
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. VI (Sep. - Oct.2016), PP 59-69 

www.iosrjournals.org 

DOI: 10.9790/5728-1205065969                                             www.iosrjournals.org                                 59 | Page 

 

Homotopy Perturbation Method for Solving Nonlinear Partial 

Differential Equations 
 

M. Tahmina Akter
1
 and M.A. Mansur Chowdhury

2
 

1
Department of Mathematics, Chittagong University of Engineering & Technology, Chittagong-4349, 

Bangladesh. 
1,2

Jamal Nazrul Islam Research Center for Mathematical and Physical Sciences (JNIRCMPS),University of 

Chittagong, Chittagong-4331, Bangladesh. 

 

Abstract: Homotopy Perturbation Method (HPM) is an elegant and powerful method to solve linear and 

nonlinear partial differential equations. As we know to get an exact solution of nonlinear partial differential 

equation is very difficult, so any kind of perturbative approach is acceptable depending on its criteria. 

Homotopy Perturbation Method provides an analytical solution by using the initial conditions. It is interesting 

to note that only a few terms are required to obtain a most accurate approximate solution. In this paper we have 

applied this technique and got most accurate result considering only four terms. A graphical representation of 

the result has been shown which provides us the most accurate physical situation and accuracy of the solution. 

The HPM allows us to find the solution of the nonlinear partial differential equations which will be calculated 

in the form of a series with easily computable components. From the calculation and its graphical 

representation it is clear that how the solution of the original equation and its behavior depends on the initial 

conditions. 
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I. Introduction 
The homotopy perturbation method was introduced by the Chinese researcher Dr. Ji Huan HE in 1998 

[1,2,3,4,5,6,7]. Recently this method became popular and acceptable as an elegant tool in the hands of 

researchers because of its simplicity and give rise highly effective solutions of complicated problems in many 

diverse areas of science and technology. Many physical problems can be described by mathematical models that 

involve partial differential equations. In other words, a mathematical model is a simplified description of 

physical reality. The behavior of each model is governed by the input data for the particular problem: the 

boundary or initial conditions, the coefficient functions of the partial differential equation and the forcing 

function. This input data cause the solution of the model problem to possess highly localized properties in space 

in time or in both. Thus, the investigation of the exact or approximate solution helps us to understand the means 

of these mathematical models and the real physical significance can be understood from the graphical 

representation of the solution. The main goal of this paper is to apply the Homotopy Perturbation Method 

(HPM) to obtain an approximate solution of some nonlinear partial differential equations with initial conditions. 

The perturbation technique is one of the analytical methods to solve non-linear differential equations. 

This technique is widely used by engineers to solve some practical problems. Most often we obtain many 

interesting and important results by using this technique. However, the perturbation methods have their own 

limitations. Firstly, all perturbation techniques are based on small or large parameters so that at least one 

unknown must be expressed in a series of small parameters. But unfortunately, not every non-linear differential 

equation has such a small parameter. Secondly, even if there exists such a parameter, the results given by 

perturbation methods are valid, in most cases, only for the small values of the parameter. Mostly, the simplified 

linear equations have different properties from the original non-linear differential equation and sometimes some 

initial or boundary conditions are superfluous for the simplified linear equations. As a result, the corresponding 

initial approximations are perhaps far from exact. Clearly, these limitations of perturbations techniques come 

from the small parameter assumption. So it seems necessary to develop a kind of new non-linear analytical 

method which does not require small parameters at all. Ji Huan He has described a non-linear analytical 

technique which does not require small parameters and thus can be applied to solve non-linear problems without 

small or large parameters. This technique is based on homotopy, which is an important part of topology. Using 

one interesting property of homotopy, one can transform any non-linear problem into an infinite number of 

linear problems, no matter whether or not there exists a small or large parameter. 

To illustrate the general procedure let us consider a general nonlinear  partial differential equation of the form  

)xx,x,t,F(x,t uuuu                               T)(0,),(t)(x,  ba                                                              (1.1) 
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With the initial condition 

)(
0

)0,( xfuxu                                         ),(x ba  

Where f  is a function of variables and F is a function of differential operators and variables. This type 

of operator equations can be solved using approximate analytical schemes such as Adomian Decomposition 

Method (ADM), Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM) and Homotopy 

Analysis Method (HAM), tanh-expansion method. These schemes generate an infinite series of solutions and do 

not have the problem of rounding error. The solution obtained by using these methods shows the applicability, 

accuracy and efficiency in solving a large class of nonlinear equations in physics, engineering and various 

branches of mathematics.  

