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Abstract: In the present paper learn thermal energy communication by unsteady MHD Run Precedent a 

perpendicular absorbent laminate captivated in a absorbent average..  a moment needy suction to the plate into  

a time dependent , parameter and the corresponding momentum and energy equations have been solved 

numerically the non linear governing partial differential equation obtained are converted into  PDE.non –

dimensional rate and high temperature profiles be next in presence graphically for different value of the 

parameter entering into the problem . 
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I. Introduction 

The free convection going on the accelerate flow of a viscous incompressible liquid precedent an 

endless perpendicular absorbent plate with suction has many significant technological applications in the 

astrophysical, geophysical and engineering problems. The heat of rooms and buildings by the use of radiators is 

a recognizable .high temperature transport by free of charge convection to Heat losses from hot pipes, ovens etc 

surrounded by cooler air, are at least in part, due to free convection.. This is due to the significant role of thermal 

radiation in exterior temperature transport while convection heat relocate is similar, particularly in free 

convection problems involving absorbing emitting fluids. . In the present article we examine the thermal 

emission communication on an absorbing emitting fluid permitted by a transversely applied magnetic field past 

a moving vertical porous plate embedded in a porous medium with time dependent suction and temperature. The 

similarity solutions are then obtained numerically for various parameters entering into the problem and 

discussed them from the physical point of view. 

 

II. Review Of Literature  
1. Soundalgekar and Takhar (1981) Radiation belongings on free convection flow of a gas past a half 

unlimited horizontal plate.  

2. Hossain and Takhar (1996):The outcome of radiation using the Rosseland diffusion estimate on diverse 

convection the length of a perpendicular plate with uniform free stream velocity and outside high 

temperature.  

3. Ali et al. (1984)  radiation outcome on normal convection flow more than a perpendicular outside in a 

ancient gas.  

4. Mansour (1990): the communication of mixed convection with thermal emission in laminar border layer 

flow over a straight, continuous moving sheet with suction/injection. 

5. Whereas Albraba et al. (1992) studied the same problem considering magnetic effect taking into account the 

binary chemical response and Soret - Doufour effects. 

6. Seigel (1958): passing free convection flow precedent a half endless perpendicular plate by an integral 

method.   

7. Yamamoto et al. (1976) investigated the acceleration of convection in a absorbent permeable medium along 

an arbitrary but smooth surface.  

8. Raptis (1983) :free convection in a absorbent average surrounded by an endless plate. Raptis and Perdikis 

(1985) without charge convection flow through a porous medium bounded by a half endless perpendicular 

absorbent plate. 

9. Singh and Dikshit (1988). Sattar et al. (2000) trembling free convection flow the length of a perpendicular 

absorbent plate surrounded in a absorbent medium.  

10. Alam and Rahman (2005): MHD free convection flow and mass transfer along a perpendicular absorbent 

cover in a absorbent medium allowing for Soret-Dofour effects.  

11. Sattar and Kalim (1996) studied the effects of unsteady free convection interaction with thermal radiation in 

a boundary layer flow.  

12. El-Arabawy (2003) consequence of suction/injection on a micro Antarctic fluid precedent a endlessly 

moving with radiation.  
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13. Ferdows et al. (2004) examine the thermal radiation communication by convection in a boundary layer 

stream at a perpendicular cover with variable suction 

 

III. Mathematical Formulation 
Let us consider the problem of a trembling MHD free convection flow of a thick, incompressible and 

electrically conduct liquid along a perpendicular absorbent flat plate under the pressure of a consistent 

maganatic field 

1. The flow is implicit to be in the x -direction, which is in use the length of the plate in the upward direction  

2. y –axis normal to the plate. originally it is understood so as to the cover and the fluid be at a steady high 

temperature T∞ at every one points. 

3.  on time t > 0 the plate is implicit to be affecting in the increasing way with the velocity U(t) and there is a 

suction velocity v0(t) in use to be a function of time, the high temperature of the plate raise to T(t) where 

T(t) > T∞.   

4. The plate is measured to be of endless length, all derivatives with respect to x vanish and so the physical 

variables are functions of y and t only. 

V.The fluid is measured to be gray; absorbing-emitting radiation but non-scattering medium and the 

Roseland approximation is used to describe the radioactive high temperature instability in the x-direction is 

considered negligible in assessment to the y-direction. 

vi.Assuming that the Boussinesq and boundary-layer approximation grip and using the Darcy-Forchhemier 

model, the governing equations for the problem are as follows: 
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Energy equation 
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where (u, v) are the components of velocity along the x -and y -directions respectively 

 t =time, 

 υ =kinematic viscosity, 

 ρ = density of the fluid, 

 g0 =acceleration due to gravity, 

 β = coefficient of volume expansion,  

B0 = magnetic induction,  

T and T∞ =temperature of the fluid within the boundary layer and in the free stream respectively,  

ζ = electric conductivity,  

α =thermal diffusivity  

 cp = specific heat at constant pressure, 

 k = permeability of the porous medium. 

