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Abstract:Geodetic number of a graph is one of the widely studied graph theoretic parameters concerning
geodesic convexity in graphs. In this paper, we introduce a variant of this parameter namely, doubly geodetic
number of a graph. For a connected graph G, a setSof vertices of Gis called a doubly geodetic set ofGif each
vertex inV — Slies on atleast two distinct geodesics of vertices in S.The doubly geodetic numberdg(G) of G is
the minimum cardinality of a doubly geodetic set. Any doubly geodetic set of cardinality dg(G)is called dg-set
of G. In this paper, the doubly geodetic number of certain standard graphs is determined.
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I.  Introduction

Let G = (V,E) be a connected graph with node set V =V (G) and the edge set E = E(G). Ife =uv €
E(G), then the vertices u and v are adjacent. For vertices uandvinG, the distanced(u, v) is the length of a
shortestu— vpath inG. Anu- vpath oflength d(u, v) is called an u — v geodesic. A vertex w is said to lie on an
u — v geodesic P if w is a vertex of P including the vertices u and v. The eccentricity e(u) of a vertex u is
defined by e(u) = max {d(u,v) : v €V }. The minimum and the maximum eccentricity among vertices of G
is its radius r and diameter d, respectively. For graph theoretic notation and terminology, we follow [1,2].

In [1] Harary et al introduced a graph theoretical parameter, the geodetic number of a graph and further
studied it in [3,4,5,6]. The geodetic closure of the set S cV (G) is S¢ ={x € V:(Ju,v € §),xis in some
u-vgeodesic}. The geodetic number of a graph G is defined asg(G) = min{|S|: S € VandS® = V }. An
equivalent definition for geodetic number of a graph G is given in[4] as follows, Let I(u, v) be the set (interval)
of all vertices lying on some u — v geodesic of G, and for a nonempty subset S of V (G), I(S) = Uy, yes I (u, v).
The setSof vertices ofGis called a geodetic set in G if I(S) =V, and a geodetic set of minimum cardinality is a
minimum geodetic set. The cardinality of aminimum geodetic set in G is called the geodetic numberg(G). In
[6], it is shown that theproblem of determining the geodetic number of a graph is an NP-hard problem. The
geodetic number of a graph is also referred as geodomination number [7]. Chartrand, Harary, Swart and Zhang
were the first to study the geodetic concepts in relation to domination. Later, it was further studied by several
others.[8,9].

The edge geodetic number of graph was introduced in [10] and further studied in [11]. In [12],
Santhakumaran et al introduced a variant, the double geodetic number of a graph. A set S of vertices of G is
called a double geodetic set of G if for each pair of vertices x,y in G there exist vertices u, v in S such that
x,y € I(u,v).The double geodetic number dg(G) of G is minimum cardinality of a double geodetic set. Any
geodetic set of cardinality dg(G) is called dg-set of G. The geodetic concepts have many remarkable
applications in communication network design and designing the route for a shuttle. The edge geodetic set has
more real life applications than the geodetic sets. In particular, they are more advantageous in the case of
regulating and routing the goods vehicles to transport the commodities to important places. The geodetic
concepts are also applied to other areas like telephone switching centers, facility location, distributed computing,
image and video editing, neural networks and data mining.

I1.  Doubly Geodetic Number of a Graph

In this section, we formally define the doubly geodetic number of a graph.Let G be a connected graph
with at least two vertices. A vertex x is said to be geodominated by the pair of vertices{u, v} if lies x lie on some
u — v geodesic. The geodetic interval I [u, v] consists of u, v together with all vertices geodominated by the
pair{u, v}.

Let |I [u,v] | denote the number of vertices in I[u,v]. If |I [u,v]| = d(u,v) + 1, then there exist a
unique u — v geodesic. If |I[u, v]| = d(u,v) + 1, then there exists more than one geodesics between u and v.
Let g, (u, v) be au — v geodesic and I [g,, (u, v)] consists of u, v together with all vertices in g, (u, v). Its clear
that |1 [g, (w, v)]| = d(u, v) + 1.We say that two geodesics g, (a, b) and g, (u, v) are distinct if I[g, (a, b)] #
I[gq, (u, v)].A set S of vertices of G is called a doubly geodetic set of G if each vertex in V — S lies on at least
two distinct geodesics of vertices in S.The doubly geodetic number of dg(G) isminimum cardinality of a doubly
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geodetic set. Any doubly geodetic set of cardinality dg(G) is called dg-set of G. In other words, in the I[S] of
the doubly geodetic setS ofG the vertices of V' — S should occur at least twice.

