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Abstract: In this paper, we investigate the effects thermo-diffusion on unsteady MHD natural convective flow 

past an infinite vertical plate in presence of heat absorption. The dimensionless governing equations are solved 

numerically using Galerkin finite element method. The numerical results for some special cases were compared 

with previously published work and were found to be in good agreement. The effects of various pertinent flow 

parameters on velocity, temperature and concentration are shown graphically where as skin friction, Nusselt 

number and Sherwood number are presented in tabular form. 
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I. Introduction 
The problem of free convective flow caused by combined buoyancy effects of thermal and mass 

diffusion has been analyzed by many researchers. It has many applications in various industries and 

environments such as nuclear power plants, polymer production, chemical catalytic reactors, food processing, 

and geophysical flows. Free convection flows that occurs in nature and in engineering practice is very large and 

has been extensively considered by many authors. When heat and mass transfer occurs simultaneously between 

the fluxes the driving potentials are more intricate in nature. An energy flux is generated not only by 

temperature gradients but by composition gradients as well. Temperature gradients can also create mass fluxes 

and this is the Soret or thermal-diffusion effect. Generally, the thermal-diffusion and diffusion-thermo effects of 

smaller order magnitude than the effects prescribed by Fourier’s or Fick’s laws and are often neglected in heat 

and mass transfer processes. Due to the importance of thermal-diffusion and diffusion-thermo effects for the 

fluids with very light molecular weight as well as medium molecular weight many investigators have studied 

and reported results for these flows and the contributors such as Dursunkaya and Worek [1], Anghel et al. [2], 

Postelnicu [3] are worth mentioning. 

Abdul El – Aziz [4] has investigated the combined effects of thermal diffusion and diffusion thermo on 

MHD heat and mass transfer over a permeable stretching surface with thermal radiation. Afify [5] carried out an 

analysis to study free convective heat and mass transfer of an incompressible, electrically conducting fluid over 

a stretching sheet in the presence of suction and injection with thermal diffusion and diffusion thermo effects. 

Alam and Rahman [6] studied numerically the Dufour and Soret effects on mixed convection flow past a 

vertical plate embedded in a porous medium. Alam et al. [7] studied numerically the Dufour and Soret effects 

on combined free – forced convection and mass transfer flow past a semi – infinite vertical plate, under the 

influence of transversely applied magnetic field. Shivaiah and Anand Rao [8] have studied  Chemical reaction 

effect on an unsteady MHD free convection flow past a vertical porous plate in the presence of suction or 

injection. Chamkha and Ben – Nakhi [9] considered the mixed convection flow with thermal radiation along a 

vertical permeable surface immersed in a porous medium in the presence of Soret and Dufour effects. Gaikwad 

et al. [10] investigated the onset of double diffusive convection in a two component couple of stress fluid layer 

with Soret, and Dufour effects using both linear and nonlinear stability analysis. Anand Rao and Shivaiah [11] 

analyzed Chemical reaction effects on an unsteady MHD flow past a semi – infinite vertical porous plate with 

viscous dissipation Hayat et al. [12] analyzed a mathematical model in order to study the heat and mass transfer 

characteristics in mixed convection boundary layer flow about a linearly stretching vertical surface in a porous 

medium filled with a viscoelastic fluid, by taking into account the diffusion thermo (Dufour) and thermal 

diffusion (Soret) effects. Influence of viscous dissipation and radiation on unsteady MHD free convection flow 

past an infinite heated vertical plate in a porous medium with time – dependent suction studied by Israel – 

Cookey et al. [13]. Kinyanjui et al. [14] presented simultaneous heat and mass transfer in unsteady free 

convection flow with radiation absorption past an impulsively started infinite vertical porous plate subjected to a 

strong magnetic field. Li et al. [15] took an account of the thermal diffusion and diffusion thermo effects, to 

study the properties of the heat and mass transfer in a strongly endothermic chemical reaction system for a 
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porous medium. Lyubimova et al. [16] dealt with the numerical investigation of the influence of static and 

vibrational acceleration on the measurement of diffusion and Soret coefficients in binary mixtures, in low 

gravity conditions. Chamkha [17] studied Unsteady MHD convective heat and mass transfer past a semi – 

vertical permeable moving plate with heat absorption. Shivaiah and Anand Rao [18] investigated  Soret and 

Dufour effects on transient MHD flow past a semi- infinite vertical porous plate with chemical reaction.  

