ +∥ 𝑃𝑚𝑄𝑚 − 𝑄𝑚 ∥ 

=∥ 𝑄𝑚−1 − 𝑃(𝑚−1,𝑓𝑠) ∥ +∥ 𝑃𝑚 (𝑃(𝑚 ,𝑓𝑠) − 𝑄𝑚 ∥ 

<∥ 𝑄𝑚−1 − 𝑃(𝑚−1,𝑓𝑠) ∥ +∥ 𝑃𝑚 ∥∥ (𝑃(𝑚 ,𝑓𝑠) − 𝑄𝑚 ∥ 

<∥ 𝑄𝑚−1 − 𝑃(𝑚−1,𝑓𝑠) ∥ +∥ (𝑃(𝑚 ,𝑓𝑠) − 𝑄𝑚 ∥            
By letting 𝑘 → ∞ we get ∥ 𝑄𝑚−1 − 𝑄𝑚 ∥= 0 which implies that 𝑄𝑚−1 =  𝑄𝑚  for all m. 

Conversely of the chain is strongly ergodic then by setting Qm=Qmfs=Q for all m and fs it follows that (i) and 

(ii) are true.  

 

Definition: 5.1 Let a be the class of stochastic matrices P for which there exists at least one non-negative left 

eigen vector corresponding to the eigen value 𝜓 such that   

∥ 𝜓 ∥= 1 
 

Theorem: 5.2 Let {Pn} be a sequence of transition matrices corresponding to a non-stationary weakly ergodic  

Markov chain with Pn∊a for all n.  If there exists a corresponding sequence of left eigen vectors 𝜓n satisfying 
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 ∥ 𝜓𝑓𝑗 −∞
𝑓𝑗 =1 𝜓𝑓𝑗 +1 ∥< ∞                          (2) 

Then the chain is strongly ergodic. 

Proof:  The condition imposed on the left eigon vectors is stronger than assuming {𝜓𝑛}𝑛=1
∞  converges in norm 

to some vector 𝜓.  Hence we can define 𝜓 = lim𝑛→∞ 𝜓𝑛  and note that ∥ 𝜓𝑛 − 𝜓 ∥→ 0 𝑎𝑠 𝑛 → ∞. 
Since all of the 𝜓𝑛 ’s have the property that their components are non-negative and add to one 𝜓 will also have 

this property. 

Define Q to be the constant stochastic matrix with each row equal to 𝜓 .  
In order to show {Pn} is strongly ergodic it is sufficient to show ∥ (𝑃(𝑚 ,𝑓𝑠) − 𝑄𝑚 ∥→ 0 𝑎𝑠 𝑘 → ∞ for all m. 

For notational convenience let Qn denote the constant stochastic matrix with rows equal to 𝜓𝑛 .  Let m be fized 

using the triangle inequality and the fact that 𝑃(𝑚,𝑓𝑠) = 𝑃(𝑚,𝑓𝑙 )𝑃(𝑓𝑙 ,𝑓𝑠) we get 

∥ 𝑃(𝑚,𝑓𝑠) − 𝑄 ∥<∥ 𝑃(𝑚 ,𝑓𝑠) − 𝑄𝑓𝑠 ∥ +∥ 𝑄𝑓𝑠 − 𝑄 ∥ 

< ∥ 𝑃(𝑚 ,𝑓𝑙)𝑃(𝑓𝑙 ,𝑓𝑠) − 𝑄𝑓𝑙+1𝑃
(𝑓𝑙 ,𝑓𝑠) ∥ +∥ 𝑄𝑓𝑙+1𝑃

(𝑓𝑙 ,𝑓𝑠) − 𝑄𝑓𝑠 ∥ +∥ 𝑄𝑓𝑠 − 𝑄

∥                                                                                                      (3) 

In order to prove that   

lim
𝑓𝑠→∞

∥ 𝑃(𝑚 ,𝑓𝑠)
 − 𝑄𝑚𝑓𝑠 ∥ = 0 

We let ∊>0 be given and show that there exists k such that for all fs>k ∥ 𝑃(𝑚,𝑓𝑠) − 𝑄 ∥<∊ we do this by making 

each of the three terms on the right hand side of (3)  less than ∊/3 

We first consider the middle term of the right hand side of (3) and note that since 𝑄𝑓𝑙+1𝑃
(𝑓𝑙 ,𝑓𝑠) = 𝑄𝑓𝑙+1 we have 

𝑄𝑓𝑙+1𝑃
 𝑓𝑙 ,𝑓𝑠 = 𝑄𝑓𝑙+1𝑃

 𝑓𝑙+1,𝑓𝑠  

= 𝑄𝑓𝑙+1𝑃
(𝑓𝑙+1,𝑓𝑠) − 𝑄𝑓𝑙+2𝑃

(𝑓𝑙+1,𝑓𝑠) + 𝑄𝑓𝑙+2𝑃
(𝑓𝑙+1,𝑓𝑠) 

