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Abstract: Interval estimation and hypothesis testing for the difference between two quantiles are investigated, 

using simulation, in this article. The underlying distributions that will be considered are the Weibull and Burr-

Type-X.  The estimation procedures will be based on the generalized confidence interval procedure, while the 

hypothesis testing will be based on the generalized p-values procedure. Simulation will be carried to check on 

the accuracy of both procedures.  

 

I. Introduction 

A statistical comparison between two populations based on their mean, variances or proportions is a 

common practice in the literature. This is carried out to check on the superiority of one population over the 

other. In this article we will make such a comparison between two populations based on their quantiles. In 

probability and statistics, the quantile function of the probability distribution of a random variable specifies, for 

a given probability, the value which the random variable will be at, or below, with that probability. A 

comparison between two quantiles for the Normal and Exponential distributions had been done; see Guo and 

Krishnamoorthy, (2005). The quantile function is one way of prescribing a probability distribution. It is an 

alternative to the probability density or mass function, to the cumulative distribution function, and to the 

characteristic function. The quantile function of a probability distribution is the inverseF
 −1

 of its cumulative 

distribution function (cdf) F. Assuming a continuous and strictly monotonic distribution function, the quartile 

function returns the value below, which the random variable drawn from the given distribution would fall  

p×100 percent of the time. That is, it returns the value of x such that 

 

        (1.1) 

 

If the probability distribution is discrete rather than continuous then there may be gaps between values in the 

domain of its cdf, while if the cdf is only weakly monotonic there may be "flat spots" in its range. In either case, 

the quantile function is 

 

,                (1.2) 

 

for a probability 0 < p < 1, and the quantile function returns the minimum value of x for which the previous 

probability statement holds. The Q(p), or p , (Hogg and Craig, 1995) is the quantile of order p, and thus  
0.5  

is the median of the distribution. 

Consider two independent random variables X and Y. Let px  and py  denote the p
th

quantile of X and Y 

respectively. That is, 

 

px = inf{x: P(X   x)  p}   and    py = inf{y: P(Y  y)  p}.          (1.3) 

 

The problem of interest here is to make a statistical inference about px - py based on samples of sizes m and n 

observations on X and Y, respectively. 

In this article, we used simulation for comparing the quantiles of Burr–Type-X, and the quantiles of 

Weibull distributions. The generalized p-value has been introduced by Tsui and Weerahandi (1989), and the 

generalized confidence interval by Weerahandi (1993). Using this approach, we will give an inferential 

procedure for the difference between two Burr-Type-X quantiles in the following section. The performance of 

the procedure will be evaluated numerically through simulation. In Section 3 we present the weibulldistribution 

sand the derivation of its quantiles for different values of the involved parameters. In section 4 we present the 

simulation results on the difference for px - py , when the underlying distributions are taken to be Burr-Type-X 

and Weibull with different parameters. Section 5 will contain the conclusions and recommendations. 
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II. Burr-Type-X Distribution 
Burr (1942) introduced 12 different forms of cumulative distribution functions for modeling lifetime 

data, or survival data. Out of those 12 distributions, Burr-Type-X and Burr-Type-XII have received the 

maximum attention.  Several authors have considered different aspects of these two distributions.  In this article 

we will present the generalized inferential procedures for the difference between the quantiles of two Burr-

Type-X distributions.  It is to be noted that the probability density function (pdf) of the Burr-Type-X 

distribution is given as follows: 

 
2 2 1( ) 2 (1 ) , 0, 0.x xf x xe e x        (2.1) 

 

Moreover, for the one-parameter Burr –Type-X distribution, the cumulative distribution function F is given by 

 

 2( ) 1 exp( ) 0, 0.F x x x


      ,   (2.2) 

 

For any given 0 < p < 1, the pth quantile is the positive root of F(x) = p, i.e. 

