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Abstract: The topological Markov chaino, on the Golden Mean Lookalike Shift of order m [GMLSm] is a
very typical topological discrete system possessing rich dynamical properties. In this paper we establish some
results in connection with the chaotic properties of this Markov chain. In particular, we prove that it is Devaney
chaotic (DevC), Auslander-Yorke chaotic and generically & -chaotic. Further, it has been shown that &, has
chaotic as well as modified weakly chaotic dependence on initial conditions. Moreover, the zeta function for this
Markov chain has been derived.
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I Introduction

Symbolic representation of dynamical systems by means of Markov partitions [1, 2, 3] enable us to
study the systems in a more comfortable way. General dynamical systems, which are in general too complicated
to handle with, in this case are represented by sequence spaces, one-sided or two-sided, which are comparatively
easier to analyse than the original ones. These sequence spaces, generally called shift spaces [1, 4], give us
some handy tools of mathematics. One can predict some complicated dynamical aspects of a system by simply
studying its representative symbolic space. We feel more advantageous when the representing symbol space is a
shift of finite type [1], also called topological Markov shift or simply a Markov shift [5]. For, these types of
shifts are always represented by directed graphs which are equivalent to transition matrices and hence one can
fruitfully employ the notions and results of graph theory as well as those of linear algebra. The relation between
directed graphs and their transition matrices is like both way traffic. This is because of the fact that from a
directed graph with n vertices one can always obtain a definite transition matrix of order n and conversely from
a transition matrix of order n, one can have a definite graph with n vertices up to graph isomorphism.

Fruitful symbolic representation of a system is not always possible for every dynamical system. It has
been found that such representations are possible in the family of hyperbolic toral automorphisms [2] and in
some other special systems like Axiom A systems [4]. The most expected situation is the case of getting a
topological conjugacy [1, 2, 6] between the map describing the original dynamical system and the associated
topological Markov chain [2,7]. This is rarely encountered in real situations. But the arrival at this ideal
situation is always considered as the landing in a very comfortable zone. Because, after arriving at this arena,
one can say all about the dynamical behaviours of the original system. This is because of the fact that
topologically conjugate systems are identical or the same at least in the topological sense. So, to study the
general dynamical systems in the light of Markov chains representing them, one needs to study the dynamical
aspects of various topological Markov chains beforehand. The Golden Mean Lookalike shifts (GMLS)[8] forms
a very special class of topological Markov shifts. In [8], we have the definition of Golden Mean Lookalike
Shifts (GMLS) and for this class Mangang calculated the topological entropy there. Here, in this paper, we have
discussed some dynamical aspects of this topological Markov chain. Mainly, we have established that the shift
transformation o, on GMLSm (m(>2) e N) is Devaney chaotic (DevC) [6, 9], Auslander-Yorke chaotic [10]
and generically o -chaotic [10, 11]. We have also established that o, has chaotic and modified weakly chaotic

dependence on initial conditions [10,11]. Further we have derived the zeta function [1] for this Markov chain.

1] Basic Definitions, Discussions And Results:
Definition 2.1: Li-Yorke Pairs [10, 12]: For a topological dynamical system (X, T), a pair (Y,Z) € X? s

called a Li-Yorke pair with modulus & >0 if limsupd(T"(y),T"(z)) > and

n—o

Iirnnjnf d(T"(y), T"(z)) =0. The set of all Li-Yorke pairs in X is usually denoted by LY (T, 5).

Definition 2.2: Weakly and modified weakly chaotic dependence on initial conditions: A dynamical system
(X,T)is called weakly (resp. modified weakly) chaotic dependence on initial conditions if for any X € X
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and every neighbourhood N(x) of X, there are Y,z € N(X) [y # X, Z# X in modified weakly case] such

that (Y, z) € X %is Li-Yorke.
Definition 2.3: Generically ¢ -Chaotic maps: A continuous transformation T : X — X on a compact metric

space X is called generically & -chaotic if LY (T, &) is residual in X 2.

Definition 2.4: Essential Graphs [1]: A graph G is essential if no vertex of it is stranded. i.e., there exists no
vertex v; in G such that either no edge start at v; or no edge terminate at v;.
Definition2.5: Irreducible and Aperiodic Matrices [1]: A transition matrix or a 0-1square matrix A is said to be

irreducible if for any i, j €N, 1<i, j <m, 3n eN (possibly dependent oni, j € N) such that (A”)ij > 0.

i.e., the (i, j)™entry (An)ij of the matrix A" is positive.
On the other hand, a transition matrix is aperiodic (transitive) if there exists an n &N such that for any

1<i,j<m, (A")ij >0. ie. the matrix A"is positive. From the definitions it immediately follows that an
aperiodic matrix is always irreducible.