Example 2.1. For the graphG,in Fig.1(a), it is clear thatS; = {u, v}is ad g-set ofG,. Thus dg(G,) = 2 = g(G,).
The double geodetic number and geodetic number of a graphcan be different. For the graph G,in Fig.1(b), it is
clear that no 2-element or no 3-element subset of G, is a doubly geodetic set of G,. S, = {vy,v,,v3,v5} is a
doubly geodetic set, so dg(G,) = 4. Butg(G,) = 3.

Vs

(a) ) (b)
Figl: (@dg=g, (b)dg # g

A vertex v in a graph G is an extreme vertex if the subgraph induced by its neighborhood is complete.
Every extreme vertex of a graph is an end-vertex of every geodesic containing it. A set S of vertices of a
connected graph G is called a cutset of G if the graph G — S is not connected. In particular, a vertex v € V(G) is
a cut-vertex of G if G — v is disconnected. The connectivity x(G) of a connected non-complete graph G is the
minimum cardinality of a cutset of G. The following theorems will be used in the sequel.

Theorem 2.2. [7] Every geodetic set of a graphGcontains its extreme vertices. In particular,if the set of extreme
vertices S of Gis a geodetic set of G, then S is the unique minimum geodetic set of G.

Theorem 2.3. [7] LetGbe a connected graph with a cut vertexv. Then every geodetic setof G contains at least
one vertex from each component of G — v.

I1l.  Main Results
Theorem 3.1. For any graph G, 2 < g(G) < dg(G) < n.
Proof: A geodetic set needs at least two vertices and thereforeg(G) = 2. It is clear that every doubly geodetic
set is also a geodetic set and so g(G) < dg(G). Since the set of all vertices of G is a doubly geodetic set of
G,dg(G) <n.

Remark 3.2. The bounds in theorem 3.1 are sharp. For the complete graphK,, (n > 2), wehave dg(K,)) = n and
for the graph G, in Fig.1(a),dg = 2. The graphs with double geodetic number 2 are investigated in the sequel.

Theorem 3.3. Everyd g-set of a graph contains its extreme vertices.
Proof: Since every doubly geodetic set is a geodetic set, the result follows from theorem 2.2.

Corollary 3.4. For a graph G of order n with kextreme vertices, max{2,k} < dg(G) < n.
Proof: This follows from theorems 3.1 and 3.3.

Theorem 3.5. LetGbe a connected graph with a cut vertexv. Then each doubly geodeticset contains at least one
vertex from each component of G — v.
Proof: This follows from theorem 2.3 and the fact that every doubly geodetic set is a geodetic set.

Theorem3.6. Let T be a tree with n vertices and [ leaves, then dg(T) = g(T) = [, where [ > 3.

Proof: Let S be the set of all end-vertices of T. By theorem 3.3,dg(T) = S. On the other hand, for an internal
vertex v of T, there exist end-vertices x,y of Tsuch that v lies on the unique x-ygeodesic in T. Thus, an
internal vertex vof T, will lie on exactly (é) distinct geodesics of vertices in S. Therefore, d = |S]. Since every
geodetic set Sof Tmust contain Sby theorem 3.3, Sis the unique minimum doubly geodetic set.

Corollary3.7. For integersk, n, such that 3 < k < nthere exist a connected graphGwithg(G) = dg(G) = k.
Proof: For k = n, let G = K,,. Then, g(G) = dg(G) = n = k. Also, for each pair of integersk, nwith 3 < k <
n, there exists a tree of ordernwithkend vertices. Hence the result followsfrom theorem 3.6.

Theorem 3.8. For any two positive integersa, bwitha = b + 1 andb > 2 there exists a connected graph with
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IV(6)| = a,dg(G) = b.
Proof: LetP:ug, uy, ..., uq—p)be a path. Consider the graphGconstructed fromPbyjoining b — 1 new vertices to
uy. The graph G is a tree of order a, with b leaves. Then by theorem 3.6, dg(G) = b.

Theorem 3.9. IfG = K, 0orK,, — e, i.e. a graph obtained fromK, by removing an edgee, then dg(G) = n.
Proof: By theorem 3.1, dg(G) = g(G). Also for G = K,,, we have, dg(G) = g(G) = n. It remains to show
that, for G = K, — e, dg(G) = n. Let e = (x,y), wherex,y € V (G) then Gcan be redrawn as in Fig.2. Each
vertices xand yare adjacent to n — 2 vertices of clique K,,_, in G. Since x and y are extreme vertices, they both
belong to dg —set. Also every vertex in the clique K,_, will lie on only one geodesic. Thusdg(G) = n.