 
2(1 exp( ))p x    , or    

 

1/ln[1/ (1 )]x p        (2.3) 

 

Thus if 
iX ~ f(x|

i ), i =1, 2, then the 
ip th quantile of 

iX  can be expressed as 

1/ln[1/ (1 )]i

i ip    ,   i = 1, 2.                      (2.4) 

Theorem 2.1 Let   X~ Burr-Type-X (  ), with pdf given by (2.1), then the random variable 

 
2

ln 1 xU e   will have the one-parameter exponential distribution with mean 1/  , i.e., U will 

have the following pdf 

 

/

, 0,

0, .

ue
u

h u

otherwise












       (2.5) 

Proof: 

By putting y = u(x) =
2

2

1
ln(1 ) ln

1

x

x
e

e




  


, we can see that 

x =  
1

ln ( )
1 y

w y
e




   (2.6) 

On differentiating (2.6) with respect to y, we have 

1/2'( ) { ln(1 )}
2(1 )

y
y

y

e
w y e

e


 


  


     (2.7) 

By using the transformation formula namely g(y) f(w(y)).|w’(y)|, we reach at the pdf of y as Given by 

 

g(y) = 
ye  

,   0 < , with 1/  . 

 

Thus the proof of Theorem 2.1 is complete. 

 

Theorem 2.2 Because i , i = 1, 2, are positive, testing 0 1 2 1 1 2: . :H vs H      is equivalent to 

 

0 2 1 1 2 1: / . : /H c vs H c     ,    (2.8) 
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where c =
1 2ln / lnp p , and i  I = 1, 2 as defined in Theorem 2.1. In the remaining of the article we will be 

referring to the means of the exponential distributions as cited in Theorem 2.1 above. 

 

Proof: 

From (2.4), we see that 
1 2   if and only if 

2 2

1 2  if and only if 
2 2

2 1   iff 

2 2
1 21 1e e     iff

2 2
1 2ln(1 ) ln(1 )e e     iff

2 2 1 1(1/ )ln (1/ )lnp p   iff

2 2 1 1( ) ln ( )lnp p   iff
2 1 1 2/ ln / lnp p   = c. In addition, we can easily see that the above test is 

equivalent to 

 

0 1 2 1 1 2: / : /H c vs H c     . 

 

Hence the proof for Theorem 2.2 is complete. 

 

Utilizing Theorems 2.1 and 2.2, we find that all we need is to generate samples from exponential distributions 

with parameters 
1  and 

2  respectively. Let 1,..., ii inX X be a sample from F(u|
i ), i = 1, 2.  Define

1

, 1,2
in

i ij

j

Y X i


  . Notice that 
1Y  and 

2Y are independent with
2

22 / ~
ii i nY   , i = 1, 2, and hence 

1 2/Y Y is 

distributed as a constant times an F random variable, (see Guo, and Krishnamoorthy (2005)). Thus it can be 

seen that the p-value for testing (2.8) is given by 

 

1 22 ,2 2 1 1 2
( / ( )),

n n
yP F cn n y                                                                 (2.9) 

 

where ,a bF  denotes the F distribution with a degrees of freedom for the numerator, and b degrees of freedom 

for the denominator. Thus the null hypothesis in (2.8) will be rejected   whenever this p-value is less than . 

To find the above p-value of the test, and due to the small degrees of freedom that are tabulated for the F-

Distribution, we chose to have small samples for the above cases with sizes (n1, n2) = (10, 15) and ( 15, 10 ) to 

go with the parameters values (2, 3) and (3, 5) respectively. The results of the simulation are tabulated in Table 

1. From Table 1, we have for Formula (2.9) the following values: 

 

2 1 1 2/ ( ),cn y n y for differentvaluesof c , for the first case we have: (n1, n2) = (10, 15), (2, 3) 

 

C =1  2 1 1 2/ ( )cn y n y  = 0.5705, and the p-value > 0.10,  

C =3     2 1 1 2/ ( )cn y n y  = 1.7115, and the p-value:  .05 < P < 0.10. 

