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Abstract: The article aims at knowing the type of factors by which a multiplication of integers is produced. By 

putting forward the concept of composite seed of an odd composite number, the article constructs a sieve to 

select and produce odd composite numbers of the form 6n1 and then demonstrates several theorems related 

with factorization of an odd composite number in terms of its seed. It shows that factorization of a big odd 

number can be converted into that of small numbers incorporated with the big number’s seed. The article also 

makes an investigation on new characteristics of odd numbers as well as their factorization and reveals several 

innate laws that are helpful for finding factors of odd numbers. The revealed laws indicate that an odd number 

might find its factors near the factors of its neighboring odd composite numbers. Subtle mathematical 

deductions are given for all the conclusions and necessary examples are presented with detail interprets. 
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I. Introduction 
Positive odd numbers that are of the form with integer are generally classified into two kinds, odd 

prime numbers and odd composite numbers. The study of these numbers has been topics in number theory for 

several hundred years, as introduced in [1]. People have spent much time on study of the prime numbers and 

factorization of the composite numbers, and the problem of factorizing a large odd number has still been a well-

known difficult problem in the world, as stated in articles [2] and [3]. However, when analyzing the present 

literatures, one will see that, few literatures concern the innate constituents of a multiplication that comes from 

prime factors’ multiplying.  

A recent study on multiplication of two nodes of the valuated binary tree, which is introduced in 

articles [4], implicates the problem of knowing the multiplication’s sources, that is, by what kind of nodes the 

multiplication is produced. This problem is alternatively the problem of knowing what kind of prime factors a 

composite number is produced by. For example, 45=59 with 5 and 9 being of the form 4k+1, 21=37 with 3 

and 7 being of the form 4k-1 and 15=35 with 3 and 5 being 4k-1 and 4k+1 respectively. It is sure that, knowing 

the factors’ sources of a composite number is helpful to reduce a large amount of computations when searching 

a factor of the composite number.  
This article aims at solving the problem. The article first puts forward the concept of composite seed of 

an odd composite number, then constructs a sieve to select and produce odd composite numbers, and then 

proves several theorems related with factorization of an odd composite in terms of the seeds. Also the article 

makes an investigation on characteristics of odd numbers of the form 6n1 together with their factorization and 

obtains several new properties that are helpful for factorization of an odd composite number. 

 

II. Preliminaries 
2.1 Definitions and Notations 

In this whole article, symbol Z denotes all integers, symbol 
Z  denotes all the positive integers and 

symbol 0
Z denotes the positive integers together with 0. Symbol AB means that result B is derived from 

condition A; symbol x   Z means there exists an x in set Z
+
. Symbol a|b means b can be divided by a; symbol 

a bŒ  means b cannot be divided by a. Symbol (a, b) and [a, b] are to express respectively the greatest common 

divisor (GCD) and the least common multiple (LCM) of integers a and b. In this whole article, odd number 

refers to that is bigger than 3 unless special remark is made. Integer of 3’s multiple is simply denoted by 3_m. 

Definition 1: An integer k is called a composite seed, or simply a seed, of number 6k+1(or 6k-1) if the number 

6k+1(or 6k-1) is an odd composite number; meanwhile, the composite 6k+1(or 6k-1) number is a sprout of the 

seed k.  For example, 8 is the seed of 49 and 11 is the seed of 65; 49 and 65 are sprouts of 8 and 11 respectively. 

 

2.2 Lemmas 

Lemma 1: An arbitrary non-negative integers 0N   can be expressed by 6 ,0 5N n r r    , and an odd 

number bigger than 3 must be of the form either 6 1N n   or 6 1N n  , where n  Z . 
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Lemma 2[5]: An odd number of the form of 3 1k  must be also of the form of 6 1n  ; an odd number of the 

form of 3 2k  must be also of the form of 6 1n  . A composite number 6 1n  must be product of either two 

factors of the form 6 1k  or two factors of the form 6 1k  ; a composite number 6 1n  must be product of one 

factor of the form 6 1k  with the other of the form 6 1k  . 

