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Abstract: In this paper we present another variation of Latin square design called Graeco 3RR - Latin Square 

design. This design adds one more restriction on randomization to the existing 3RR - Latin square by 

superimposing two orthogonal 3RR – Latin squares. The existence of a Graeco 3RR– Latin square is proved 

and illustrated by considering Latin squares of order 4 and 9. A statistical model for the design is presented, the 

estimators of parameters in the model are derived and the Analysis of Variance procedure is developed. .  
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I. Introduction 

The principles of experimental designs are randomization, replication and blocking. Randomization is 

often employed to remove potential for systematic bias on the part of the researcher and to reduce experimental 

errors. Blocking is randomization within block of homogeneous experimental units. Blocking is necessary to 

evenly distribute treatment across large potential sources of variation. Replication is repetition of basic 

experiment. More replications imply more precise inference. Holf (2009). Researchers like Zia (2000) and 

Colton (2012) had developed procedures to reduce experimental errors. The reduction in error becomes more 

pronounce in randomized block designs such as Latin Square designs. The existing Graeco - Latin square 

reduces the experimental error by adding one more restriction on randomization to Latin square by using Greek 

letters within P
2
 cells along with the Latin letters in such a manner that no combination of Greek – Latin letters 

are repeated Hicks and Turner(1973) and Montgomery (1976).  

Other associated designs that reduce experimental error are the Youden square which allows 

rectangular arrangements, Hicks and Turner (1973); the Cross Over design which is  a special case of the Latin 

square design, Cochran and Cox (1957). In addition, there are systematic squares such as the Knut and Vik 

which have been used by experimenters, but the experimental error is in question on these designs even if there 

are no interactions Kempthorne (1952); Fisher (1966) and Yates (1964). 

To further reduce the experimental error, Effanga and Offong (2016) extended randomization to three 

dimensional, not as in Graeco Latin square, but by considering rows, columns and regions. They called their 

design a  “Latin square design with three restrictions on randomization(3RR – Latin square design)”.  In a „p x 

p‟ 3RR - Latin square design P treatments are arranged in a P x P array such that each treatment appears only 

once in a row, only once in a column and only once in a region. They showed that their design only exists for 

Composite order p ≥ 3. A 3RR – Latin square design has advantage over completely randomized design, 

randomized block design and ordinary Latin square design in the sense that experimental errors are reduced. 

This paper add yet another restriction on randomization to the existing 3RR – Latin square design by 

superimposing two orthogonal 3RR – Latin squares. Of interest in this paper are the following fundamental 

questions: 

(i) Does there exists pairs of orthogonal 3RR – Latin squares? 

(ii) What is the resulting design when two orthogonal 3RR - Latin squares are superimposed? 

 (iii) What is the statistical model for the resulting design? 

(iv) How can the parameters in the model be estimated? 

(v) How can the ANOVA be performed? 

The answers to the above questions are provided in the following sections. 

 

II. Orthogonal 3RR - Latin Squares 
Two Latin Squares are said to be orthogonal if on superimposing one with capital letters treatments on 

another with small letters treatments each pair of capital letter treatment and small letter treatment appears only 

once in the square, Wikipedia (2014). According to Euler‟s experiment there exist orthogonal pairs of Latin 

Squares of any order except 2 and 6, Alvan (2014), Bose and Shrikhande (1960).  Hence, there exist orthogonal 

pairs of 3RR-Latin Squares.  
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Example 1: The two „4 x 4‟ 3RR – Latin squares below are orthogonal: 

 
Example 2: The two „9 x 9‟ 3RR – Latin squares below are orthogonal: 

A B C D E F G H I 

D E F G H I A B C 

G H I A B C D E F 

C A B F D E I G H 

F D E I G H C A B 

I G H C A B F D E 

B C A E F D H I G 

E F D H I G B C A 

H I G B C A E F D 

 
a b c d e f g h i 

g h i a b c d e f 

d e f g h i a b c 

e f d b c a h i g 

h i g e f d b c a 

b c a h i g e f d 

f d e c a b i G h 

i g h f d e c a b 

c a b I g h f d e 

 

 Now superimposing the pairs of „4 x 4‟ orthogonal 3RR – Latin squares and „9 x 9‟ orthogonal 3RR – Latin 

squares we obtain the following „4 x 4‟ and „9 x 9‟ 4RR – Latin squares, respectively. 

