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Abstract: In this paper we consider prime graph of R (denoted by 𝑃𝐺 𝑅 ) of an associative ring R (introduced 

by Satyanarayana, Syam Prasad and Nagaraju [22]).  We also consider zero divisor graph of a finite 

associative ring R (denoted by 𝑍𝐷𝐺 𝑅 ). It is proved that every prime graph is a subgraph of the zero divisor 

graph but the converse need not be true.  An example of a ring for which PG(R) ≠ ZDG(R) was presented.  
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I. Introduction 

 

Let G = (V, E) be a graph consist of a finite non-empty set V of vertices and finite set E of edges such 

that each edge ek is identified as an unordered pair of vertices {vi, vj}, where ,i jv v are called end points of ek . 

The edge ek is also denoted by either i jv v or 
i jv v .  We also write 𝐺 𝑉, 𝐸 for the graph.  Vertex set and edge 

set of G are also denoted by 𝑉 𝐺  and 𝐸 𝐺 respectively.  An edge associated with a vertex pair {vi, vi} is called 

a self-loop.  The number of edges associated with the vertex is the degree of the vertex, and (v) denotes the 

degree of the vertex v.  If there is more than one edge associated with a given pair of vertices, then these edges 

are called parallel edges or multiple edges.  A graph that does not have self-loop or parallel edges is called a 

simple graph.  We consider simple graphs only.  For an associative ring R, prime graph ofR(denoted by 𝑃𝐺 𝑅 ) 

was introduced in Satyanarayana, Syam Prasad and Nagaraju [22].For a commutative ring R, the notion of „zero 

divisor graph‟ is given in Beck [1988].  In this paper, we consider the associative rings (need not be 

commutative) and provided some examples on the zero divisor graphs of Zn where n is a positive integer.    

 

1.2 Definitions: 

 

(i) A graph G (V, E) is said to be a star graph if there exists a fixed vertex v (called the center of the star graph 

)such that E = {vu / u  V and u  v}.  A star graph is said to be an n-star graph if the number of vertices of 

the graph is n. 

 

(ii) In a graph G, a subset S of V(G) is said to be a dominating set if every vertex not in S has a neighbour in S.  

The domination number, denoted by (G) is defined as min {|S| / S is a dominating set in G}.  

 

(iii) In a connected graph, a closed walk running through every vertex of G exactly once (except the starting 

vertex at which the walk terminates) is called as Hamiltonian circuit.  A graph containing a Hamiltonian circuit 

is called as Hamiltonian graph.  

 

1.3 Theorem:  (Th. 13.8, page 361, [18]) A given connected graph G is an Eulerian graph if and only if all 

the vertices of G are of even degree. 

For other preliminary results and notations we use [18], [20] or [21] 
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II. Prime Graph of a Ring 
2.1 Definition: (Satyanarayana, Syam Prasad and Nagaraju [22]) Let R be an associative ring. A graph G(V, E) 

is said to be a prime graph of R (denoted by PG(R))  if  V = R and E = { xy   /  xRy = 0 or yRx  = 0, and x   y}. 

 

For convenience of the reader we included the following example. 

 

2.2Example (Example 9.4.2 of Satyanarayana and Syam Prasad [20]):Considerℤ𝑛 , the ring of integersmodulo n. 

(i) Let us construct the graph PG(R), where R = ℤ 3.  We know that      R = ℤ 3 = {0, 1, 2}.  So V(PG(R)) = {0, 1, 

2}.  Since 0R1 = 0, 0R2 = 0 there exists an edge between 0 and 1, and also an edge between 0 and 2.  There are 

no other edges, as there are no two non-zero elements x, y  R with xRy = 0.  So  E(PG(R)) = { 01, 02 }.  Now 

PG(R) is given in Figure 2.2 (i). 

 

 

 

 

 

 

 

 

 

(ii) Let us construct the graph PG(R), where R = ℤ 4.  We know that   R = ℤ 4 = {0, 1, 2, 3}.  So V(PG(R)) = {0, 

1, 2, 3}.  Since 0R1 = 0, 0R2 = 0, 0R3 = 0, we have that 01, 02, 03 E(PG(R)).  There are no other edges, as 

there are no two distinct non-zero elements x, y  R such that xRy = 0.  So E(PG(R)) = { 01, 02, 03 }.  Now 

PG(R) is given in Figure 2.2 (ii). 

 

 

 

 

 

 

 

 

 

 

III. Zero Divisor Graph of an Associative Ring 

 
In this section, we wish to studyzero divisor graph of an associative ring 

3.1 Definition: (Vasantha kandasamy and Florentin Smarandache [23])A graph   EVG ,  is said to be the 

zero divisor graph of a commutative ring R if  RV   and      E =

 / , , , 0 , 0xy x y x y R x y xy      0 / 0x x R    where xy  denotes an edge between

x, y V . 

This definition „zero divisor graph‟ is same as that of Beck [1988]. 

 

3.2 Notation: (i) We denote zero divisor graph of ring R by ZDG(R) 

(ii)  In the graph ZDG(R), we have that    RRZDGV  and  

  RZDGE = 0,0,,,/  xyyxRyxyxxy  0 / 0x x R    

 

3.3 Example:(Vasantha kandasamy and Florentin Smarandache [23]) 

Consider nZ  , the ring of integers modulo n. 

Consider ZDG(R) with 10ZR   .  We know that  9,...,3,2,1,010  ZR , 

0 

 

  

1 2 

 

3 

PG(R) = PG(ℤ4) 

Fig. 2.2 (ii) 

0 

 

  

1 2 

PG(R) = PG(ℤ3) 

Fig. 2.2 (i) 
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So     9,8,7,6,5,4,3,2,1,0RZDGV . Since 06.54.58.5  (mod 10), there exist edges between the 

vertices 5 and 8; 5 and 4; also between 5 and 6. Since „0‟ is adjacent to all the elements in R, we get

 01,02,03,04,05,06,07,08,09 ( )E ZDG R .  