The object of the present paper is to study the thermo-diffusion on unsteady MHD natural convective 

flow past an infinite vertical plate in presence of heat absorption. The problem is governed by the system of 

coupled non – linear partial differential equations whose exact solutions are difficult to obtain, if possible. So, 

finite element method has been adopted for its solution, which is more economical from computational point of 

view. 
 

II. Mathematical Formulation 
An unsteady two – dimensional hydromagnetic laminar mixed convective boundary layer flow of a 

viscous, incompressible, electrically conducting and chemically reacting fluid in an optically thin environment, 

past a semi – infinite vertical permeable moving plate embedded in a uniform porous medium, in the presence of 

thermal radiation is considered. Th x axis is taken in the upward direction along the plate and y axis 

normal to it. The physical model and coordinate system are shown in figure (a). A uniform magnetic field is 

applied in the direction perpendicular to the plate. The transverse applied magnetic field and magnetic Reynolds 

number are assumed to be very small, so that the induced magnetic field is negligible. Also, it is assumed that 

the there is no applied voltage, so that the electric field is absent. The concentration of the diffusing species in 

the binary mixture is assumed to be very small in comparison with the other chemical species which are present, 

and hence the Soret and Dufour effects are negligible. Further due to the semi – infinite plane surface 

assumption, the flow variables are functions of normal distance y  and t  only. Now, under the usual 

Boussinesq’s approximation, the governing boundary layer equations are: 

Continuity equation: 
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Momentum equation: 
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Energy Equation: 
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Concentration Equation: 
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The boundary conditions for the velocity, temperature and concentration fields are: 
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Figure a. Physical model and coordinate system 
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From equation (1) it is clear that the suction velocity at the plate is either a constant or function of time only. 

Hence the suction velocity normal to the plate is assumed in the form 

)1( tn

O AeVv

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(6)
 

Where 1A . Here 
OV is mean suction velocity, which are a non – zero positive constant and the minus sign 

indicates that the suction is towards the plate. 

Outside the boundary layer, equation (2) gives 
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In order to write the governing equations and the boundary conditions in dimensionless form, the following non 

dimensional quantities are introduced. 
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In view of equations (5), (6), (7) and (8), equations (2), (3) and (4) reduce to the following dimensionless form: 
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The corresponding dimensionless boundary conditions are:  











 



asUu

ateeUu ntnt

p

0,0,

01,1,

                                                                              
(12) 

The mathematical formulation of the problem is now completed. Equations (9) – (11) are coupled non 

– linear systems of partial differential equations, and are to be solved by using the initial and boundary 

conditions given in equation (12). However, exact solutions are difficult if possible. Hence these equations are 

solved by finite element method. All the physical parameters are defined in the nomenclature. 

It is now important to calculate the physical quantities of primary interest, which are the local wall 

shear stress, the local surface heat and mass flux. Given the velocity field in the boundary layer, we can now 

calculate the local wall shear stress (i.e., skin – friction) is given by and in dimensionless form, we obtain 

Knowing the temperature field, it is interesting to study the effect of the free convection and radiation on the 

rate of heat transfer. This is given by which is written in dimensionless form as 
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The dimensionless local surface heat flux (i.e., Nusselt number) is obtained as  
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The definition of the local mass flux and the local Sherwood number are respectively given by with the help of 

these equations, one can write 
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Where 


xU
R o

ex


  is the Reynold’s number. 

 

III. Method of Solution 
The finite element method has been implemented to obtain numerical solutions of equations (9) – (11) 

under boundary conditions (12). This technique is extremely efficient and allows robust solutions of complex 

coupled, nonlinear multiple degree differential equation systems. The fundamental steps comprising the method 

are now summarized. An excellent description of finite element formulations is available in Bathe [19] and 

Reddy [20]. 

 

Step – 1: Discretization of the Domain into Elements 

The whole domain is divided into finite number of “sub – domains”, a process known as Discretization 

of the domain. Each sub – domain is termed a “finite element”. The collection of elements is designated the 

“finite element mesh”. 