The comparable boundary circumstances for the over difficulty are given by By using Rosseland approximation 

qr takes the form 

  0Uu  ,   tn

ww eTTTT
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, T → T∞, C → C∞, at y′ → ∞    (5) 

where ζ1, the Stefan-Boltzamann constant and k1, the mean absorption coefficient. It is assumed that 

the temperature differences within the flow are satisfactorily small such that T
4
 may be articulated as a linear 

meaning of high temperature. This is consummate by expanding T
4
 in a Taylor series about T∞ and neglecting 

higher-order terms, thus 
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Using (5) and (6) in equation (3) we have 
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In order to obtain a similarity solution in time of the problem, we introduce a similarity parameter δ as δ = δ(t), 
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such that δ is a length scale. 

With this similarity parameter, a similarity variable is then introduced as 
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In terms of this length scale, a suitable solution of the equation (1) can be taken as 

where v0 is the mass transfer parameter, which is +ve for suction and –ve for injection.  

Following Sattar and Hossain (1992) U(t) and T(t) are now consider to have the  

 following form: 
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Where n is a non-negative integer , 

 U0, T0 are respectively the free stream velocity and mean temperature. 

equations (2) and (7) dimensionless, 

We introduce the following transformation: 
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Using equations (8), (9), and (11) the equations (2) and (7) are becomes 
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The corresponding boundary conditions for t > 0 are given by 

   u = 1, θ = 1 +εe
nt

, φ = 1+εe
nt

 at y = 0 

   u → U(t), θ → 0, φ → 0 at y → ∞    (14) 

 

IV. Results And Discussion 
1. For the purpose of discussing the results, the numerical calculations are presented in the form of non-

dimensional velocity and temperature profiles. Numerical computations have been carried out for different 

values of the parameters entering into the problem. The values of Grashof number (Gr) are taken to be large 

from the physical point of view.  

2. The large Grashof number values correspond to free convection problem. The effects of suction parameter 

v0 on the velocity and temperature profiles . 

3. we found that the velocity decreases with the increase of suction for cooling of the plate and increases for 

the heating of the plate. It is also clear that suction stabilizes the boundary layer growth. reveals that 

temperature decreases with the increase of the suction parameter. 

 

 
Fig. 1: Velocity profiles for different step sizes 

 

 
Fig. 2: Velocity profiles for different values of suction parameter (v0) 
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Fig 3. 

 

 
fig;4 

 

 
Fig:5 
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Fig. 5 show the effects of Prandtl number (Pr) on the velocity as well as temperature profiles for 

cooling plate velocity profiles decrease with the increase of Pr whereas these profiles increase with the increase 

of Pr for a heating plate. For cooling plate Pr has decreasing effect on the temperature profiles. 

 

 
Fig. 6: Temperature profiles for different values of radiation parameter (N) 

 

V. Conclusion 

The thermal radiation communication with unsteady MHD frontier layer flow precedent a endlessly 

moving vertical porous plate absorbed in a porous medium. From the present study we can make the following 

conclusions: 

(i)  The suction stabilizes the boundary layer growth. 

(ii)  The velocity profiles increase whereas temperature profiles decrease with an increase of the free convection 

currents. 

(iii)  Using magnetic field we can control the flow characteristics and heat transfer. 

(iv)  Radiation has significant effects on the velocity as well as temperature distributions. 

(v)  Flow characteristics strongly depend on the nonnegative integer n. 

(vi)  Large Darcy number leads to the increase of the velocity profiles. 

 

 
Fig. 7: Velocity Profiles for values of Magnetic parameter (M) 
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Fig. 8: Velocity profiles for different values nonnegative integer (n) 

 

 
Fig. 9: Temperature profiles for different Values of non-negative integer (n) 
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Nomenclature 

cf  skin resistance coefficient 

cp  specific heat at constant pressure 

Da  local Darcy number 

Ec  Eckert number 

Fs  local Forchhemier number 

Fs1  modified Forchhemier number 

Gr  local Grashof number 

g  acceleration due to gravity 

M  local magnetic field parameter 

N  radiation parameter 

Nu  Nusselt number 

n  nonnegative integer 

Pr  Prandtl number 

qr  radiative heat flux 

Re  local Reynolds number 

T  temperature within the boundary layer 

T(t)  temperature at the plate 

T∞  temperature of the ambient fluid 

t time 

u velocity along x -axis 

v velocity along y -axis 

v0  suction parameter 

v0(t) time dependent suction velocity 

x coordinate along the plate 

y coordinate normal to the plate 

 


