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I. Introduction 

Consider the fourth order quasilinear difference equation of the form 

 = 0 (1) 

where ∆ is the forward difference operator defined by ∆xn = xn+1−xn, α and β are positive constants, {pn} and 

{qn} are positive real sequences defined for all n ∈ N(n0) = {n0,n0 + 1,...} and n0 a nonnegative integer. 

By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all   n ∈ 

N(n0). If any four consecutive values of {xn} are given, then a solution {xn} of equation (1) can be defined 

recursively. A nontrivial solution of equation (1) is said to be nonoscillatory if it is either eventually positive or 

eventually negative and it is oscillatory otherwise. 

Determining oscillation criteria for difference equations has received a great deal of attention in the last 

few years, see for examples [1,2] and the references cited therein. Compared to second order difference 

equations, the study of higher order equations, and in particular fourth order equations, has received 

considerably less attention, see [3-14] and the references contained therein. 

In [3], the authors considered equation (1) under the following conditions 

 

                                                   ,and        ,                          (2) 

                                                  ,and         ,                         (3) 

                                                 , and        ,                            (4) 

                                               ,  and       ,                           (5) 

  

and discussed the asymptotic behavior of nonoscillatory solutions of equation (1). In [4,5], the authors 

considered equation (1) with condition (2) or (5) and discussed the oscillatory and asymptotic behavior of 

solutions of equation(1). Therefore, our main goal in this paper is to establish some new criteria for the 

oscillation of all solution of equation (1) under the condition(3). In Section 2, we present a classification of 

positive solutions of equation(1) and also we derived several lemmas which are useful in establishing the main 

results. In Section 3, we establishsome new sufficient conditions for the oscillation of all solutions of equation 

(1). Examples are provided in Section 4 to illustrate the results. 

 

II. Classification of Positive solutions 
In this section, we classify the positive solutions of equation (1) in terms of the signs of their 

differences. 

Lemma 2. 1 If {xn} is an eventually positive solution of equation (1), then one of the following three cases holds 

for all sufficiently large n: 

(I) ∆(pn|∆
2
xn|

α−1
∆

2
xn) > 0, ∆

2
xn > 0, ∆xn > 0, 

(II) ∆(pn|∆
2
xn|

α−1
∆

2
xn) > 0, ∆

2
xn < 0, ∆xn > 0,  

(III) ∆( pn |∆
2
xn|

α−1
∆

2
xn) > 0, ∆

2
xn > 0, ∆xn < 0. 

Proof. The proof of this lemma can be modeled as that of Lemma 2.3 of [3 ], and hence the details are omitted. 

Next, we present several lemmas which will be used later to prove our main results. 
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Lemma 2.2 Let {xn} be a positive solution of equation (1). Then 

(i) lim ∆(pn|∆
2
xn|

α−1
∆

2
xn) = m ∈ [0,∞). 

n→∞ 

Further, if {xn} is of type (II) or (III), then m = 0. 

 

 (ii)     m-  ∆(pn|∆
2
xn|

α−1
∆

2
xn) +       =      0 .                                                               (6) 

 

Proof. Since {∆(pn|∆
2
xn|

α−1
∆

2
xn)} is decreasing and positive, we have m ≥ 0. Next, let {xn} be of type (II) or (III).  

If m > 0, then 

 
for n ≥ n1 ∈ N(n0). Summing the last inequality from n1 to n − 1, we obtain 

  for n ≥ n2 

with large n2 ≥ n1. This implies that {xn} must belong to type (III), since 

∆
2
xn > 0 for n ≥ n2. We find 

 
Summing the last inequality from  n2  to n − 1, we have 

 

Where             . 

This contradicts assumption (3). Hence m = 0. This proves (i). 

(ii). Summing equation (1) from n to ∞ and using (i), we obtain (6). This completes the proof. 

The following lemma gives a growth and decaying estimate of all positive solutions of equation (1). 