N

-
i 4
Fig.2: K, — e, wheree = xy

. 3, ifeq, e;areadjacent
Theorem3. 10. If G = K,, — {e;, e;}, then dg(G) = {4' ifécl,ezarenota]djacent
Proof: Let G = K,, — {e;, e;}. We have the following two cases:
Case(i): Whene; and e, are adjacent. Let e; = xy and e, = xz for some x,y,z € V(G), then G = K,, —
{e,, e,}, can be redrawn as in Fig.3(a). Since x, y, z are extreme vertices, they all belong to dg-set. Also, every
vertexV (G) — {x, v, z} lies on each of the x — y and x — z geodesics. Thus, dg(G) = 3.
Case(ii): When e; and e, are not adjacent. Let e; = uv and e, = xy for some u,v,x,y € V(G), then G = K,, —
{ey, e,}, can be redrawn as in Fig.3(b). Since u,v,x,y are extreme vertices, they all belong to dg-set. Also,
every vertex V(G) — {u, v, x, y} lie on each of the u — v and x — y geodesics. Thus, dg(G) = 4.

() (b)

F'g 3: (a) Kn - {el,ez}, where e = Xxy and e, = xz,
(b) Kn - {ell 62}, where e = uv and e, = XZ.

Theorem3. 11. If P,be a path of ordern > 3, then dg(P,) = 3.
Proof: LetP,:uy,uy, ..., u,be the path. The two end-vertices u;,u, belong to dg-set say S. All the internal
vertices lie exactly on only one u; — u, geodesic. Inclusion of any one internal vertex to set S, will make all
vertices of V(P,) — S doubly geodominated. Thus, dg(P,) = 3

Theorem3.12. Let C, be a cycle of ordern > 4, then dg(G) = {L; n;f:;;g

Proof: LetC,,: uq, uy, ..., u,, u; be the cycle.

Case (i): When n is even. Consider the induced subgraph [A] on the vertices uy, uy, ..., U 2y41- Clearly
[A]~P,/2)+1, therefore by theorem 3.11 at least 3 vertices are required to doubly geodominate V[A]. Similarly
for the induced subgraph [B] on the vertices e, j2)41, Ucn/2)+2, - U1, at least 3 vertices are required to doubly
geodominate V [B]. Since [A] and [B] have two common vertices, at least 3 + 3 — 2 i.e. 4 vertices are required
to doubly geodominate V(G). Thus dg(G) < 4. Let S = {uy, Up, U(n/2)41, U 242} Clearly S is a dg(G)-set.
Thus dg(C,) = 4.

Case (ii): When n is odd. Consider the induced subgraph [A] on the vertices uy, uy, ..., Utn/2)+1- [A]1~Ppn /2141
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therefore by theorem 3.11 at least 3 vertices are required to doubly geodominate V[A]. Similarly for the induced
subgraph [B] on the vertices uy, 2141, U 2142, - Uy at least 3 vertices are required to doubly geodominate
V [B]. Since [A] and [B] have one common verteX, atleast 3+3-1 i.e. 5 vertices are required to doubly
geodominate V(G). Thus dg(C,) <5. Let S={uy,up Upajs1 Upnjare2 Un ) ClearlySis a  dg-set.
Thusdg(C,) = 5.

Theorem 3.13. For integersp; <p, < <py, p; =3, 1<i<k,letG=K, ,, .
graph. Then dg(G) = minifp,, 6}

Proof: LetU = {uy,uy, ..., u,, JandW = {wy, w;, ..., w,, Jbe the two partite setsof G of least cardinality, where
p1 < p,. First, consider 3 < p; <5, clearly S = U is a minimum doubly geodetic set of G. Now, let p; > 6and
let S = {uy,uy, us, wy,wy, ws}. Since, every vertex of U — S lies on wy — w,, w, — wzandw; — wzgeodesics.
Also, every vertex of W — Slies onu; — u,, u, — uzand u; — uz geodesics. And clearly every vertex of V(G) —
(U U W) lies on atleast two geodesics of vertices in S. It follows thatdg(G) < 6.