Thus pending on the value of c, and on comparing the p-value to that of the level of significance, decision can 

be made on rejecting H0 or not. Similarly, 

2 1 1 2/ ( ),cn y n y for differentvaluesof c , for the second case we have   (n1, n2) = (15, 

10), (3, 5) 

 

C =1 2 1 1 2/ ( )cn y n y  = 0.4167, and the p-value > 0.10, 

 

C = 5    2 1 1 2/ ( )cn y n y  = 2.0835, and the p-value is almost 0.05. 

 

Again, pending on the value of c, and on comparing the p-value to that of the level of significance, decision can 

be made on rejecting H0 or not. 
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III. The Weibull Distribution 
A common application of the Weibull distribution is to model the lifetimes of components such as 

bearings, ceramics, capacitors, and dielectrics. The Weibull distribution, in model fitting, is a strong competitor 

to the gamma distribution. Both the gamma and Weibull distributions are skewed, but they are valuable 

distributions for model fitting.  Weibull distribution is commonly used as a model for life length because of the 

properties of its failure rate function
1( ) ( / )h x x   , when the pdf is given by: 

 

1 , , , 0,
( )

0, .

x

x e x
f x

otherwise



 
 







 

 



      (3.1) 

 

This failure rate function, for 1  , is a monotonically increasing function with no upper bound.  This property 

gives the edge for the Weibull distribution over the gamma distribution, where the failure rate function is 

always bounded by1/  , when the probability density function for the gamma distribution is 

 

1
/1

( ) ,
( )

yy e
g y

 

  


 

 
 
 




   y > 0; where
1

0
( ) ue u du


       (3.2) 

 

Another property that gives the edge for the Weibull distribution over the gamma distribution is by varying the 

values of   and  , a wide variety of curves can be generated. Because of this, the Weibull distribution can be 

made to fit a wide variety of data sets. 

 

In this paper we will consider the Weibull distribution with two parameters, namely and  , where   is the 

shape parameter while 
1/  is the scale parameter of the distribution. 

 

Based on the above form of the pdf for the Weibull distribution, the mean and the variance of the distribution 

are given as 

 

E(X) =
1/ (1 1/ )    , and V(x) =

21/ (1 2 / ) { (1 1/ )}             (3.3) 

 

We will use the notation X ~ Weibull ( ,  ) for the random variable X having a Weibull probability density 

function with parameters  and  , as shown above in (3.1).   We will also take the shape parameter as in Hogg 

and Tanis (1988) to be 1<  < 5. In addition, the cdf for the Weibull distribution given in (3.1) is 

 /( ) 1 exp xF x    , and thus the pth quantile is the solution of the equation F(x) = p, namely, 

 
1/[ ln{1/ (1 )}]p                          (3.4) 

 

Now, as it was the case in the Burr –Type-X, we have the following theorem. 

 

Theorem 3.1   If 1~ Weibull( , )X   as given in (3.1), then 

 

i)   U X    will have an exponential distribution with parameter
1 , i.e., 

 

1/

1

, 0,

0, ,

ue
u

h u

otherwise







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

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And      ii)   
2

2

1

2
~ m

mU



 

 

iii) Similarly, if
2~ Weibull( , )Y   , then V Y will have an exponential distribution with parameter

2 , 

i.e.        
2/

2

1
, 0

  

0, ,

ve v
g v

otherwise








 



 

iv)   
2

2

2

2
~ n

nV



, and 

 

 v)   
1

2

V

U




~ 2 ,2n mF . 

 

Proof: 

 

As it was in Theorem 2.1 above we can write y = u(x) = X
α
, and we can have X = Y

1/α 
= w(y). On 

differentiating with respect to y, we reach at  

 

  w’(y) = (1/α).y
(1-α)/α

.  

 

Henceg(y) = f(w(y)).|w’(y)| = (1/β1).e
-y/β

1, y = u(x) > 0; and 0 otherwise.  

 

Thus the proof of Theorem 3.1,  i).   For part ii), when Y = 2 /X  , we reach at w(y) = (βy/2)
1/α

. By 

differentiating with respect to y, we get w’(y) = (1/α).[(βy/2)
1/α-1

 ].(β/2). By substitution in g(y) = f(w(y)). 

|w’(y)|, we have 

/2 /2 1 /2

/2

1 1
( )

2 ( / 2) 2

y r y

r
g y e y e

r

      
 

. 