 

Step – 2: Derivation of the element Equations 

The derivation of finite element equations .,.ei  algebraic equations among the unknown parameters of the finite 

element approximation, involves the following three steps. 

a. Construct the variational formulation of the differential equation. 

b. Assume the form of the approximate solution over a typical finite element. 

c. Derive the finite element equations by substituting the approximate solution into variational formulation. 

These steps results in a matrix equation of the form     eee FuK  , which defines the finite element model 

of the original equation. 

 

Step – 3: Assembly of Element Equations 

The algebraic equations so obtained are assembled by imposing the “inter – element” continuity 

conditions. This yields a large number of algebraic equations constituting the “global finite element model”, 

which governs the whole flow domain. 

 

Step – 4: Impositions of Boundary Conditions 

The physical boundary conditions defined in (12) are imposed on the assembled equations 

 

Step – 5: Solution of the Assembled Equations 

The final matrix equation can be solved by a direct or indirect (iterative) method. For computational 

purposes, the coordinate   is varied from 0  to 6max  , where max  represents infinity .,.ei external to the 

momentum, energy and concentration boundary layers. The whole domain is divided into a set of 40  intervals 

of equal length 1.0 . At each node 3   functions are to be evaluated. Hence after assembly of the elements we 

obtain a set of 123 equations. The system of equations after assembly of elements, are non – linear and 

consequently an iterative scheme is employed to solve the matrix system, which are solved using the Gauss 

Elimination method maintaining an accuracy of 0005.0 . 

 

IV. Results and discussions 
The formulation of the problem that accounts for the thermo-diffusion on unsteady MHD natural 

convective flow past an infinite vertical plate in presence of heat absorption is performed in the preceding 

sections. The governing equations of the flow field are solved numerically by using a finite element method.  

The above-presented equations enable us to carry out numerical computations. The following parameter 

values are adopted for computations unless otherwise indicated in the figures and table

,0.1,7.0Pr,5.0,0.0,0.1,0.2  SKMGcGr

0.1,1.0,2.0,5.0,5.0,6.0  tandnAUSc p   The boundary 

conditions for   are replaced by those at 
max  where the value of 

max  is sufficiently large, so 
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that the velocity at 
max  is equal to the relevant free stream velocity. We choose 6max  . To 

assess the accuracy of the present method, comparisons between the present results and previously published 

data Chamkha [17], Table 1 shows the comparison between values of skin- friction coefficient ,  Nusselt 

number Nu  and Sherwood number Sh  on Gc . In fact, this results show an excellent agreement. 

 

 
Figure 1. Effect of Gr on velocity profiles            Figure 2. Effect of Gc on velocity profiles 

 

Figures (1) and (2) exhibit the effect of thermal Grashof number and solutal Grashof numbers on the 

velocity profile with other parameters are fixed. The Grashof number signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in the boundary layer. As expected, it is observed that there 

is a rise in the velocity due to the enhancement of thermal buoyancy force. Also, as Gr  increases, the peak 

values of the velocity increases rapidly near the porous plate and then decays smoothly to the free stream 

velocity. The solutal Grashof number defines the ratio of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity increases and the peak value is more distinctive due to 

increase in the species buoyancy force. The velocity distribution attains a distinctive maximum value in the 

vicinity of the plate and then decreases properly to approach the free stream value. It is noticed that the velocity 

increases with increasing values of the solutal Grashof number. Figures (3) and (4) illustrate the influence of 

Heat absorption parameter on the velocity and temperature at t = 1.0 respectively. Physically speaking, the 

presence of heat absorption (thermal sink) effects has the tendency to reduce the fluid temperature. This causes 

the thermal buoyancy effects to decrease resulting in a net reduction in the fluid velocity. These behaviors are 

clearly obvious from figures (3) and (4) in which both the velocity and temperature distributions decrease as S 

increases. It is also observed that the both the hydrodynamic (velocity) and the thermal (temperature) boundary 

layers decrease as the heat absorption effects increase. 

 

 
Figure 3. Effect of S on velocity profiles        Figure 4. Effect of S on temperature profiles 
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Figure 5. Effect of Sc on velocity profiles     Figure 6. Effect of Sc on concentration profiles 

 

The effect of Schmidt number Sc on the velocity and concentration are shown in figures  (5) and (6). 