 „4 x 4‟ 4RR – Latin square 
Aa Bb Cc Dd 

Cd Dc Ab Ba 

Db Ca Bd Ac 

Bc Ad Da Cb 

 

„9 x 9‟ 4RR – Latin square  
Aa Bb Cc Dd Ee Ff Gg Hh Ii 

Dg Eh Fi Ga Hb Ic Ad Be Cf 

Gd He If Ag Bh Ci Da Eb Fc 

Ce Af Bd Fb Dc Ea Ih Gi Hg 

Fh Di Eg Ie Gf Hd Cb Ac Ba 

Ib Gc Ha Ch Ai Bg Fe Df Ed 

Bf Cd Ae Ec Fa Db Hi Ig Gh 

Ei Fg Dh Hf Id Ge Bc Ca Ab 

Hc Ia Gb Bi Cg Ah Ef Fd De 

 

III. The statistical model for the 4RR – Latin square 
A statistical model for the 4RR – Latin square design is given by 

p , . . . 2, 1, k  j, i,  ;e              y ijkrssrkjiijkrs      (1) 

Where, 

ijkrsy  = Observation on experimental unit in row i, column j, region k to which capital letter treatment r  and 

small letter treatment s are applied 

i
  = Row i effect 

j
  = Column j effect 

k
  = Region k effect 

r = Capital letter Treatment r effect 
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s = Small letter Treatment s effect 

  = Overall mean 

ijkrse = Random error term which is assumed to be NID (0, σ
2
)          

IV. Estimation of Parameters 
It is important to note that in a Graeco 3RR - Latin Square there are only p

2
 experimental units to be 

used in the experiment instead of p
5
 possible experimental units needed in a complete four way layout. Thus the 

use of Graeco 3RR - Latin Square design results in the savings in observations by a factor 1/p
3
 observations over 

the complete four layouts. 

From equation (1), the sum of squares of errors is  

 
        



p

i

p

j

p

k

p

r

p

ijkrs

p

i

p

j

p

k

p

r

p

s
ijkrs

ye

1 1 1 1 1s

2
srkji

1 1 1 1 1

2  ) -  -  -  -  -  - (   (2) 

Differentiating equation (2) with respect to µ, αi, βj, ϒk, τr and ψs respectively, and equating to zero, we obtain 

the following system of equations: 

           
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   
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Assuming 

 0  -      

1s
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r

p
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k

p

1j

j

p

1i

i  


p

 ,      (8) 

 Equations (3) through (7) reduce to: 

 
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
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p

j

p

k
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 
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

p

i

p

j

p
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p

ijkrsy

1 1

r

1 1s
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 
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

p

i

p

j

p

k
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ijkrsy

1 1

s

1 1r

0  p -  p -         (14) 

Solving equations (9) through (14) simultaneously, yields the following estimates of parameters 

 y   ˆ 
         (15)

 

 p , . . . 2, 1,  ,y y   ....  ii       (16) 

 p , . . . 2, 1,  ,y y   ....  jj ,       (17) 

 p , . . . 2, 1,  ,y y   ....  kk       (18) 

 p , . . . 2, 1,  ,y y   ....  rr       (19) 

 p , . . . 2, 1,  ,y y   ....  ss       (20) 

 

V. The Analysis of Variance 
The Analysis of Variance consist of partitioning the total sum of squares (SST0) into its component 

parts, the sum of squares for row (SSRO), sum of squares for column (SSC), sum of squares for region (SSRe), 

sum of squares for capital letter treatments (SST), sum of squares for small letter treatments, and sum of squares 

for error (SSE). 