2.1: The bi-sided full m-shift2_, Shift spaces, Shifts of finite type and Sub-shifts:
For m(=2)eN,the bi-sided full m-shift [1,13] over the alphabet A={0,1,2,...., M—1}is the set
{(8)-. :aeA={012,...,m-1},i e Z} of all the bi-infinite sequences of m-symbols, also called the

0

letters. This shift is shortly denoted by X[m]or Zm or A” . In expanded form the point X = (Xi) is generally

i=—o0

denoted as X =......X_y X_, X, - Xo X, X, X5.....where X° € A
A finite sequence X; X; ;... X; of letters from the alphabet A, denoted by X;; ;; . is called a block or a word of

length (j —i+1)and for N€N,the block X_, .1 = X_..X,...X, is called the central (2n+1)-block of the

pointX = (X;);- ., €Z,,. Central blocks of points in a shift are more important in the study of symbolic
dynamics.
A shift space (or simply a shift) X is a subset of a full shift 2 = A? such that X=Xgwhere F is some

collection of blocks, called forbidden blocks, over the alphabet A each of which does not occur in any sequence
in X=Xg. If F is finite, then X=X is called a shift of finite type or a topological Markov shift [1]. For two shift

spaces X and Y, ifY < X then Y is known as a sub-shift of X. If B,(X) denotes the collection of all the allowed

(not forbidden)n-blocks occurring in the points in X, then the set B(X) = U B,(X) is called the language of
n=1

X. X is an irreducible shift if for every pair of blocks u,v e B(X) there is a blockw e B(X) such that
uwv e B(X).

2.2: Graphs and their Adjacency Matrices, Edge Shifts and Vertex Shifts:

The well-known relations (i) A=A(G,) and (ii) G = G(Ag), where A is the adjacency matrix of the graph G,

allow one to use freely a graph G or its adjacency matrix A for the specification of the underlying graph,

whichever seems more convenient in the context.If E is the edge set and A is the adjacency matrix for a graph G,

then the edge shift[1] corresponding to G, denoted by X or X,, is the shift space over the alphabet E such that
Xp=Xs={e= (&), :t(e) =i(e,1).€" € E},

Where t(e;) and i(ej+;) respectively denote the terminal vertex of the edge e;and the initial vertex of the
edge ej.;. From the above definition one can clearly understand the strong connection between graphsand
shifts.Golden Mean Shift stands as an example that every shift of finite type is not always an edge shift. But by
using higher block presentation, any shift of finite type can be recoded to have an edge shift.An alternative
description of a shift of finite type can be given by using transition matrices.If B be a transition matrix (0-1
matrix) of order MXM, then it is the adjacency matrix of a graph G containing at most one edge between any

A

two vertices. The shift space denoted by Xz = X is called the vertex shift defined as follows:
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Xg=Xs ={X=(X), €A":B,, =1VieZA={,234,..m}}

These shifts are 1-step shifts of finite type. The vertex shift )QB is not other than the shift space X where
F={ij:B; =0,i, j € Z}. The vertex shift corresponding to the transition matrix B is also denoted by X .
The following propositions have been extensively used in proving the results in next sections.

Proposition.2.1 [8]: A topological dynamical system T : X — X is topologically transitive if for every pair of
non-empty open sets U andV of X , there exists a positive integer N € N such that T"(U) "V # ¢.

Proposition 2.2[7]: Let X be a compact metric space and T : X — X be a continuous topologically mixing
map. Then, T is also topologically weak mixing.

Proposition 2.3[13]: Let T : X — X be a continuous map on a compact metric space X . If T is
topologically weak mixing, then it is generically & -chaotic on X with & = diam(X).

Proposition: 2.4[1]: If G is a graph with adjacency matrix A, then the associated edge shift Xg= X, is a 1-step
shift of finite type.

Proposition: 2.5[1]: If G is a graph, then there is a unique sub-graph H of G such that H is essential and Xg=
Xu.

Proposition: 2.6[1]: Let G be a graph with adjacency matrix A and m(>0) € N. Then,

(i) The number of paths of length m from I to Jis[A™],, , the (I, J)" entry of A™

(ii) The number of cycles of length m in G is tr(A™), the trace of A™ and this equals the number of points in Xg
with period m.

2.3: The Golden Mean shift, Golden Mean Lookalike Shifts and cylinder sets:
The Golden Mean shift [1] is a Markov shift (shift of finite type) Xg which is a sub-shift of the full 2-shift
X =2, ={x=(%)__. 1 X € {0, } with the forbidden class F given by F= {11}. More precisely, the Golden

Mean shift contains all the bi-infinite binary sequences which do not contain the 2-block 11. This shift is
described by the transition matrix A and Graph G:

o O
1 0
Adjacency matrix of Golden Mean shift Fig.1 Graph of GMLS4 with alphabet A ={0,1,2,3}

1+\/§
an
2

The eigen values of the above transition matrix A describing the Golden Mean shift are A, = d

1-+5 1++/5

A = > For geometric reasons, the number A, =

and that is the reason why X is called the Golden Mean shift. This shift is also known as the Fibonacci shift.
For, the number of allowed or admissible n-blocks, N € N, are the numbers starting from the third term of the
Fibonacci sequence, namely, there are two 1-blocks, three 2-blocks, five 3-blocks, eight 4-blocks,........ etc.
We notice that all the entries in the first row and first column of the transition matrix describing the Golden
Mean shift are 1’s and the other entries are 0’s. Likewise we can think of a transition matrix of order

M(> 2) € N such that every entry in the first row and first column is 1 and all the remaining entries are 0’s.