Therefore,    E ZDG(R) 01,02,03,04,05,06,07,08,09,25,58,54,56 .  

Now ZDG(R)given by the figure 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Observations: (i) ZDG( 10Z ) contains 10-star graph as its subgraph;(ii) The domination number is 1; (iii) 

Since 02    , 25    ,  50      forms a triangle, we conclude that the graph cannot be a bipartite graph;  (iv) ZDG( 10Z ) is 

not an Eulerian graph (by using the Th. 13.8, p 361 of [18]); and (v) Since ZDG( 10Z )  contains pendent 

vertices, it contains no Hamiltonian circuit.        

The following definition is an extension of the concept “ zero divisor graph” to Associative rings. 

 

3.5 Definition:  Consider an associative ring R(need not be commutative) with identity 1. The zero divisor 

graph (in notation, ZDG(R)) is defined as 𝑉 𝑍𝐷𝐺 𝑅  = R and 𝐸 𝑍𝐷𝐺 𝑅  =  𝑎𝑏    / 𝑎, 𝑏 ∈ 𝑅, 𝑒𝑖𝑡𝑕𝑒𝑟 𝑎𝑏 =

0 𝑜𝑟 𝑏𝑎=0,  𝑎≠𝑏 
3.6 Note: In case of commutative rings, the above concept coincides with the zero divisor graph defined in 

commutative rings by Beck [1] 

 

3.7 Theorem:  For an associative ring R we have that 𝑃𝐺 𝑅  𝑖𝑠 𝑎 𝑠𝑢𝑏𝑔𝑟𝑎𝑝𝑕 𝑜𝑓 𝑍𝐷𝐺 𝑅 . 

Proof: We know that 𝑉 𝑃𝐺 𝑅  = R = 𝑉 𝑍𝐷𝐺 𝑅  . 

Let 𝑢𝑣    ∈ E(𝑃𝐺 𝑅 ).  Then 𝑢𝑅𝑣 = 0 𝑜𝑟 𝑣𝑅𝑢 = 0.  Since 1∈ R we have that either            𝑢𝑣 = 0 𝑜𝑟 𝑣𝑢 = 0.  
By definition 3.5 we have that 𝑢𝑣    ∈ E(𝑍𝐷𝐺 𝑅 .  This shows that PG(R) is a subgraph of ZDG(R). 

 

3.8 Corollary:  If R is a commutative ring then PG(R) = ZDG(R). 

Proof:  Let 𝑣𝑢    ∈ E(𝑍𝐷𝐺 𝑅 with 𝑢, 𝑣 ∈ 𝑉 𝑍𝐷𝐺 𝑅   = R.  Then 𝑣𝑢 = 0 or 𝑢𝑣 = 0.  Suppose  that 𝑣𝑢 = 0.This 

implies 𝑣𝑢𝑥 = 0 for all 𝑥 ∈ 𝑅.  Since R is commutative 𝑣𝑥𝑢 = 0 for 𝑥 ∈ 𝑅 and so 𝑣𝑅𝑢 = 0.  This shows that 

𝑣𝑢    ∈ E(𝑃𝐺 𝑅 ).  Hence ZDG(R) is a subgraph of PG(R).                                 

By theorem 3.7 we have that PG(R) = ZDG(R).  

 

3.9 Remark:  In case of associative ring which is not commutative, the converse of the  theorem 3.7 need not be 

true.  This was made clear by the example presented in the next section.  

 

IV. An Example 
In this section, we present an example of an associative ring for which PG(R) ≠ ZDG(R). 

4.1 Example:  Let F =Ζ2be the field of integers modulo 2.  Write R = Set of 3 × 3  matrices over the field F. 

We know that R is an associative ring with respect to usual matrix addition and multiplication. Consider the two 

elements 𝑥, 𝑦 ∈ 𝑅mentioned below   
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Since 𝑥𝑦 = 0 and 𝑥 ≠ 𝑦 we conclude that𝑥𝑦   ∈ 𝐸 𝑍𝐷𝐺(𝑅) .   

Consider



















111

111

111

z ∈ 𝑅. 

Now 𝑥𝑧𝑦 =  
0 0 1
0 0 0
0 0 0

  
1 1 1
1 1 1
1 1 1

  
0 0 0
1 0 0
0 0 0

 =  
1 0 0
0 0 0
0 0 0

 ≠ 0Since0 ≠ 𝑥𝑧𝑦 ∈ 𝑥𝑅𝑦, we have that 𝑥𝑅𝑦 ≠ 0.   

Also 𝑦𝑧𝑥 =  
0 0 0
1 0 0
0 0 0

  
1 1 1
1 1 1
1 1 1

  
0 0 1
0 0 0
0 0 0

 =  
0 0 0
0 0 1
0 0 0

 ≠ 0Since 0 ≠ 𝑦𝑧𝑥 ∈ 𝑦𝑅𝑥, we have that 𝑦𝑅𝑥 ≠ 0 

Since  𝑥𝑅𝑦 ≠ 0 and 𝑦𝑅𝑥 ≠ 0,  we have that 𝑥𝑦    ∉ 𝐸 𝑃𝐺 𝑅   

Hence 𝐸 𝑍𝐷𝐺 𝑅  ⊈ 𝐸 𝑃𝐺 𝑅  . 

Thus we verified that for the ring of 3 × 3 matrices over Ζ2, the two graphs: prime graph and zero divisor graph 

are not equal. 
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