The above function is a pdf for a Chi-square with r = 2 degrees of freedom. Thus the random variable 

1

2mU



will have a Chi-Square distribution with 2m degrees of freedom, based on the sum of m independent Chi-square 

variables each with 2 degrees of freedom. Hence the proof of Theorem 3.1 part ii) is complete. 

 

Following the steps above, in the proof of Theorem 3.1 parts i) and ii), we see that part iii) and iv) follow 

verbatim. Therefore, the proofs for parts iii) and iv) are done. 

 

The proof for part v), of Theorem 3.1, follows by the definition of the F-Distribution. Hence the proof of 

Theorem 3.1 is complete. 

 

Theorem 3.2   From (3.4) and because i , i = 1, 2, are positive, testing 

0 1 2 1 1 2: . :H vs H      

is equivalent to 

 

0 1 2 1 1 2: / : /c vs H cH     , where c = 2ln(1 )p / 1ln(1 )p . 

 

Proof: The proof of Theorem 3.2 follows from the proof of Theorem 2.2. 

 

Under   
0H ,    

0

01

R V
W

R U



 ~ 2 ,2n mF  

The p-value for this test is 
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z = 2min [
0HP (W>w), 

0HP (W<w)] = 2min [1- F (w), F (w)], 

 

where w is the observed value of the test statistic W and F is the distribution function of W under 
0H .  The p-

value of this test indicates how strongly 
0H  is supported by the data. 

 

IV. The Simulation Set-Up 
There are two cases to consider. 

I. The underlying distribution is Burr-Type-X. The following values will be used for the simulation: 

 

A. p = 0.9 with  = ½, 1 and 2, and on using (2.4) we find the 90
th

 percentiles correspondingly are given by: 

1.28869, 1.51743, and 1.72329. 

 

B. p = 0.95 with  = ½, 1 and 2, and on using (2.4) we find the 95
th

 percentiles correspondingly are given by: 

1.52575, 1.73081, and 1.91733. 

 

II. The underlying distribution is Weibull. The following values will be used for the simulation: 

 

A. p = 0.9, with =1, and  = ½, 1 and 2, and on using (3.4) we find the 90
th

 percentiles correspondingly are 

given by: 5.30190, 2.30259, and 1.51743. 

B. p = 0.9, with = 2, and  = ½, 1 and 2, and on using (3.4) we find the 90
th

 percentiles correspondingly 

are given by: 21.20759, 4.60517, and 2.14597. 

C. p = 0.95 with   = 1, and  = ½, 1 and 2, and on using (3.4) we find the 95
th

 percentiles correspondingly 

are given by: 8.97441, 2.99573, and 1.73082. 

D. p = 0.95 with   = 2, and  = ½, 1 and 2, and on using (3.4) we find the 95
th

 percentiles correspondingly 

are given by: 35.89765, 5.99146, 2.44775. 

 

Table 2 below, is based on the simulation of an exponential distribution, since there is no software to generate 

the Burr-Type-X data, and then using the transformation 

      ln 1 ux e    

As was displayed in Theorem 2.1. 

 

Table 2 has the simulation that was carried on 30 samples with sample size of 30 for each. Again the 

table was done on generation an exponential distribution then using the transformation to get the Burr- Type-X 

data. The data in each sample was ordered to show the order statistics, or the quantiles. Moreover, The Min, the 

Max, and the Avg. for each quantile was found. In the Burr-Type-X case the value of the parameter was taken 

to 1.The overall averages are displayed in the last row of the table. 

 

Table 3 has the simulation that was carried on 30 samples with sample size of 30 for each, using MINITAB 

software to generate the data. As it was the case in Table 2, the same procedure was done in Table 3.  Table 3 

has the Weibull Simulated data when   = 1 and θ = ½, 1, and 2 respectively, and listing the Avg., Min, and 

Max of the order statistics. The overall averages are displayed in the last row. 