The shift described by this transition matrix is defined as the Golden Mean Lookalike shift of order m and
shortly it is denoted by GMLSm. That is, a Golden Mean Lookalike Shift of order m is a shift Xg of finite type

over the alphabet A={0,1,2,.....m—1}where F ={ij :i(>0), j(> 0) € A}. Since, each block in the
forbidden class F is of length 2, so GMLSm is a 1-step Markov shift. Form = 3,4,5,..., the respective Golden

Mean Lookalike shifts are GMLS3, GMLS4, GMLS5, GMLSS6,..., etc. The adjacency matrix A and the
representing graph G of the GMLS4 are shown below:

is known as the golden mean or golden ratio
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— = =

1
0
0
0

o O O =
o O O =

Adjacency matrix A of G

Fig.2: Graph G of GMLS4 with alphabet A={0,1,2,3}

Clearly GMLS4 is the vertex shift of the transition matrix A of order 4 such that

A:(AJ.)4X4 where A; =1 fori=1or j=1and A;=0 fori, j>1

Similarly, GMLSm is the vertex shift of the transition matrix A of order m given by

A:(Aj)mxm where A; =1 fori=1or j=1and A;=0 fori, j>1

One fact to be noted particularly is that in GMLSm, 0 can precede and follow every other letter of the alphabet

A={012,....m—1}, but no non-zero letter can precede and follow every other non-zero letter of the
alphabet.

0

Now, for o >1and X =(X)Z_., Y = (¥ )i-.. € Z,, the mappingd , : £, x X, — R defined by
p“if x=yand keNis greatest St.X =Yy
d,(xy)=41 if x,2Y,
0 if x=y

is a metric forX,.X ,is a compact metric space[13] under this metric [1]. Again, the shift mapo,on X,

defined by Op(X) =....... X X4 Xy X X, X5.......iS @ continuous map [1,6].Hence (Z,,0,) is a topological
dynamical system (TDS)[13].

From the definition of the metric d,:Z,xZ, >R, it follows that points in the shift space X, are close to
each other if they agree in their large central blocks.

Now, we formally define the terms cylinders, admissible cylinders, symmetric cylinders and admissible
symmetric cylinders which are very essential in studying shift dynamical systems.

For r,seNanda €{0,12,....... ,m—Twith—r <i<s,acylinder C_ (a,,a

SR S FERTERPEY

,a,) is a subset

of X defined as:

C..(a

—r,s \%-rs

a

ST FRITTIR

a)={x=(X)" €Z,:X=9,V-r<i<s}
For reN, the cylinderC_ (a_,a

e ,a,) is called a symmetric cylinder. In case of a Markov shift

¥, =X, corresponding to a transition matrix A, the cylinders C_, .(a_,,....,a,) and
C..(a,a ...
A, =lV-r<i<s

i4i+1
The following well known propositions on cylinder sets are very important in application point of view.
Proposition: 2.7: If p>2m—1and neN,then fore =1/p",C_, (X X,) =B, (X,1/ p") where

,a,) are respectively called an admissible cylinder and an admissible symmetric cylinder if

EALEEEE] y

X =(X)I=°, X, contains the central block X g = Xopeee X g+ Kgeene Xy

n,n]

Proposition: 2.8: If p>2m-1,then any non-empty open setU — X _contains a symmetric cylinder
C..@,,.....a).
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Proposition: 2.9: If p>2m—1,then any non-empty open setU — X, contains an admissible symmetric
cylinderC_, (@_,,.....,&,).

111 The Main Results
Proposition: 3.1[2]: If o, : X, — X , be a topological Markov chain corresponding to the transition matrixA,
then,
(i) Adisirreducible ifand only if o, 12, — X, is topologically transitive.
(ii) If Ais aperiodic (transitive), then, o, : X, — X , is topologically mixing.
Proof: In the proof of this proposition we shall use the following Lemma.

Lemma [2]: If A" >0 for some neN, then for any integer r > n we also have that A" > 0. Proof of the
Lemma: Here we mainly use the concepts of graph of the transition matrix A to prove this Lemma.

Let m be the order of the matrix A and A" > O for some n e N. This means that for every j eN, 1< j <m,
there existsk; € N, 1<k; <m such that A, j =1.If not, then A ; =Oforallk € N with 1<k <m, and in

that case the vertex V jof the corresponding graph of A cannot be reached from any other vertexv, .
Consequently, we cannot have any path of length n reaching the vertexV; . This gives thatAQj = Owhich
contradicts our assumption that A, >0 (.- A" > 0) . Now, by induction we establish that for any r(=n) € N,

A" >0. The result is already true for r = nby our hypothesis. Suppose, it is true for r(>n) e N such that
A" >0and also assume that 1<i, j <m. Then, by our previous remark, for every1< j<m, there exists
k; €N such that Akj ; =1. Again, for every other 1<k <m,we have A ; > 0. So, clearly we have that

m
1 oo
oS AA AL A = AL L= AL S0 [ A >0 AL >0
r=1
Therefore, A" > Owhen A" > 0 and hence by induction the Lemma follows.

Proof of the proposition:
Part (i):Let A be irreducible. We now show that o, : 2, — X, is topologically transitive. For this we show

that for any non-empty open setsU,V < X,, 3M eNsuchthato) (U)NV = ¢.
We first fix p>2m—1. By proposition 2.6, forU,V < X, there exist admissible symmetric cylinders
C.. (X, pX)cU andC ( (Y g, Y) SV

Now using the blocks X .y =X ,...X.and Y ¢ =Y ...y, We construct a pointz e X,. Take i = X, and

r,r]
j =Y., By irreducibility of A, for these i and j, there exists N € N such that A,nj > 0. That is, there is a path of

length n in G, that connects Vv, tov, . Let the digits describing this path be x. =z,,z,,....,2, ,,Z, =Y 4.