That is, 

 SST0 = SSRO + SSC + SSRE + SSTC + SSTS + SSE   (20) 

Where 

 
    



p

i

p

j

p
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p

r
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ySST

1 1 1 1 1s

2
0  CF -   

     (21) 

 with degrees of freedom, v = p
2
 - 1  
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p
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i...O
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       (22) 

with degrees of freedom, v = p – 1   

 CF y
p

1
  SSC

p

1j

2

.j..
 



        (23) 

with degrees of freedom, v = p – 1 

 CF y
p

1
  SSR

p

1k

2

..k.E
 



       (24) 

with degrees of freedom, v = p – 1  

 CF - 
p

1
  

1

2
....


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p

i

rC ySST       (25) 

 CF - 
p

1
  

1

2
....





p

i

sS ySST    

 with degrees of freedom, v = p – 1  

 SSE = SST0 – SSR0 – SSC – SSRE – SST     (26) 

with degrees of freedom, v = (p – 1 )(p – 3)  
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     (27) 

is a correction factor. 

 Following the general principle, it is easy to construct the ANOVA table for our design to enable us 

test the following hypotheses  

i allfor  0,   :H io   

j allfor  0,   :H jo   

k allfor  0,   :H ko   

r allfor  0,   :H ro   

s allfor  0,   :H so   

The ANOVA table is shown below 

 

 

 

  

 

  

 

 

 

In the above ANOVA table, the Mean squares and the F – ratios are obtained as follows 

   
1 - P

SSR
  MSR o

o   

  
1 - P

SSC
  MSC  

  
1 - P

SSR
  MSR E

E   

  
1 - P

SST
  MST C

C   

  
1 - P

SST
  MST S

S   

  
4) - 1)(P - (P

SSE
  MSE  

  
MSE

MSR
  F 0

Ro   

  
MSE

MSC
  FC   

  
MSE

MSR
  F E

RE   

  
MSE

MST
  F C

CT   

  
MSE

MST
  F S

ST   

Source of variation Degree of freedom Sum  of Squares Mean Square F-ratio 

Row P – 1 SSR0 MSR0 FRO 

Column P – 1 SSC MSC FC 

Region P – 1 SSRE MSRE FRE 

Capital letter Treatment P – 1 SSTC MSTC FCT 

Small letter Treatment P – 1 SSTS MSTS FST 

Error (P – 1)(p – 4) SSE MSE  

Total P2 – 1 SST0  
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Ho is rejected at α% level of significance if the calculated F – ratios are greater than Fα with  (p – 1) numerator 

degree of freedom and (p – 1)(p – 4) denominator degree of freedom.  

Lemma: Stevens (2011) 

The number of squares in a set of mutually orthogonal Latin squares of sides‟ p is not greater than p – 1  

Theorem: The number of squares in a set of mutually orthogonal 3RR – Latin squares of sides‟ p is at most (p – 

2)  

Proof: Considering the Analysis of variance, the differences between rows, columns and regions accounts for    

(p – 1) degrees of freedom. Since the total degrees of freedom is (p
2
 – 1) it follows that there are (p + 1) methods 

of subdivision. Of these rows, columns and regions account for 3, leaving (p – 2) subdivisions by letters.  

 

VI. Summary and Conclusion 
We have shown that orthogonal pairs of 3RR – Latin squares exists and then superimposed one on the 

other to form another type of Latin square coined Graeco 3RR – Latin square  The statistical model for the 

Graeco 3RR – Latin square is formulated and the parameters in the model estimated. We develop the analysis of 

variance procedure to test the significance of the parameters in the model. In conclusion, we have proved that 

there are at most (p – 2) squares in the set of mutually orthogonal 3RR – Latin square of sides‟ p.  
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