Table 4 is a copy of Table 3 with one difference in this case that   = 2, with the same values for θ. 

 

The other tables are displaying the differences in the quantiles of the Burr-Type-X, as displayed in Table 2, and 

the choice of one value parameter θ = 0.5, using the Max, Min, and Avg of those quantiles. 

 

Table 5 has theTabulated differences between the Burr-Type-X and the Weibull displayed as B – W for the 

Case of the Weibull Distribution when the parameters are   = 1 and θ = ½. 

 

Table 6 has theTabulated differences between the Burr-Type-X and the Weibull displayed as B – W for the 

Case of the Weibull Distribution when the parameters are   = 2 and θ = ½. 
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Other tables can be computed on the other values of the parameters of the Weibull distribution and that of the 

Burr-Type-X. It is left to the interested reader to match Table 5 and Table 6. 

 

V. Conclusion 

It is clearly understood that both the Burr-Type-x and the Weibull distributions are quite used in life 

testing and failure analysis. As it can be seen from the tabulated quantiles values, it is clearly the for the lower 

quartiles, i., e. those that are less than the median, in a sample of size 30, those quartiles are higher for the Burr-

Type-x than the corresponding Weibull quantiles. The distribution between Xp – Yp, where Xp and Yp are the 

pth quintiles based on the Burr-Type-X and Weibull distributions respectively is yet to be displayed. On the 

other hand, we have noticed that the Upper Quantiles, i.e. those that are greater than the median, for the Weibull 

distribution are greater than their corresponding quantiles for the Burr-Type-X. The investigation is still 

ongoing. 
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    Table 1  

First Case  Second Case  

Fist Sample  Second Sample  First Sample  Second Sample  

 1 = 2, n1 = 10  2 = 3, n2 = 15   1 = 3, n1 = 15   2 = 5, n2 = 10  

2.2732  3.3781  3.0969  1.9168  

0.2708  1.3877  0.1937  0.6444  

10.4278  6.7499  1.6318  0.3827  

1.0386  1.1269  3.6870  10.7766  

0.3408  2.2454  0.6970  0.7284  

0.8017  0.6913  2.7802  4.2920  

8.0997  0.7480  1.6519  1.3491  

0.4844  1.1117  0.9138  4.3318  

0.5843  7.0138  2.4590  13.8120  

0.1185  12.2795  1.3425  3.9954  

 6.4118  1.9035  

 2.2427  0.4225  

 4.5914  0.2389  

 8.8505  2.3178  

 5.4277  3.0566  

24.4398  64.2564  26.3929  42.2292  

0.5705  =   0.4167  =   

n2y1/(n1y2)  n2y1/(n1y2)  

 

    Table 2    Burr-Type-X   

EXP  

 BURR- 

TYPE-X  

Max  Min  Avg Max  Min  Avg 

0.08756  0.00016  0.037572  2.47889 8.74042  3.30023  

0.16019  0.00424  0.066511  1.91042 5.46531  2.74345  

0.21469  0.01085  0.111029  1.64399 4.52901  2.25296  

0.36328  0.02868  0.155705  1.18873 3.56586  1.93663  

0.38683  0.07752  0.188968  1.13696 2.59573  1.75917  

0.39722  0.12166  0.22452  1.11531 2.16674  1.60395  

0.40253  0.13307  0.251656  1.10451 2.08268  1.50288  

0.8236  0.14322  0.307835  0.57777 2.01413  1.32816  

0.94588  0.14381  0.365812  0.49157 2.01031  1.18297  

1.03742  0.19145  0.410857  0.43753 1.74733  1.08792  

1.11926  0.25279  0.466331  0.39530 1.49893  0.98698  
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1.17134  0.25326  0.509592  0.37099 1.49730  0.91814  