= (𝑄𝑓𝑙+1 − 𝑄𝑓𝑙+2)𝑃(𝑓𝑙+1,𝑓𝑠) + 𝑄𝑓𝑙+2𝑃
(𝑓𝑙+1,𝑓𝑠) 

Repeating this procedure on 𝑄𝑓𝑙+2𝑃
(𝑓𝑙+1,𝑓𝑠) we get 

𝑄𝑓𝑙+1𝑃
(𝑓𝑙 ,𝑓𝑠) =  𝑄𝑓𝑙+1 − 𝑄𝑓𝑙+2 𝑃

 𝑓𝑙+1,𝑓𝑠 + (𝑄𝑓𝑙+2 − 𝑄𝑓𝑙+3)𝑃(𝑓𝑙+2,𝑓𝑠) + 𝑄𝑘  

Hence using the triangle inequality theorem and the fact that 

𝛿(𝑃 𝑓𝑗 ,𝑓𝑠 ) < 1 we get 

∥ 𝑄𝑓𝑙+1𝑃
(𝑓𝑙 ,𝑓𝑠) − 𝑄𝑓𝑠 ∥ =∥  (𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1)𝑃(𝑓𝑙 ,𝑓𝑠)

𝑓𝑠−1

𝑗 =𝑓𝑙+1

∥ 

<  ∥ (𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1)𝑃(𝑓𝑗 ,𝑓𝑠)

𝑓𝑠−1

𝑗=𝑓𝑙+1

∥ 

<  ∥ (𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1)

𝑓𝑠−1

𝑗=𝑓𝑙+1

∥ 𝛿𝑃(𝑓𝑗 ,𝑓𝑠) 

<  ∥ (𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1)

𝑓𝑠−1

𝑗 =𝑓𝑙+1

∥                          (4) 

Since by construction Qfj has all its rows equal to 𝜓𝑓𝑗 , it follows that   

∥  𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1 ∥=∥ ( 𝜓𝑓𝑗 − 𝜓𝑓𝑗 +1) ∥ 

Hence using assumption (2) we can choose 

fl*>m such that for all k>fl* 

∥ 𝑄𝑓𝑙∗+1𝑃
(𝑓𝑙∗,𝑓𝑠) − 𝑄𝑓𝑠 ∥ =∥  (𝑄𝑓𝑗 − 𝑄𝑓𝑗 +1) 

𝑓𝑠−1

𝑗=𝑓𝑙∗+1

∥ 

=∥  ( 𝜓𝑓𝑗 − 𝜓𝑓𝑗 +1) 

𝑓𝑠−1

𝑗 =𝑓𝑙∗+1

∥ 

                                          <∊/3 

With fl* fixed, next consider the first term of the right hard side of eigen vector. Since P
(m,fl*)

 and Qfl*+1 are 

stochastic matrices it follows that 

∥ 𝑃(𝑓𝑙∗,𝑓𝑠) − 𝑄𝑓𝑙∗+1 ∥< 2 

So by the theorem 

∥ 𝑃(𝑚,𝑓𝑙∗)𝑃(𝑓𝑙∗,𝑘) − 𝑄𝑓𝑙 ∗+1𝑃
(𝑓𝑙∗,𝑓𝑠) ∥≤∥ 𝑃(𝑚 ,𝑓𝑙∗) 

− 𝑄𝑓𝑙 ∗+1 ∥ 𝛿𝑃(𝑓𝑙∗,𝑓𝑠) 

≤ 2𝛿𝑃(𝑓𝑙∗,𝑓𝑠) 
Using the assumption that the chain is weakly ergodic we can find k1>fl* such that for all fs>k1 
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𝛿𝑃(𝑓𝑙∗,𝑓𝑠) <∊/6 

For such values of fs 

∥ 𝑃(𝑚,𝑓𝑙∗)𝑃(𝑓𝑙∗,𝑘) − 𝑄𝑓𝑙∗+1𝑃
(𝑓𝑙∗,𝑓𝑠) ∥<∊/3 

For the third term on the right hand side of eigen vector we note that  𝜓𝑘  converges in norm to  𝜓 and so  

log𝑓𝑠→∞  ∥ 𝑄𝑓𝑠 − 𝑄 ∥= 0 

Here there exist k2 such that for all fs>k2 we have 

∥ 𝑄𝑓𝑠 − 𝑄 ∥<∊/3 

Therefore for 

Fs>max(k1,k2) we have 

∥ 𝑃(𝑚,𝑓𝑠) − 𝑄 ∥<
∊

3
+

∊

3
+

∊

3
=∊. 
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