Lemma 3[6]:  Let p be a positive odd integer; then among p consecutive positive odd integers there exists one 

and only one that can be divisible by p. 

Lemma 4[4]: Let q be a positive odd number, {
i

S a  | }i


 Z  be a set that is composed of consecutive odd 

numbers; if a S  is a multiple of q, then so it is with 
qa . 

 

III. Main Results and Proofs 
Main results in this section include 3 parts. The first part shows the critical pole of the seed in 

factorization of odd composite number 6n1, the second constructs a sieve to produce composite numbers of 

6n1 and shows the way to apply the sieve to factorize composite numbers of 6n1, the third is to show some 

new properties of the numbers 6n1 and their aids to integers’ factorization. 

 

3.1 Seeds and Factorization of Odd Numbers 

Theorem 1: The seed of an odd composite number is highly related to the factorization of the composite 

number by the following rules.  

(i) The necessary and sufficient condition for a composite number 6 1n   has a factor 6 1x   or 6 1y  is that 

(6 1) | ( )x n x   or (6 1) | ( )y n y   respectively. 

(ii) The necessary and sufficient condition for a composite number 6 1n   has a factor 6 1x   or 6 1y  is that 

(6 1) | ( )x n x   or (6 1) | ( )y n y   respectively. 

Proof: Here the proof is only for (i) since (ii) can be proved by the same means. 

Sufficiency 

6 1| ( ) (6 1) 6 1 36 6 6 1 (6 1)(6 1)x n x n x m x n xm x m x m                

6 1| ( ) (6 1) 6 1 36 6 6 1 (6 1)(6 1)y n y n y m y n ym y m y m                

Necessity 

(6 1)(6 1) 36 6 6 1 6( (6 1) ) 1
6 1 6 1

(6 1)(6 1) 36 6 6 1 6( (6 1) ) 1

(6 1) (6 1) | ( )

(6 1) (6 1) | ( )

x m mx x m m x x
n n

y m my y m m y y

n m x x x n x

n m y y y n y

         
       

         

     
  

     

 

□ 

The following Theorem 1 can alternatively state theorem 1*. 

Theorem 1*: All the odd numbers have the following properties. 

(i) The necessary and sufficient condition for a composite number 6 1n   can be factorized by 

1 16 1 (6 1)(6 1)n l k     or 2 26 1 (6 1)(6 1)n l k     is that 1 1 1 1 1 1(6 1) (6 1)n l k k k l l      or 2 2 2(6 1)n l k k    2 2 2(6 1)k l l   , 

where 1 2 1, ,l l k and 2k are integers less than n; 

(ii) The necessary and sufficient condition for a composite number 6 1n   can be factorized by 

6 1 (6 1)(6 1)n l k     is that (6 1)n l k k    (6 1)k l l   , where ,l k are positive integers less than n; 

 

3.2 Sieves of Odd Composite Numbers 

Construct four sequences,
1 2, 

S S ,
1


S and 

2


S , such that 

1 { | 6 1 (6 1)(6 1); , }n N n k l k l        S Z  

2 { | 6 1 (6 1)(6 1); , }n N n k l k l        S Z  

1 { | 6 1 (6 1)(6 1); , }n N n k l k l        S Z  

2 { | 6 1 (6 1)(6 1); , }n N n k l k l        S Z  

Obviously, each item in
1 2, 

S S ,
1


S and 

2


S is a seed of an odd composite number. By Theorem 1*,

1 ,S 2


S ,

1


S and 

2


S can be redefined by 

1 { | (6 1) (6 1) ; , }n n l k k k l l k l        S Z                                                  (1) 

2 { | (6 1) (6 1) ; , }n n l k k k l l k l        S Z                                                  (2) 

1 { | (6 1) (6 1) ; , }n n l k k k l l k l        S Z                                                  (3) 

2 { | (6 1) (6 1) ; , }n n l k k k l l k l        S Z                                                  (4) 
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Note that, for a fixed k, 
1


S is an arithmetic progression with 26 2l l  being the initial term and 6 1l  being the 

common difference in terms of counting k from l; hence 
1


S can be equivalently expressed by 

                         2

1 1, 1, 0 0{ | ( 1) , 6 2 , 6 1; , }k ls s s k d s l l d l k l           S Z                                       (5) 

Actually, let 1K l k   then 
2 2

1, 6 2 ( 1)(6 1) 6 2 6 6 1 (6( 1) 1) 1 (6 1) (6 1)ks l l k l l l kl k l l l k l k l K K K l l                          

which asserts (4) is equivalent to (1). 