Our paper is organized as follows .In section II we have Generalized HE'S Homotopy Perturbation 

Method (HPM). In section III we have applied HPM for obtaining analytical approximate or exact solution of  

three different types of partial differential equations with initial conditions. In section IV the graphical 

representation of each solution has also been  compared the approximate solution that we found for these 

problems with the exact solution. Finally, in section V the conclusion is provided. 

 

II. Generalized He's Homotopy Perturbation Method (Hpm) 
In this section we have illustrated the basic idea of HPM to apply in non-linear equations. Let us 

consider the following nonlinear differential equation of the form 

Ωr0,f(r) -A(u)                                                                                                                  (2.1) 

Subject to the boundary conditions: 

,Γr0,n)u/B(u,                                                                                                                                     (2.2) 

where A  is a general differential operator, B  a boundary operator, f(r) a known analytical function 

and   is the boundary of the domain   . In general one can divide the operator A into two parts: linear and 

non- linear. That means 

NLA      

where L  is linear and N  is non-linear. 

Hence, equation (2.1) can now be rewritten as   

 Ωr0,f(r) -N(u)L(u)                                                                                                                                (2.3) 

By the homotopy technique, one can construct a homotopy in the following way 

R[0,1]Ω:p)v(r,  which satisfies 

,Ωr1],[0,p0,f(r)]p[A(v))]0L(u[L(v)p)(1p)H(v,                                                                  (2.4) 

or      0f(r)]p[N(v))0pL(u)0L(uL(v)p)H(v,                                                                            (2.5) 

where [0,1]p   is an embedding parameter, 0u is an initial approximation of equation (1.1) which 

satisfies the boundary conditions. Obviously, from equations (2.4) and (2.5) we will have:   

  0)0L(uL(v)H(v,0)                                                                                                         (2.6) 

 0f(r)A(v)H(v,1)                                                                                                                       (2.7) 

The changing process of p  from zero to unity is just that of p)v(r, from (r)
0

u  to u(r) . In topology, this is 

called deformation and )0L(uL(v)  and f(r)A(v)  are called homotopy. According to the HPM, we can first 

use the embedding parameter p  as a "small parameter" and assume that the solution of equations (2.6) and (2.7) 

can be written as a power series in p  

...2v
2

p1pv0vv                                                                                                                   (2.8) 

Setting 1p   results in the approximate solution of equation (2.1):  

 ....2v1v0vv1plimu                                                                                          (2.9) 

The combination of the perturbation method and the homotopy method is called the homotopy 

perturbation method (HPM), which has eliminated the limitations of the traditional perturbation methods. On the 

other hand, this technique can have full advantage of the traditional perturbation techniques. The series (2.9) is 

convergent for most cases.  

However, the convergent rate depends on the nonlinear operator A(v) :  
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1. The second derivative of N(v) with respect to v  must be small because the parameter may be relatively 

large, i.e. 1.p    

2. The norm of vN/
1

L 


 must be smaller than one so that the series converges. 

According to above Homotopy perturbation method, we can write equation (1.1)  as 
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Or 

0
2

2

,,,,0)0(),( 






































x

v

x

v
vtxpF

t

u
p

t

u

t

v
pvH ,       ]1,0[p                                                    (2.11) 

Where ]1,0[p is an embedding parameter and 0u is the initial approximation of Equation (1.1) which 

satisfies the boundary conditions. It is obvious that when 1p then uv  and equation (2.10) becomes 

equation (1.1) 

Now for 0p   and 1p  equation (2.10) and (2.11) we will have the following form 

00)0,( 










t

u

t

v
vH                                                                                                                                     (2.12) 

  0,,,,)1,( 





xx
v

x
vvtxF

t

v
vH                                                                                                                 (2.13) 

According to the (HPM), we can first use the embedding parameter p as a small parameter and assume 

that the solutions of Equations (2.10) and (2.11) can be written as a power series in p: 







0i

i
pivv                                                                                                                                                      (2.14) 

by substituting ( 2.14) into (2.11 ) we have 
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setting  p = 1 we get the approximate solution of Equation (1.1) 

.................32101

lim



 vvvvv

p
u                                                                                                    (2.16) 

 

III. Solution Of Some Nonlinear Partial Differential Equations 
In this section we have applied the HPM for obtaining the analytical approximate solution of these 

Nonlinear different partial differential equations with the different initial conditions. 