It remains to prove that,dg(G) = 6. LetXbe any 5-element subset of V. Let A,B,C,D,E be any five
partite set of G. IfX c A i.e. [X n A| = 5, then vertices of A\X does not lie on any geodesics of vertices in X. If
[X N A| = 4 and |X n B| = 4then vertices of A\X does not lie on any geodesics of vertices in X.If X nA| =3
and |X n B| = 2then vertices of A\X lie on exactly one geodesicof vertices in X.If [XnA| =3 and |[X N B| =
|X n C| = 1then vertices of A\X does not lie on any geodesics of vertices in X.If |[XnA| =|XnB| =2 and
|X n C| = 1then vertices of A\X lie on exactly one geodesicof vertices in X.If [ XNA| =2 and |XNB| =
[X nC| =|X nD| = 1then vertices of A\X does not lie on any geodesics of vertices in X.If | X nA|=
I XNnB|=|XnC|=|XNnD|=|XnE]| = 1then vertices of A\X does not lie on any geodesics of vertices in
X 1t follows thatd g (G) = 6.

». D€ a complete k-partite

Corollary 3.14.For complete bipartitt K, and complete tripartiteX,  .graphs,dg (K, ;) = minr, s, 6}
anddg (K, . ) = minifr, s, t, 6}, where integers 7, s, t > 3.
Proof: The result followsfrom theorem 3.13.

Theorem 3.15. For the gridG, ;,dg(G,,) = 4, where integersr, s > 2.
Proof: LetG = G, ;7,5 = 2 and let S be a dg-set of G. Suppose S is a 3-element subset of V(G). Then by
theorem 3.12, there exist a vertex in the outer boundary, that is the outer cycle C,,,,_5y,such that it lies on at

most one geodesic of vertices ofS.See Fig.4(a).Therefore,dg(G) = 4. It can be easily verified that,S =
{a, b, c,d}, wherea, b, c,darethe corner vertices is a doubly geodetic set of G.See Fig.4(b). Thus, it follows
thatdg(G) = 4.

(a) (b)
Fig.4: (a) The blue line denotes the outer cycle C,, of a 6 X 6 grid,
(b) dg-set of a 6 x 6 grid.

Theorem 3.16. Let Gbe a graph satisfying the following two conditions: (i) g(G) = 2. (ii) Let{u, v} be the
geodetic set of G. For every u — v geodesic say (u,x,Xy,...,Xxp_1,v) there exist another distinct u — v
geodesic say (w,y1,¥2,---,¥p-1,v) Such that x; # y;,x; =y and x, #y, for 1<i<j<k<D-1
Then,dg(G) = 2.

Proof: LetP, (u — v) be theu — vgeodesic(u, xy, x, ..., Xp_1, v)andP, (u — v)be
theu- vgeodesic(w, y1, V2, ..., ¥p-1, V).By

(i)wehave, (w, x1, X3, -+, X;, X, Xy ey Xp—1, V)ANA(W, Y1, Y2, -+, Vi ¥j» Yi» - » Yp—1 ,V)are also geodesics between
w and v. Thus all the vertices of P, (u — v)andP, (u — v) lie on atleast two distinct geodesics. Since the above
argument holdsgood for every u — v geodesics we have, dg(G) = 2.

DOI: 10.9790/5728-1205041317 www.iosrjournals.org 16 | Page



Doubly Geodetic Number of a Graph

Theorem 3.17. LetGbe a graph satisfying the following two conditions: (i)g(G) = 2. (ii) Let{u, v} be the
geodetic set of G. For every u —v geodesic say (u,xq,x,,...,Xp_1,V) there exist another distinct u — v
geodesic say (u, y1, ¥z, ..., ¥p_1, ) such that(x;, v;41) and (x;41, ;) € E(G) for some i.Then,dg(G) = 2.

Proof: LetP, (u —v) be theu — vgeodesic (u, x4, %2,...,xp_1,v)and P,(u — v)be
theu — vgeodesic(u, ¥1,¥2,--.,VYp_1,V).By (i) we
have,(u, x1, X3, ..., Xi, Xj41, -» Xp—1, v)ANd(W, y1, V2, .-+, ¥i» Vie1, - » Yp—1 ,V)are also geodesics between u and
v. Thus all the vertices ofP,(u — v)andP,(u — v) lie on atleast two distinct geodesics. Since the above

argument holdsgood for every u — v geodesics we have, dg(G) = 2.

IV.  Conclusion
In this paper, we haveformally defined the doubly geodetic number of a graph and studied its
properties. Furthermore, we have obtained the doubly geodetic number of trees, cycle, complete graph, complete
k-partite graph and grid.The computational complexity for this problem is under study.
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