1 5n-11 En

Evidently, for eachi, 0<i<n-1,wehave A, =1.Now, consider the point z € X, such that

Since z contains the central block X_,....X, ,s0Z€C_, (X_,....,X,) U . Further, if we take M =1 +n+s
cthen o) (2) = .oy oYy Yorron Yaorons and soop' (2) € C_o (Y gy Y5 ) SV . So, it follows that
-
i=0
zeUNoM(V) <ol (U)NV =g .Hence, o, i, —> =, is topologically transitive.
Conversely, assume thato,:2, — 2,be topologically transitive. We show A is irreducible.
Let 1<i, j<m and consider the cylinders C,(i) ={x e =, :x, =i}andC,(j) ={y e Z,:Y, = j}- Since,
cylinder sets are always open, so, we take U =C, (i) andV =C,(j)as open sets. Then by transitivity of the
mapo, i X, —> X, there exists N € Nsuch thato, (U) NV = ¢.
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Now, oa(U)NV g =>UNo,"V)=¢
=3JzeUNo, (V)
< 3z such that zeU =C,(i) andz e 5" (V =C,()))
< 3z such that z,=iandz, = j
Thus zeU < X, is an element that describes a bi-infinite path on the graph G, of the transition matrix A such
that z, =i ,z, = j.This gives a path of length n connecting the vertex v; to the vertex v;. So, for all i, j with
1<i, j<m, there exists N € N such that A; > 0. Therefore, A is irreducible.

Part (ii): Let A be aperiodic. Then, by definition,3n e Nsuch that A" >0. We prove that the map
O, .2, — X, s topologically mixing. For this we need to prove that for any pair of non-empty open sets
U,V cX,, 3M, eNsuchthatoy (U)NV = gforall M > M, .

Both U,V < X ,being non-empty open sets, these open sets must contain admissible symmetric cylinders
Cii(X X )cUandC, (Y oY) V. LetMy=n+k+I. If we takeM eNsuch that
M >M,, then, M =m+Kk+I, wherem=n.

Also since M>nand A" >0,s0, by the above Lemma we have that A" > 0. Then, AV, > 0. Therefore,
there exists a path of length m from the vertex x, to the vertex y.,. So, as in part (i), we can construct a point z of

the form 2= X e X o Xy XX X ZiZg e Zy 1Y e Yeeeeees in X, such that
zeU No" (V) and from this it immediately follows that o) (U) NV # ¢. This is true for any M > M, .
So, we conclude that o, : 2, — X, is topologically mixing. [

Theorem: 3.2: The shiftmap o, : £, — 2, is topologically transitive as well as mixing.

Proof :(i) o, 12, — X, is topologically transitive:

Let us first fix o > 2m—1.Then, consider any two non-empty open sets U and V inX ,. For these two non-
empty open sets U and V in X, , we show that there exists a positive integer n such that o, (U) MV = ¢. U and
eUandy=(y,);._, V.

00

V being non-empty, there exists two points x and y inZ , such that X = (X);- .,
Again, since U and V are open sets inX , , so there exists two open balls de (x, r1) and de (v, l’z) such that
de (x,1) cU and de (Y,1,) €V . Then for the radiir,, r, > 0, we can choose N € N such that

p " <min{r;, r,}and in this case we clearly have that By x,p ") cU and B. (Y, p V.
Also, since p >2m—1,s0 B, (X, p")=C_ (X ey X;) and By, (y,p ") =C_ . (Ypree ¥) . That
is, the open balls By (X, oM and de (Y, 1,) thus obtained for the points X = (x.)”_ €U and

Yy =(Y;)i—_, €V are nothing but are the admissible symmetric cylinders C_,  (X_,....,X,)and
C_.n(Y_pr-e Y,) respectively. Therefore, all the points in de (X, ") must agree with x in the (2n+1)-
central block and all those of Bdﬂ (y, p ") must agree with y in the (2n+1) -central block.

Now consider a point Z =(z;);-_, € X such that z; =x,,vi<n,z,,,=0andz, =Y, , ., Vi>2. That

n+1

is, Z=(Z))iZ .. = X013 X0.10Y_n] € Za- Then z agrees with x in the (2N +1) -central block and hence
2=(z) ., €C (X0 X) =By (X, p™"). Again, clearly 52"*?(z) agrees withy inthe (2n+1) -
' P

2n+2

central block and so oy""“(2) € By (Y, p ") . Also, since in a GMLS, 0 can precede and follow any letter of
P

the alphabet and X, .1, Yj_n...; € B(£4) , the language of X , , so it follows that
2=(Z)i2 0 =Xy K0 OYpno) €Za -
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Thus € B, (x,p")cU, 04"*(2)€B, (V,p ")V

=0 (2) e o), 0P (2) eV

= oM (2) ec(U)NV
= o U)NV = ¢
Thus for any two non-empty open sets U and V in X , , there exists M = 2n + 2 € N such that
o) (U)NV # ¢. Hence the self-map &, : £, — X, is topologically transitive.
(i) o, 1 2, — X, is topologically mixing:
Let p>2m—1be fixed and U,V be any two non-empty open sets inZ ,. For topological mixing, here we
need to prove that for the non-empty open sets U and V, there exists n, € N such that

o (U)NV = ¢, Vk(e N) > n,. U and V being non-empty, we have, X = (X;);-_,, €U and

o0

y= (yi - . €V . Again, since U and V are open sets inX ,, there exists two open balls de (X, rl) and
de (y, l'z) such that de (%, l’l) cUand de (y, I’z) <V . Now for the two radii r,,r, >0, we can choose
neN such that p" <min{r,,r,}. Then clearly we have that B, X, p ") <cUand By, (y,p")cV.