Lemma 2. 3 Let {xn} be a positive solution of equation (1). Then there exist positive constants c1 and c2 such that 

c1ρ(n) ≤ xn ≤ c2H(n,n0) 

for large n, where            and     . 

 

Proof.   If  {xn}  belongs  to  type (I)  or  (II), then  {xn}  is  monotonically  increasing and hence  

xn+3 ≥ xn ≥ c1ρ(n). Next, we consider solutions belonging to type (III). Since, by Lemma 2. 1, we have pn(∆
2
xn)

α 
is 

positive and monotonically increasing for all n ≥ n1 ∈ N(n0). Therefore, there exists a positive constant c1 such 

that 

  , for n ≥ n1. (7) 

Since ∆
2
xn > 0 and ∆xn < 0 for n ≥ n1, ∆xn is monotonically increasing and has a nonpositive limit. If 

this limit is negative , we can obtain a contradiction to the positivity of xn. Hence ∆xn → 0 as      n → ∞. Noting 

this fact and summing the inequality (7) from n to ∞, we obtain 

. 

since xn > 0, lim   xn ≥ 0 exists. A summation of the last inequality from n to ∞   gives 

                    n→∞                

 
which implies the first inequality. 

Next we prove the second inequality. Since ∆  sufficiently large, summing 

this inequality from n1 to n − 1 twice, we have 

 
where c2 > 0 and n2 ≥ n1. Summing this twice and using the assumption (3), we obtain the desired inequality. 

This completes the proof. 

Next we establish some useful inequalities for positive solutions belonging to type (I) and to (III) respectively. 

Lemma 2. 4  Let {xn} be a positive solution of type (I) of equation(1). Then for large n 
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  (8) 

where c is some positive constant. 

Proof.   Since ∆  is decreasing and ∆
2
xn > 0 for all large n , we have 

 
for large n1. Clearly, this gives the desired inequality. 

Lemma 2. 5  Let {xn} be a positive solution of type (III) of equation (1).Then there exists a positive 

constant  C such that the following inequalities hold for large n: 

 

     

                                                                          (9) 

 

 

 , (10) 

and 

 . (11) 

Proof.    By  Lemma 2.1,  we see that ∆( pn (∆
2
xn)

α
) > 0,∆

2
xn > 0, and  ∆xn < 0. 

for n ≥ n1 ∈ N(n0) Since pn (∆
2
xn)

 α
 is increasing and ∆xn → 0 as n → ∞, we have 

 
for n ≥ n1. Summing the last inequality from n to ∞, we obtain 

. 

This implies (9). 

Since ∆  is decreasing, there is a positive constant c ∈ (0,1) and an integer n2 ∈ N(n0) such that 

  (12) 

for sufficiently large n. Combining the inequalities (9) and (12) , we obtain 

, 

or 

, 

for sufficiently large n. This completes the proof. 

 

III.   Oscillation Theorems 
In this section, we establish some new sufficient conditions for the oscillation of all solutions of equation (1). 

Theorem 3.1  Let β ≥ 1 > α. If 

 , (13) 

then every solution of equation (1) is oscillatory. 

Proof.  Assume, to contrary, that {xn} is a positive solution of equation (1). Then {xn} falls into one of the three 

types (I) - (III) mentioned in Lemma 2.1. Therefore it is enough to show that in each case, we are led to a 

contradiction to (13). 
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Case(I). Let {xn} be a positive solution of equation (1) of type (I) for all n ≥ N ∈ N(n0). Summing the equation 

(1) from N to n − 1 we have 

 . (14) 

From the nature of type (I) solution, we can find a constant c > 0 such that xn+3 ≥ cn as n sufficiently large. This 

and (14) gives contradiction to (13) since β ≥ 1. 

Case(II). Let {xn} belongs to type (II) solution of equation (1). Multiply equation (1) by n and summing the 

resulting equation from N to n − 1, we have 

, 

where c1 is a constant. Letting n → ∞ and using the nature of type (II) solution, we obtain 

                                                        
Since {xn} is increasing, we have       . This clearly contradicts (13). 