1.42751  0.29625  0.561814  0.27431 1.36102  0.84437  

1.62464  0.34162  0.629467  0.21938 1.24001  0.76116  

1.63573  0.42884  0.681832  0.21668 1.05344  0.70459  

1.73345  0.46142  0.741476  0.19440 0.99530  0.64705  

1.74489  0.47661  0.810269  0.19196 0.96991  0.58832  

1.75423  0.47818  0.878086  0.19000 0.96735  0.53713  

1.90507  0.48945  0.957135  0.16112 0.94924  0.48449  

 

1.99784  .57513  1.057164  0.14575 0.82698  0.42685  

2.02596  0.62345  1.144151  0.14141 0.76807  0.38345  

2.388  0.65045  1.255315  0.09631 0.73775  0.33545  

2.55999  0.72667  1.38024  0.08046 0.66071  0.28971  

2.81762  0.79539  1.513887  0.06161 0.60040  0.24853  

2.90225  0.96563  1.710707  0.05646 0.47924  0.19935  

3.00155  0.98383  1.930947  0.05099 0.46821  0.15667  

3.13472  1.07278  2.216855  0.04449 0.41864  0.11536  

3.57786  1.30946  2.537553  0.02833 0.31466  0.08236  

4.53752  1.37642  2.997327  0.01076 0.29100  0.05121  
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8.33024  2.43475  4.137713  0.00024 0.09170  0.01609  

 

1.873629 0.623681 1.007944  

 

  

0.16672 0.76780  0.45408  

TABLE 3 WEIBULL          

           