Also, since p > 2m—1 has been fixed, so, we have that B, (X, 0 ") =C_  (X_;,...., X;) and

By, (¥, ") =C_on(Y_psuns ¥o) - Thatis, the open balls B, (X, o ") and de (y,p™") thus obtained for

o0

the points X = (X;)i- ., €U andy = (Y, €V are nothing but the admissible symmetric cylinders

i=—0

C_yn(X s Xy)and C_  (Y_p,..on, Y,) respectively. Therefore, every point in By (X, p™") must agree

with x in the (2n+1) -central block and every pointin B, (Y, 0 ") must agree with y in the (2n+1) -central

block. We now construct a sequence {z,} of points inX , with the help of x, y and n as follows:

e Xy XX (0) Y Y Y g i 22, (0)7 =0000...0
(i-1)nos.

Here, for every i >2, Z;is constructed by concatenating the words X;_, ., (O)if1 and Yi_p . - Again, for
i >1, since every Z; agrees with x at least in the (2n +1) -central block, so we have that
z,€C (X X,) =By (X, ") cU. Also since 0 can precede and follow any letter of the alphabet in a
1 P
GMLS and X;_, 1 Yi_n] € B(Z4) . s0, it follows that

Zi = oo X e Xy X X (0) Y Y Yoo = Kooty X100 0) ™ Voo €2 a

Now, we have, 63" (2,) = ... X_eeeee X Yoy - Xg ...... Vo€V, 02" (z) € 02MH(U)

2n+1

=on"(z) e U)NV
="M U)NV = 4.
Also, o2"(z,) €U, a3 (2) = oo X X, (0) YooYy - Voo Ve €V, Vi > 2/i €N
i

So, 2™ (U)NV = ¢, foralli > 2. Thus ok (U) NV = ¢ , forall k >n, =2n+1.
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Hence, the shift map o, : X, — X, is topologically mixing. [
Remarks: An alternative but very simple proof of this theorem can be given as an immediate consequence of
the proposition 3.1 as follows:

Consider the transition matrix A=[A;],, ., where A;=1 for ior j=1and A;=0fori, j >1. This transition

mxm

matrix clearly describes the GMLSm, m(> 2) € N. Also, we have,

11 1 . 1] m 1 1 . 1]
100 .0 1 11 .1
A={1 0 0 . 0 and A’=[1 11 . 1|>0
100 .0 111 . 1]

ie., A,T >0, forn=2 and V1<i, j<m. So, A is aperiodic and hence irreducible. Hence, by Proposition
31, o, 2, = X ,istopologically transitive as well as topologically mixing. m

Theorem: 3.3: The set P(c,) of all the periodic points of o, : X, — X ,is dense inX,.  Proof: Let
X = (X))o = e X ereee X pX g = XX peveeee X € X, be arbitrary. Now, for any & >0, however small,
we need to show that there exists a periodic point p € P(o,)suchthatd (X, p) < &. That is, whatever small
& > 0 may be, the g -neighbourhood of x always contains at least one point of P(c,) .

Again, for fixede > 0and p >1, we can always find n e N such that p™" < & . Now for the arbitrary point
X=(X);_, €X,, we claim that there always exists a periodic point p € P(o,) in the & -neighbourhood of

i=—o0

X. We consider the point p € X _ such that

That is, the point p has been constructed by concatenating the fixed blockW :OX[_n’n]infiniter in both
directions. Such a point can always be constructed with the help of any given point. We claim that the point p
so constructed isinX , .

We have, X = (X)iZ., € Zp = X_nnp = X geeree X X Xperennenne X, € B(Z,), language of X,

Again, from the definition of GMLSm, evidently 0 can precede and follow any letter of the alphabet
A={0,1,2,...m—1}. As a consequence, we have that p € =, . Further p € X, thus constructed is clearly a
periodic point of period 2n+2and hence p € P(o,) .

Also, since x and p both agree in their (2n+1) -central block, so by definition of metric dp, we have that

d,(x,p)< p™" <&. Thus for any point X € =, , we have a point p € P(c,) which is at a distance less than

any given small quantity & > 0. Hence P(c,)isdenseinX,. 0
Theorem: 3.4: The shift map o, :X, — X2, has sensitive dependence on initial conditions with the
sensitivity constantd =1.