 

Case(III). Let {xn} belongs to type (III) solution of equation (1).From 

Lemmas 2.1 and 2. 2, we see that 

. 

From the inequality (9) and the fact that pn (∆
2
xn)

α 
is increasing we see that 

. 

Let Zn = pn (∆
2
xn)

α 
. Then 

 . (15) 

For Zn ≤ t ≤ Zn+1, we have 

 . (16) 

Using (16) in (15) and then summing the resulting inequality from N to n−1, we find that 

 . (17) 

From  0 and the fact that Zn is increasing, letting n → ∞ in the last inequality (17), we obtain a 

contradiction to (13). This completes the proof. 

To prove our next theorem, we require the additional assumption on {pn} which means that {pn} behave 

like a constant multiple of the function {n
k
} as n sufficiently large: 

 , for some k ∈ R (18) 

 

Note that our condition (3) implies that 2α < k ≤ α + 1 in (18). 

 

Theorem  3. 2   Let β < α < 1. Suppose that condition (18) holds. If 

 

 

                                                          

 

(19) 
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then every solution of equation (1) is oscillatory. 

Proof.   Assume, to contrary, that {xn} is a positive solution of equation (1). Then {xn} falls into one of the three 

types (I)-(III) mentioned in Lemma 2.1 . Therefore it is sufficient to prove that in each case we are led to a 

contradiction to (19). 

Case(I). Let {xn} be a positive solution of equation (1) of type(I) for all n ≥ N ∈ N(n0). By Lemma 2. 4, we 

can assume that (8) holds with some positive constant c for n ≥ N. Summing (8) from N to n − 1 twice and using 

the fact that ∆xn is positive we see that 

 
where c1 > 0 is a constant and N1 ≥ N is large enough. Substituting this estimate in equation(1), we obtain 

 , 

that is , 

 . (20) 

 Let     .  Then for Zn+1 ≤ t ≤ Zn, we have 

 . (21) 

Using (21) in (20) and summing the resulting inequality from N1 to n − 1, we obtain 

 

  (22) 

Let n → ∞, we see that (22) contradicts (19). 

Case(II). Let {xn} be a type (II) solution of equation (1). Then from the proof of Theorem  3.1  case(II), we see 

that condition      holds.  Since k > 2α and β < α, the last stated condition implies                                                        

                                                    

                                                      
 a contradiction to (19). 

Case(III). Let {xn} be a type (III) solution of equation (1) for n ≥ N ∈ N(n0). Summing the equation (1) from 

n to ∞ and applying Lemma 2.2, we have 

 
for large n. From (11), we have 

  , (23) 

where c is a positive constant. Let Zn denote the right hand side of the inequality (23). Then we find 

 
Then following the argument used in the proof of case(III) of Theorem 3. 1 , we obtain that 

 . (24) 

From the assumption (18), we see that 

  for large n,                                    (25) 

where c2 and c3 are positive constants. From (24) and (25), we obtain a contradiction to (19). This completes the 

proof. 

 

IV.  Examples 

In this section, we present two examples to illustrate the oscillation results. 

Example 4. 1 Consider the difference equation 

 . (26) 
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Here  and β = 3. It is easy to see that all conditions of Theorem 3.1 are 

satisfied and hence every solution of equation (26) is oscillatory. In fact  {xn} = {(−1)
n
} is one such solution of 

equation  (26). 

 

Example 4. 2  Consider the difference equation 

 . (27) 

Here  and  . It is easy to see that all conditions of Theorem 3.2 

are satisfied and hence every solution of equation (27) is oscillatory. In fact   {xn} = {(−1)
n
} is one such solution 

of equation (27). 

 

V.  Conclusion 

It will be of interest to employ different techniques rather than used in this paper, and obtain criteria for the 

oscillation of all solutions of equation (1) when α < β ≤ 1 and 1 < β < α. 
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