Case 1  Alpha = 0.5 Beta =1  Case 1  Alpha= 1 Beta =1  Case 1  Alpha= 2 Beta =1 

AVG MIN MAX  AVG MIN MAX  AVG MIN MAX 

0.00405 0.00000 0.03680  0.03245 0.00151 0.10070  0.16479 0.01655 0.32388 

0.00978 0.00000 0.06700  0.07686 0.01677 0.24587  0.25426 0.04688 0.43217 

0.01733 0.00030 0.07340  0.11400 0.02132 0.26470  0.32224 0.15519 0.46820 

0.02834 0.00160 0.10970  0.15272 0.03502 0.40182  0.37825 0.18651 0.52110 

0.03861 0.00460 0.10970  0.18861 0.04635 0.46342  0.40282 0.18882 0.55049 

0.05302 0.00990 0.14504  0.22502 0.05256 0.48566  0.45008 0.19750 0.56104 

0.07346 0.01450 0.17740  0.26745 0.06836 0.52613  0.48217 0.21452 0.61925 

0.10485 0.03200 0.33540  0.31006 0.07329 0.61537  0.52908 0.37143 0.66581 

0.15327 0.04790 0.43720  0.37927 0.12142 0.72819  0.56992 0.42110 0.75772 

0.19627 0.06160 0.55990  0.41809 0.15735 0.73067  0.60769 0.44994 0.88872 

0.23864 0.07750 0.61320  0.47510 0.24460 0.78485  0.64634 0.48249 0.90739 

0.28365 0.07890 0.73710  0.52362 0.27113 0.84062  0.69372 0.50426 0.92301 

0.35253 0.09200 1.07000  0.58566 0.28607 0.89629  0.72433 0.50934 0.93171 

0.44110 0.14010 1.37860  0.64223 0.29898 0.95338  0.76448 0.51603 0.97139 

0.51005 0.15230 1.55530  0.71913 0.31548 1.28910  0.79518 0.56320 1.02123 

0.58255 0.15460 2.06520  0.78949 0.40421 1.31779  0.83723 0.58515 1.06023 

0.69908 0.16890 2.42780  0.85182 0.43929 1.34128  0.87036 0.60426 1.17645 

0.78734 0.22650 2.60350  0.91839 0.45056 1.40121  0.89919 0.65218 1.18544 

0.96389 0.30220 2.66500  1.00798 0.56421 1.47137  0.94383 0.72306 1.21942 

1.16112 0.31500 3.02220  1.11684 0.71307 1.58731  0.99139 0.75885 1.24151 

1.34266 0.37100 3.13390  1.22509 0.77456 1.86994  1.04792 0.87662 1.24334 

1.71031 0.40470 3.54490  1.33363 0.79484 2.02908  1.09725 0.92378 1.33053 

2.09300 0.45160 4.69860  1.45524 0.79794 2.12657  1.15324 0.92973 1.42110 

2.59592 0.55134 6.41370  1.59041 0.98928 2.19431  1.21068 0.94809 1.59557 

3.11667 0.59283 6.55000  1.73997 1.10544 2.56639  1.28262 0.96983 1.69363 

3.90109 0.69450 7.43040  2.01400 1.24644 3.14709  1.37485 1.10903 1.80577 

5.06990 0.84350 9.66780  2.23876 1.45572 3.86585  1.47582 1.23937 1.94005 

6.32271 1.04760 14.46510  2.58614 1.52300 4.33697  1.59814 1.30492 2.03744 
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8.98866 2.01990 19.19950  2.99914 1.68579 4.69600  1.76931 1.30737 2.31204 

15.67839 2.23078 46.67890  4.14642 2.14967 8.24686  1.94996 1.36071 2.37865 

           

1.91728 0.36961 4.73241  1.03745 0.57014 1.71749  0.87624 0.63722 1.13948 

 

  

TABLE 4 WEIBULL          

           

Case 2 Alpha = 0.5 Beta = 2  Case 2 Alpha = 1 Beta = 2  Case 2 Alpha = 2 Beta = 2 