=0

S ZA, there always exists a point Y = (yi = ZA

i=—0

Proof: We show that for any & > Oand X = (X, )i— -,
inthe & -neighbourhood of x such that X, ., # Y, ., for some k e N. Lete > Obe arbitrary and N, (X) be the &
-neighbourhood of x. Then, for fixed p >2m—1, there exists a positive integer N &€ Nsuch that
p " < &< p"and hence clearly we have that

Con(X g X)) =By (X, 07" = By (X,6) =N, (X). Let us now choose y such that
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0

y= (Yi =0 = X0, 1] * X[O,n]OX:+20X[n+3,oo] where X:+2 =(m-1)- Xis2

i=o0

Now, X = (X;)iZ", € 24 = X 11 X Xpniaweg € B(Z4), the language of T,

o0

- y = (yl =0 — X[—oo,—l] ) X[O,n]oxn+20X[n+3,oo] € 2A
This is because of the fact that 0 can precede and follow any letter of the alphabet in all the sequences of a
GMLSM. Here x and y agree at least in their (2n +1) central blocks. So clearly we haved (X,y) < p™" <&

and hence y € de (%) =C_ ,(X g Xy) de (x,&) = N(X). Also,

n+2 * *
Xn+2 """ 1 O (y) = X[—oo,—l]X[O,n]o ) Xn+20X[n+3,oo] ' Xn+2 # Xn+2

= a"*(x) =" (y) where (" (x)), % (6" (¥))s
=d,(@"*(x),6"*(y)) =1(=6)
Thus there exists & (= 1) such that for any X = (X, );-_, € £ ,and any neighbourhood N (X) of x, there exists
y=(V:)i_. € N(X) and k(=n+2) e N with dp(ak (x),c*(y)) =1(=9).

2
(X)) = e X e X X

n*t n+l

i=—0

Hence o, : X, — X, has sensitive dependence on initial conditions. L]

Theorem: 3.5: The shiftmapo, : X, — X, Devaney as well as Auslander-Yorke chaotic.
Proof: We have seen in theorem
(i) 3.2that o, istopologically transitive

(i) 3.3thatthe set P(o,) ofall the periodic points of &, is dense inX ,

(iii) 3.4 that o, has sensitive dependence on initial conditions.

So, it immediately follows that o, : 2, — X, is Devaney chaotic. Also, we know that a Devaney chaotic map
is always Auslander-Yorke chaotic. Hence, o, : £, — X, is also Auslander-Yorke chaotic. L]
Theorem3.6: The shiftmap o, : X, — X, is generically ¢ -chaotic with & = diam(Z,) =1.

Proof: In the Theorem 3.2, we have proved that the shift transformation o, :X, — 2, is topologically

mixing. Also, by proposition 2.2, we know that a continuous topologically mixing map on a compact metric
space is topologically weak mixing. So, the shift map o, being a continuous topologically mixing map on the

compact metric space X, is topologically weak mixing.

Again, a continuous topologically weak mixing map on a compact metric space X is generically J -chaotic on
X withd =diam(X), so, it follows that the shift transformation o, :X, — £, being a continuous

topologically weak mixing map on the compact metric space X , is generically ¢ -chaotic with
o =diam(Z,)=1. =

Theorem: 3.7: The Topological Dynamical System (£,,0,) has modified weakly chaotic dependence on
initial conditions.
Proof: We first recall that a dynamical system (X, f) has modified weakly chaotic dependence on initial

conditions if for any Xe€ X and for any neighbourhood N(X) ofX, there are pointsy,z € N(X) with
y#X, Z#X suchthat (y,z) e X %is Li-Yorke.

Let o >2m —1be fixed. Then, for any pointx = (x,)”_, X, let N(X)be any neighbourhood of XinX, .
N (X)being a neighbourhood of X inX, there exists an open set (open nbhd.) U of X,such that
xeU < N(x).

Now, since X €U and U is an open set, so, for some N € N we have an open ball B(X,pfn) such that

B(X, p_n) cUcN (X) . Also, since p > 2m —1, so as a consequence of propositions 2.7 and 2.9 we have
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that B(X, 0™")is the admissible symmetric cylinder C_,  (X_;,....... ,X,). We now construct two points
y,Zze N(X) with y =X, z# X such that the pair (Y, Z)EZZA is Li-Yorke. We recall that a pair

(y,z)eEi is Li-Yorke in (Z,,0,)with modulusé >0 if lim Supd,(c"(y),c"(2)) = sand

N—o0

lim Inf dp(g”(y),o-"(z))zo. Before proving the theorem, we first define some wordsW (x,2n),

N—o0

W (x,6n) ,W (x,10n) etc. of special pattern by using the letters in x = (x,)”, € =, for the simplification of
our proof as follows:
W(X,2n) = 0%;,,,0%,,,0.......0X;, 0Xy geveeeee X

W(X,6N) = 0x;,,,0%5,,40........0%, 0Xg 5eveves Xy
W (x,10n) = 0x,,.,0%,.,0......... (0D N 0 D P X, 4r» - and so on.
Note that all the above words are of the type W (X,2(2k —1)Nn), k € N, and are constructed in such a way

that every word contains 4n letters starting at the place 2(2k —1)n +1 for the word W (x,2(2k —1)n). Also,

in every word all the letters in the odd places of the first 2n places are 0’s and those of even places are M -nary
complements of the corresponding letters in X, the letter in (2n+1)-th place is 0 and all the letters in the rest

(2n=1) places are just the letters in the corresponding places of X. Further in all the above words
X, =(m—1) - x,, vk , the m-nary complement of X, .