 

Example 1   

Let us consider the wave-like equation [10] in the following form 

2
2

2
uu
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u
u
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













                                                                                                                                   (3.1) 

Now let us try to find the solution using HPM with the following initial condition: 

x
e 1u(x,0)                                                                                                                                                    (3.2) 

 Equation (3.1) is a nonlinear partial differential equation. So, in principle to get an exact solution is 

very difficult. However, here we can see that 

)(
1t)u(x,

tx
e


                                                                                                                                        (3.3) 

is an exact solution of (3.1) 

Now let us try to solve this equation using HPM  

In order to solve equation (3.1) using HPM, equation (2.11)  can be constructed as follows   
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Suppose the solution of (4.1) has the form 







0i

i
pivv                                                                                                                                                    (3.5) 

Substituting (3.5)  into equation (3.4) yields 
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Comparing coefficient of terms with identical powers of p leads to : 
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and so on. 

Solving equation (3.6) and using the initial condition we have 

00 
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The solution of which is 

 
 

Av 0                                                                                                                                                                 (3.10) 

Again using the initial conditions  at 0t   we get   

x
e1 0v                                                                                                                                                      (3.11) 

Using this solution we can find the solution of (3.7). That means (3.7) now becomes 
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The solution of which is 

x
te 1v   where initial condition has been used                                                                                             (3.12) 

 

Now, let us solve equation (3.8) using the solutions of  
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Integrating and using the initial conditions we get the solution of 
2

v as  

x
et

2

2

1
 2v                                                                                                                                                     (3.13) 

Our final step is to find the solution for  3v  from (3.9), using the solution 
0

v ,
1

v and 2v  in (3.9) we get,     
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Integrating and using the initial conditions we get the solution  

x
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Similarly following the above procedure we can find the other solutions. 

We have already mentioned in (2.16) that the approximate or exact solution of (3.1) is 

.................................................3210  vvvvvu  

 

Substituting the results that we obtained in 
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v ,
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which leads to the exact  solution 
tx

etxu


1),(                                                                                                                                              (4.16) 

 

We see that this approximate solution is exactly same as exact solution.   Hence, we can conclude that 

this HPM is a powerful method to get the most accurate result of nonlinear differential equation. However, these 

are cases where the approximate solution is not exactly match with the exact solution then how accuracy is 

maintained can be seen from the graphical representation of the solution and also the difference between exact 

and approximate solution. To understand this situation we are displaying a few graphs of the solution.  

 

Example 2 

To apply HPM in more complicated problem let us consider Fisher’s equation [11]   
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and try to find the solution with the following initial condition: 
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The properties of Fisher’s equation have been designed theoretically by many authors. The analysis of 

traveling wave solution of Fisher’s equation has been studied by many computational approaches. Traveling 

wave fronts have important applications in various fields of science and engineering. 

The exact solution of the problem (3.17) is given as 
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This equation states that the change of labeled particles at a given time depends on the infection rate 

)1(6 uu   and the diffusion in the neighboring area. 
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The term u6 measures the infection rate which is proportional to the product of the density of the 

infected and uninfected particles. The term
2

6u  shows how fast the infected particles are diffusing. The 

amplitude of the wave is proportional to 1.  

In order to solve equation (3.17) using HPM  a homotopy- perturbation method can be constructed as follows   
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Suppose the solution of (3.17) has the form 
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Substituting (3.21)  into equation (3.20) 
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and comparing coefficient of terms with identical powers of p, leads to : 
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Solving the above equations and using the initial condition we get  
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According to HPM we can write the solution of (4.17): 
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Setting 1p   the above equation becomes, 
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Then the approximate solution in a series form can be written as 
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This is the approximate solution of the Fisher’s non-linear partial differential equation (3.17). 

 

IV. Figures And Table 
Graphical Representation of The Solution (3.16) of Example 1 

To get a clear idea of the solution if we draw a few graphs taking some range of x values and t values 

we get three dimensional graphs. Similarly for a particular values of t and some range of  x values we get 2-

dimensional graphs. Some of the graphs obtained from solution (3.16) has been depicted below. 
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Figure 1: The surface of ),( txu for 

)100,100(t , )100,100(x  

1(a) Corresponding 2D figure 

for t=100 

1(b) Corresponding 2D figure for 

t=-100 
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Figure 2: The surface of ),( txu for 

)5,.0(t , )5,.0(x  

2 (a) Corresponding 2D figure for 

t=0 

2(b) Corresponding 2D figure 

for t=.5 
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Figure 3: The surface of 

),( txu for 

)10,10(t
,

)10,10(x
 

3 (a) Corresponding 2D figure for 

t=-10 

3 (b) Corresponding 2D figure for 

t=10 

 

Result and Discussion for Example 1: The graphs in Fig. 1,  2, 3 represent the solution of the given 

differential equation for different ranges of x and t values and corresponding two dimensional Fig. have been 

shown in 1(a), 1(b), 2(a), 2(b),3(a) and 3(b). We see that this approximate solution is exactly same as exact 

solution.   Hence, we can conclude that this HPM is a powerful method to get the most accurate result of 

nonlinear differential equation. However, these are cases where the approximate solution is not exactly match 

with the exact solution then how accuracy is maintained can be seen from the graphical representation of the 

solution and also the difference between exact and approximate solution. To understand this situation we are 

displaying a few graphs of the solution.  