AVG MIN MAX  AVG MIN MAX  AVG MIN MAX 

0.00804 0.00000 0.11390  0.09209 0.00764 0.25492  0.36270 0.03930 0.70013 

0.01369 0.00010 0.11850  0.15624 0.03526 0.38520  0.51646 0.14812 0.75636 

0.02961 0.00050 0.12190  0.21543 0.09019 0.48850  0.68029 0.44670 0.97758 

0.05891 0.00240 0.32110  0.28790 0.10534 0.53600  0.75605 0.50615 0.99368 

0.08603 0.00750 0.35600  0.36951 0.13560 0.64511  0.84703 0.54072 1.06685 

0.12879 0.00980 0.39750  0.43641 0.15151 0.81230  0.91269 0.57877 1.21437 

0.18631 0.02540 0.42600  0.49568 0.21540 0.86230  0.99471 0.72980 1.28383 

0.24405 0.03046 0.62130  0.55688 0.22036 0.90630  1.09564 0.80661 1.29691 

0.33149 0.03650 0.81280  0.63830 0.27492 1.10680  1.18210 0.85878 1.45912 

0.41404 0.04879 1.37650  0.70274 0.29794 1.19190  1.26168 0.94386 1.48571 

0.52429 0.05670 1.41340  0.79469 0.39247 1.29120  1.34592 1.11306 1.67467 

0.69607 0.08967 2.12800  0.87781 0.42888 1.40590  1.41838 1.12611 1.75776 

0.84428 0.15719 2.33500  0.98376 0.55914 1.47520  1.47331 1.16386 1.80466 

0.96501 0.38050 2.63400  1.10181 0.67312 1.80663  1.54504 1.20567 1.85196 

1.18550 0.42770 3.12360  1.20189 0.70802 1.81109  1.61561 1.21688 2.03745 

1.36342 0.54370 3.36800  1.32747 0.78259 2.07640  1.70004 1.22245 2.11232 

1.63066 0.56860 4.20210  1.44358 0.89832 2.12654  1.79478 1.24868 2.27942 

2.03156 0.65900 5.18830  1.56225 0.93513 2.29809  1.87614 1.35601 2.50638 

2.35257 0.99778 5.34780  1.74890 1.11991 2.82507  1.96132 1.54046 2.61166 

2.77950 1.02534 5.39530  1.95903 1.21357 3.34692  2.04542 1.74114 2.72600 

3.25458 1.41500 5.88250  2.10801 1.25620 3.70350  2.14577 1.74452 2.75378 

3.87733 1.66907 7.21070  2.28886 1.26963 4.27086  2.23606 1.77057 2.90455 

4.64369 1.71460 10.12120  2.50638 1.51753 4.31245  2.35315 1.87241 3.01713 

5.59030 1.76560 10.52210  2.77610 1.71522 4.60520  2.48629 1.97928 3.15240 

6.81775 2.11596 11.95150  3.10106 1.76815 4.99344  2.58758 2.00934 3.22508 

8.87342 3.65627 15.60220  3.52133 2.32361 5.43645  2.73429 2.05590 3.34868 

10.71896 4.21840 18.80930  3.91765 2.34344 5.97370  2.90242 2.15065 3.49848 

14.97397 4.25900 42.76960  4.47769 2.65755 6.79725  3.20819 2.35363 4.28409 

21.29488 4.67290 45.42980  5.33055 3.06156 8.20163  3.58397 2.57407 4.71168 

37.25324 8.45692 129.64000  7.19738 3.34817 14.57040  4.06476 2.83646 5.00133 
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4.43906 1.30038 11.25800  1.80591 1.01688 3.01724  1.78959 1.32933 2.28313 

  

Table 5   

Alpha = 0.5  Beta = 1 B - W 

Avg Min Max  

Diff Diff Diff 

3.29618 8.74042 3.26343 

2.73368 5.46531 2.67645 

2.23563 4.52871 2.17956 

1.90829 3.56426 1.82693 

1.72056 2.59113 1.64947 

1.55093 2.15684 1.45891 

1.42942 2.06818 1.32548 

1.22332 1.98213 0.99276 

1.02970 1.96241 0.74577 

0.89165 1.68573 0.52802 

0.74834 1.42143 0.37378 

0.63449 1.41840 0.18104 

0.49184 1.26902 -0.22563 

0.32006 1.09991 -0.61744 

0.19454 0.90114 -0.85071 

0.06450 0.84070 -1.41815 

-0.11077 0.80101 -1.83948 

-0.25021 0.74085 -2.06637 

-0.47939 0.64704 -2.18051 

-0.73427 0.51198 -2.59535 

-0.95921 0.39707 -2.75045 

-1.37486 0.33305 -3.20945 

-1.80329 0.20911 -4.40889 

-2.34739 0.04906 -6.16517 

-2.91732 -0.11359 -6.35065 

-3.74442 -0.22629 -7.27373 

-4.95454 -0.42486 -9.55244 

-6.24035 -0.73294 -14.38274 

-8.93745 -1.72890 -19.14829 

-15.66231 -2.13908 -46.66281 
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-1.46319 0.39820 -4.27833 

 

 

 

 

Table 6   

Alpha = 0.5  Beta = 2 B - W 

Avg Min Max  

Diff Diff Diff 

3.29219 8.74042 2.36499 

2.72977 5.46521 1.79192 

2.22336 4.52851 1.52209 

1.87772 3.56346 0.86763 

1.67315 2.58823 0.78096 

1.47516 2.15694 0.71781 

1.31657 2.05728 0.67851 

1.08412 1.98367 -0.04353 

0.85148 1.97381 -0.32123 

0.67387 1.69854 -0.93897 

0.46269 1.44223 -1.01810 

0.22208 1.40763 -1.75701 

0.00009 1.20383 -2.06069 

-0.20385 0.85951 -2.41462 

-0.48091 0.62574 -2.90692 

-0.71638 0.45160 -3.17360 

-1.04234 0.40131 -4.01014 

-1.49442 0.30835 -4.99830 

-1.86808 -0.04854 -5.18668 

-2.35265 -0.19836 -5.24955 

-2.87113 -0.64693 -5.74109 

-3.54187 -0.93132 -7.11439 

-4.35398 -1.05389 -10.04074 

-5.34177 -1.16520 -10.46049 

-6.61840 -1.63672 -11.89504 

-8.71675 -3.18806 -15.55121 

-10.60361 -3.79976 -18.76481 

-14.89161 -3.94434 -42.74127 

-21.24367 -4.38190 -45.41904 

-37.23715 -8.36522 -129.63976 

   

-3.98498 -0.53258 -11.09127 

 