Now with the help of the above words we construct the points Y, Z € 2, as follows:

Y = eeeee X eeeeX g X Kyeeree X 0K, 50X, 3 0nee 0% O e X Xersg Xoageeeeeeeeees and
—
i=0

Z= e X e X g+ Xgeeen X, 0X 5 0.0, W (X, 2N)W (X,6MW (X,10n)W (x,14n).......... Here
-

X=(X) ,€X,= X ] € B(Z,), the language of Z,. Also, since in a GMLSm, 0 can precede and

1/71=—0
follow any letter of the corresponding alphabet, so, all the wordsW (X,2n), W (X,6n) ,W (x,10n) etc. are
allowed blocks in X , and consequently y,Z € 2, . We note here thatZ contains infinitely many words of the
typeW (X,2(2k —1)n), where k € N, containing 4n letters each.
With the above notations in mind we now prove the theorem as follows:
Y, Z agree with X inthe (2n-+1) -central block

=d (x,y)<p " d,(Xx,2)<p " andhence ¥,Z€B(X,p") cU = N(x)

Also,

22 (Y) = Xy 0%0120:-.0%G, 0 Xopy o Xopgeeees Xgperees X eevevees Ko ereenen Ko Xgygeeeessees
i=0

02" (2) = X_pn) 0%,20...0%5, 0 X5, 0...0Xg W (X,6MW (X,10n)W (x,14n).............
i=0

5n+1 _ * *
" (Y) = Ko 0%0120:.0%5, 0% 5 Xy X g e Ko = Kopggeeese-Xon Xonsa Xonszeeesesesessesees

5,—J
i=0

°"MZ) = 1y an) 0% 2Xan 3+ Xon * Xons1 Xsnr2---XenW (X,6MW (X,10N)W (x,14n)........
i=0
Here (6°"2(Y)), # (7% (2)), and 6™ (y) , ™"*(Z) agree at least in (2n —1) central block. So, from
these we immediately have that

0 d,(c®*(y),0*"*(z)) =1and
(i) d, (0" (y),0” (@) < p7 7

Therefore,
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Ltsupd, (6"(y).6"(2)) 2 Lt d, (c**(y),6""*(2)) = Lt 1=1[from ()]
Again, 0 < nl;:w inf d (0" (y),0"(2)) < Ltd, (0" (y).0”"(2)) < Lt p""? =0from (i}
Now,0< Lt inf d, (0" (y),0"(2)) <0= Lt inf d,(o"(y),0"(2)) =0.
Thus Lt supd, (0"(y).0"(2)) =1 and Ltinfd,(c"(y).0"(2)) =0.

so, (Y,2) EZZA is a Li-Yorke pair with modulusd =1>0. Hence, the dynamical system (Z,,o,) has
modified weakly chaotic dependence on initial conditions. [

Theorem: 3.8: The dynamical system (X ,, o, ) has chaotic dependence on initial conditions.
Proof: We know that a dynamical system (X, f) has chaotic dependence on initial conditions if for any

X € X and every neighbourhood N (X) of X, there exists a y € N(x) such that the pair (x,y) € X ?is Li-
Yorke.
Let, a=(a); ., X ,bearbitrary and N (a) be any neighbourhood of @. Then there exists an open setU in

¥, suchthata e U < N(a). Now, since a €U and U is an open set inX ,, so for somen € N, there
exists an open ball B, (a,p™") such that By, (a,p ") cU cN(a).

Fix p>2m—1sothat By (a,p ") =C (X ;s X,) . Now with the help of the letters in a, we construct
), ,

apoint b e By, (@, p") cU <= N(a) suchthat (a,b) € ZZA is Li-Yorke.
Using the letters ina =....... a_;a ,a_
W (a,10n),... etc. as follows:
W(a,2n) = 0a;,,,0a;, .,
W(a,6n)= 0a;,,,0a;,,,0........ 08y, 084, 5eeeveenes A0
W (a,10n) = 0a;,,,,0a;,,,,0........08,,,08, 5, 5-...... a,, - and so on.
Note that all the above words are of the typeW (a,2(2k —1)n), k e N, and are constructed in such a way that

every word contains 4n letters starting at the place 2(2k —1)n +1 for the wordW (a,2(2k —1)n). Also, in
every word all the letters in the odd places of the first 2n places are 0’s and those of even places are M -nary
complements of the corresponding letters in @ , (2n+1)-th letter is 0 and all the letters in the rest (2n—1)

places are just the letters in the corresponding places ofd. Further a; =(m-1)—a,,Vvk, the m-nary

- 0 V- O e X, , we define the wordsW (a,2n) ,W (a,6n)

complement ofa, .
Now we take
b=...a,..a, a...a,0a,,0...0a,W(@2nW,6nW (alonWw(al4n).........
) Here

a=(a)..,€Z,=>a.,€B(Z,) the language of Z,. Also, in every sequence of a GMLSm, 0 can

j=—o0

*

precede and follow any letter of the corresponding alphabet. So, the word Oa O...Oa;n and all the words

n+2

W (a,2n) ,W (a,6n),W (a,10n)etc. are allowed blocks in ¥ , and consequentlyb e =, .

From the construction of Dit is clear that D agrees with @ in (2n+1)-central block. So, we get,

d,(a,b) < o™ and henceb € de (a,p ") cUcN(@).