 

Graphical Representation of the Solution (3.17) of The Example 2 

The computed results are presented graphically by three dimensional and corresponding two 

dimensional graphs for 1c . The surfaces are drawn for  different ranges of variables but the two dimensional 

figures are drawn for a fixed value of t. 
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Figure 4 : The surface of ),( txu for 

)5,.5.(t , )5,.5.(x  

4(a)Corresponding 2D figure 

for  t= - 0.5 

4(b) Corresponding 2D figure for 

t=  0.5 
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Figure 5:The surface of 

),( txu for )8,8(t , )8,8(x  

5(a) Corresponding 2D figure 

for t= - 8 

5(b) Corresponding 2D figure for 

t= 8 
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Figure 6: The surface of ),( txu for 

)50,100(),50,100(  xt  

6(a) Corresponding 2D figure for 

t=50 

6(b) Corresponding 2D figure for 

t=-100 
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Figure 7 : The surface of 

),( txu for )100,100(),100,100(  xt  

7(a) Corresponding 2D figure 

for t=100 

7(b) Corresponding 2D figure for 

 t= - 100 

 

 

400 200 200 400 600 800 1000
x

1

1

2

u x, t

 

400 200 200 400 600 800 1000
x

1

1

2

u x, t

 

Figure 8 :The surface of ),( txu for 

)1000,500(),1000,500(  xt  

8(a) Corresponding 2D figure for 

t= - 500 

8(b) Corresponding 2D figure 

for t= 1000 

 
Figure 9 : The absolute error )100,100(t  and )100,100(x  
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Figure 10: The curves of Exact solution ),( txExactU and the approximate solution ),( txHPMU  for 

04.0t and )20,20(x  respectively. 

 

Table 1: comparison of approximate and exact solution at 04.t  for example 2. 
x Approximate Exact Error 

0 3.04073 10-1 3.02317 10-1 1.75591 10-3  

1 9.63639 10-2 9.61158 10-2 2.48068 10-4 

2 2.01296 10-2 2.01217 10-2 7.90735 10-6 
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3 3.28473 10-3 3.28606 10-3 1.32711 10-6 

4 4.78478 10-4 4.7879 10-4 3.12095 10-7 

5 6.65788 10-5 6.66276 10-5 4.88045 10-8 

6 9.10391 10-6 9.11084 10-6 6.92829 10-9 

7 1.23678 10-6 1.23774 10-6 9.53647 10-10 

8 1.67615 10-7 1.67745 10-7 1.29857 10-10 

9 2.2696 10-8 2.27136 10-8 1.7613 10-11 

10 3.07215 10-9 3.07454 10-9 2.38571 10-12 

 

Result and Discussion for the Example 2 

The approximate results are presented graphically for various ranges of variables x and t in Fig. 4,5,6,7 

and 8 and also have been shown corresponding two dimensional in Fig. 4(a), 4(b),5(a), 5(b), 6(a),6(b), 7(a), 7(b) 

and 8(a),8(b) for  fixed values of t. Fig. 9 shows the absolute error for )100,100(x  and )100,100(t  by 

three dimensional graph. Table1 shows the  comparison between homotopy perturbation method and the exact 

solution for 04.t  and ]10,0[x .The errors are very very small in this table. It is clear from figure10 that the 

approximate solution and the exact solution are very close for the chosen values of t. The results provide very 

strong evidence that is the homotopy perturbation technique is easy to get approximate solution of nonlinear 

equation. It is to be noted that four terms only were used in evaluating the approximate solutions.   

 

V. Conclusion 

In this paper we have successfully developed HPM for solving nonlinear different types of partial 

differential equations with different types of initial conditions. It is clearly seen that HPM is a very powerful and 

efficient technique for finding solutions for wide classes of nonlinear partial differential equations in the form of 

analytical expressions. One of the importance advantages of the HPM is that it solves the nonlinear equations 

without any need for discretization, perturbation, transformation or linearization. The results of the numerical 

examples are presented to observe highly accuracy of the solution by HPM. It was demonstrated that the HPM is 

highly accurate and is a effective tool for solution of nonlinear partial differential equations. 
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