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Abstract: The aim of this paper is to derive the new correlation about the first and second kind of chebyshev 

wavelets and proposed to new results on the derivative function on chebyshev wavelets. It is most helpful for the 

optimal control analysis. 
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I. Introduction 
Many problems of mathematical physics, Engineering Science and applied science fields (Signal 

analysis, image processing, numerical analysis etc.,) can be stated in the form of integral and Differential 

equations. For this type of equations is simulation of the other mathematical problems such as PDF and ODE. 

Therefore, the study of the DE methods for solving is very useful application in Engineering and Pure and 

applied mathematics. Current years several methods are developed based on the orthogonal basic function with 

wavelet function. It has been very helpful for the approximate solution of integral and Differential equation 

[1,8,10,11]. In basic methods of wavelets are two important ways of improving the approximation solution. 

Develop the order of the wavelet family and the increasing the optimal control level of the wavelet. The basic 

idea of CWM is convert to the DE to a system of algebraic equation by the operational matrices of integral or 

derivative. Haar wavelets (Mirzaee, 2005), harmonic wavelets of successive approximation (Cattani and 

Kudreyko, 2010) Chebyshev polynomials is a traditional wavelet technique. The modified version which is 

called Chebyshev wavelets method. Chin.k[ 3] has proposed to convergence analysis of the fast approximation 

techniques in power electronic circuits. W.Jie [9] analyzed the steady state analysis of the power electronic 

wave transforms. Sohrabi.S [12] studied the comparatively of BPF and Abel’s integral equation. Fathi.M.R [4] 

analyzed the time – invariant scaled operations on chebyshev wavelet. Hariharan and etc., [5, 6, 7] have 

proposed the Haar Wavelet method for non-linear reaction arising in science and engineering. The main 

objectives of the wavelets are optimal control analysis of the signal process and etc., and it can be improved to 

analysis the convergence method. Chebyshev polynomials which are the eigen function of a Sturm-Liouville 

problem have many advantages [2]. In this paper we have proposed the connection between the about the shifted 

first and second chebyshev wavelet method and derive the derivative relation about the above function.   

 

II. Chebyshev Wavelets 
Wavelets constitute a family of functions constructed from dilation and translation of a single function 

)(x  called the mother wavelet. When the dilation parameter “a” and the translation parameter “b” varies 

continuously we have the following family of continuous wavelets as
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here 120  banda , the family of discrete wavelet forms as an orthonormal basis. The weight functions of the 

chebyshev wavelet denoted by w(x) and it’s dilated and translated as )122()(  nxwxw k

n
 Chebyshev 

polynomial most helpful for the numerical analysis. 

 

2.1  First Chebyshev Wavelets: 

 Four arguments are involving this kinds of wavelet, the family of wavelet is  xmnkxnk ,,,)( 1
,

1   , 

where
 Rkn k ,2....3,2,1 , m – denotes the degree of Chebyshev Polynomial, n arguments, k can assume 

any positive integer, x is the normalized time. It is defined on the interval [0, 1] by  
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2.2  Second Chebyshev Wavelets:  

Four arguments are involving this kinds of wavelet, the family of wavelet is.  xmnkxnk ,,,)( 2
,

2   , n 

arguments, k can assume any positive integer, x is the normalized time. It is defined on the interval [0, 1] by 
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3.1 Correlation about the Matric Derivative of 2
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Lemma: 1 Let )(1 x be the chebyshev wavelets defined by 
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Lemma:2 Let )(2 x be the chebyshev wavelets defined by 
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Proof:  Using the shifted Second Chebyshev polynomial to the interval [0,1], the pth element of vector 

)(2 x can be written as 
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Hence the required result. 
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Then differentiation with respect to x , we obtained  
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which is the required result 

Lemma: 5 The derivative of )(2 xp  interms of the second derivative of )(1 xp is given by the formula 
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Hence the required result 

 

V. Conclusion 
In this paper, we derived the correlation between first and second kind of chebyshev wavelet method 

and to derive the derivative about the above function. It is used to derive the analytical solution of the optimal 

control analysis. We conclude that the proposed algorithm is most helpful for the chebyshev wavelets and their 

operational matrices of derivatives. 
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