Also, b'=c*"?(b)=a, ,0a,,,0..0a;,0-a;,,,0..0a,,0a,,,,...8,W (a,6mW (a,10n)........ And
i=0
o™ b)) =0, 4008,z e By - g1 B g oo B W (2,6NW (2,10N)W (2,140).......... Here,  we
—

i=0
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see that (6°"%(@)), # (6°"*(b)),and o> (@), o™"*(b) agree at least in (2n—1) -central block. So,
from these observations we immediately have that
(A) dp(cf2n+2 (a),0°"?(b)) =1land (B) Lt dp(a5r1+l (@), ™" (b)) < p~ " Therefore,
Nn—o0

nE)too supd ,(c"(a),c" (b)) > nE)too d (o°"*(a),c""* (b)) = nl:)tw 1=1 [from (A)]
pgan 0< LU 4,(0"(@)0"(0) < Lt d, (0@, (B) < Lt p" =Ofrom @)
Now, 0 < Lt ir!]f d,(c"(a),c"(b) <0= Lt ir!]f d,(c"(a),c"(b)) =0. Thus
nlz)EOSL:p d,(c"(@),0"(b)) =1 and nI;EO irLf d, (c"(@),c"(b))=0.

Hence, (E:l,b)ezlﬁ1 is a Li-Yorke pair with modulusd =1> 0. Consequently, the dynamical system

(X, 0,4) has chaotic dependence on initial conditions. "

IV. Zeta functions for maps
Consider a dynamical system (X, f). Forne N, let p, (f)denotes the number of periodic points of period n
of the map fie., p,(f)= }{X eX: f"(x)= X}{ .Then p, is a topological invariant [1]. The zeta function [1,4]
¢, (t)of f, is again a topological invariant [1] which combines all the p°*. For a dynamical system (X, f)

with p, (f) <oo,¥ne N, the zeta function £, (t) is defined as follows:

G- exp[i—p“r(]”t“j
n=1
Expanding out the powers of the series gives,
1 1
i (O =1+p(Nt+-1p, (1) + pl(f)z]tz+g[2p3(f)+3pz(f)p1(f)+ PF) I+

For example, consider the dynamical system(X,,o,)where X ,is the Golden Mean shift such that it is

1+5 1-45

and 1 =—— be the eigen values of
2 S

11
described by the transition matrix A={1 0}. Then, if A=

11
the transition matrix A = , then,
P, (0p) =tr(A") = A"+ 41"

£, =eXp@%tnjzexp(i £or t“j

n=1

e S 0]

= exp(~ log(1- At) - log(1- 1))
~ 1 1
S -A)-pt) 1-t—t?

The most important technique to derive the zeta function of the shift map of any shift of finite type is given in
the following theorem:

Theorem: 4.1[1]: If A be a I xI' non-negative integer matrix, y,(t) be its characteristic polynomial and o,
its associated shift map, then
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1
g‘“() A(t‘l) |1 —tA{ H(l t)

AespX (A)

, Where SpX(A) is the nonzero spectrum of A.

4.2: Derivation of zeta function for the shift map o ,on the GMLSm: We know that GMLSm is described

by the non-negative integer matrix A given by:
_ 7 _

11 1 . 1]
100 .0 A, B
A=[1 0 0 . 0] =" ,where A, =[], B=]. .C=|. ,
o wnere a1
_1 00 . O_ mxm _1_ (m-1)x1 _1_ (m-1)x1

and O is the zero matrix of order (m-1)x(m-1)
Here to find the zeta function of the shift map o ,on GMLSm, by fruitfully using the theorem 4.1, we need to

compute |Im - tAl . We perform this as follows:

1-t -t -t -t .. -t
-t 1 0 0 .. O
-t 01 0 .. O

=1 —tA=
|mtAl—tOOl..O

-t 0 0 0 . 1

mxm

m
—Z ,;-C;; where C,; is the cofactor of element d,; in D
i=

=( t)|Im1| LG, —tCyy—tCyy =Gy,
= (1—t).1+ 2P, | —t* [Py +t* [P [ — - - +(-D)"t|P, |

Here P,;, 2< J<m, j €N, is the permutation matrix obtained from I, =(e,,e,,...

1j ) by switching €,

" m -1
to (j—1)" row. Then, ‘Plj‘ = (1) and consequently we get,
=1, —tA = A—t).1+t% P, | -t [Py +t* [P, | = +(=1)"t* [Py, |
= (1—t) [t +t2 +t> +t° +t2 +.......+t7]

(m-1) summands

=1-t—(m-1t?
11 1
tr,t™) JI,-tA 1-t—(m-1t’

8o, (0=

In case of Golden Mean shift we have found that Q“GA ®= T
This may be obtained by putting m=2 in [1]. [

V. Conclusions
In this paper we have mainly established that the shift map on the Golden Mean Lookalike shift of
order m [GMLSm] is Devaney Chaotic. To do this we have employed the concepts of graphs, linear algebra,

topological Markov chains and metric spaces. In theorem 3.4, the well-known chaotic shift transformation o,
on X , have been shown to be generically ¢ -chaotic withd = diam(Z,) =1. In theorem 3.6 and 3.7, we have
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proved that o, has respectively modified weakly chaotic dependence and weakly chaotic dependence on initial

conditions. In the proofs of both the theorems, Li-Yorke pairs have been constructed in a very clear-cut way and
the concepts of cylinders and admissible cylinders have been extensively used. Further, we have derived the zeta
function of this transformation. The methods of establishing some results may be fruitfully employed for the
same purpose in other topological Markov chains. Most of the results are quite interesting and might have
profound applications in analysis and in discrete mathematics.
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