As the Schmidt number increases, the velocity and concentration decreases. This causes the concentration 

buoyancy effects to decrease yielding a reduction in the fluid velocity. Reductions in the velocity and 

concentration distributions are accompanied by simultaneous reductions in the velocity and concentration 

boundary layers. Figures (7) and (8) depict the Velocity and Concentration profiles for different values of the 

Soret number Sr. The Soret number Sr defines the effect of the temperature gradients inducing significant mass 

diffusion effects. It is noticed that an increase in the Soret number results in an increase in the velocity and 

concentration within the boundary layer.  

 

 
Figure 7. Effect of Sr on velocity profiles        Figure 8. Effect of Sr on concentration profiles 

 

Table 1. Effects of Gr  on Skin – friction, Nusselt number and Sherwood number when 0Sr . 
 Present results Previous results Chamka [17] 

Gc    Nu  Sh    Nu  Sh  

0.0 2.7200 – 1 .7167 – 0 .8098 2.7200 – 1 .7167 – 0 .8098 

1.0 3.2772 – 1 .7167 – 0 .8098 3.2772 – 1 .7167 – 0 .8098 

2.0 3.8343 – 1 .7167 – 0 .8098 3.8343 – 1 .7167 – 0 .8098 

3.0 4.3915 – 1 .7167 – 0 .8098 4.3915 – 1 .7167 – 0 .8098 

4.0 4.9487 – 1 .7167 – 0 .8098 4.9487 – 1 .7167 – 0 .8098 

 

Table 1 depict the effects of the solutal Grashof number on the skin-friction coefficient   , Nusselt 

number Nu  and the Sherwood number Sh . It is observed from these tables that as Gc  increases, the skin-

friction coefficient increases whereas the Nusselt and Sherwood numbers remain unchanged.  

 

V. Conclusions 

This paper considered thermo-diffusion on unsteady MHD natural convective flow past an infinite 

vertical plate in presence of heat absorption. The governing equations were non-dimensionalized and 

transformed into a non-similar form. The transformed equations were solved numerically using a finite element 

method. A representative set of the obtained results for the velocity, temperature, and concentration profiles was 

reported graphically for various parametric conditions. The skin-friction coefficient, Nusselt number and the 

Sherwood number was presented in tabular form. The conclusions of the study are as follows: 
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1. The velocity increases with the increase thermal Grashof number and solutal Grashof number. 

2. Increasing the heat absorption parameter substantially decreases the velocity and the temperature. 

3. The velocity as well as concentration decreases with an increase in the Schmidt number. 

4. An increase in the Soret number leads to increase in the velocity and concentration. 
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Nomenclature: 

A  Suction parameter 

T   Dimensionless temperature 


wT  Wall temperature 


T  Reference temperature 

U        Dimensional free stream velocity 

t  Dimensional time 

g  Acceleration due to gravity 

k  Dimensional porosity parameter 

),( vu 
 
Dimensional velocity components 
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),( yx  Dimensional Cartesian coordinates 

pC  Specific heat capacity 

  M  Magnetic parameter 

Pr  Prandtl number 

Gr  Thermal Grashof number 

Gc     Solutal Grashof number 

Sc  Schmidt number 

Sr  Soret number 

D  Chemical diffusivity 

mD  Molecular diffusivity 

sC  Concentration susceptibility 

Tk  Mean absorption coefficient 

C   Concentration 

wC  Concentration near the plate 


C  Concentration in the fluid far  

            away from the plate 

0U  Mean velocity of   tU 
 

oB  Magnetic field 

oS
 

Non dimensional Heat source  

S  Heat source parameter 

 mT
 

Fluid mean temperature 

 
pu 
 

Plate velocity 

n  Dimensional free stream  

 U
 

Free stream velocity 

K
        

Permeability parameter 

Nu
      

Nusselt number 

Sh
 

Sherwood number 

Greek symbols 

  Small positive parameter 

  Coefficient of Volume expansion  

*  Volumetric coefficient of 

            expansion with concentration 

v   Kinematic viscosity 

  Electrical conductivity 

  Fluid density 

  Temperature of a fluid 

  Concentration of a fluid 

        Skin – friction coefficient 

 

 