Similarly, 
2


S and 

S can be equivalently expressed by 
2

2 2, 2, 0 0
{ | ( 1) , 6 2 , 6 1; , }

l l
s s s k d s l l d l k l

   
        S Z                                  (6) 

2

1 1, 1, 0 0{ | ( 1) , 6 , 6 1; , }l ls s s k d s l d l k l          S Z                                  (7) 

2

2 2, 2, 0 0{ | ( 1) , 6 , 6 1; , }l ls s s k d s l d l k l          S Z                                   (8) 

Sequences (1), (2), (3) and (4) or their equivalent expressions (5), (6), (7) and (8) can of course form a sieve to 

select every odd composite number of 6n  1 with n  Z . In addition, the following Theorem 2 and 3 provide 

computational foundations. 

 

Theorem 2: Suppose N is an odd composite number; then the following statements are true.  

(i) If 6 1N n   and there exists a 
1

2

n
k


  such that (6 1) | ( )k n k  , then (6 1) |k N . 

(ii) If 6 1N n   and there exists a 
1

2

n
k


 such that (6 1) | ( )k n k  , then (6 1) |k N . 

(iii) If 6 1N n  and there exists a 
1

2

n
k


  such that (6 1) | ( )k n k  , then (6 1) |k N . 

(iv) If 6 1N n  and there exists a 
1

2

n
k


  such that (6 1) | ( )k n k  , then (6 1) |k N . 

Proof: Take the cases (i) and (ii) as examples. It can see that 

(6 1) | ( ) (6 1) , 6 1 6( (6 1) ) 1 (6 1)(6 1)k n k n a k k a n a k k k a               Z  

which validates (6 1) |k N .  

Now since 6 1k  is a factor of 6 1N n  , it leads to 

6( 1)6 1 1 6 1 1
(6 1) 6 1 1

6 6 6 2 2

nn n n
k n l l n

   
            

which finishes proof of the case (i). 

For case (ii), it yields  

(6 1) | ( ) (6 1) , 6 1 6( (6 1) ) 1 (6 1)(6 1)k n k n a k k a n a k k k a               Z  

and 

6 1 1 6 6 1
(6 1) 6 1

6 6 2

n n n
k n l l

   
         

□

Theorem 3: Suppose N is an odd composite number; then the following statements are true.  

(i) If 6 1N n   and there exists an 1
6

n
l    such that 2

0 6 2s l l  , 6 1d l   and 0| ( )d n s ; then |d N . 

(ii) If 6 1N n   and there exists an 1
6

n
l    such that 2

0 6 2s l l  , 6 1d l  and 
0| ( )d n s ; then |d N  

(iii) If 6 1N n  and there exists an  1
6

n
l   such that 2

0 6s l , 6 1d l  and
0| ( )d n s ; then |d N . 

(iv) If 6 1N n  and there exists an  1
6

n
l   such that 2

0 6s l  , 6 1d l  and 
0| ( )d n s , then |d N . 

 

Proof: Take only case (i) as an example to show 
0| ( ) | ( 6 1)d n s d N n    . It can see that 

2 2 2

2

(6 1) | ( (6 2 )) (6 1) (6 2 ) 6 1 6( (6 1) (6 2 )) 1

36 6 36 12 1 (6 1)(6 6 1)

l n l l n a l l l n a l l l

al a l l l a l

              

        
 

2 2 2

2

(6 1) | ( (6 2 )) (6 1) (6 2 ) 6 1 6( (6 1) (6 2 )) 1

36 6 36 12 1 (6 1)(6 6 1)

l n l l n a l l l n a l l l

al a l l l a l

              

        
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Now estimate the bounds of l for each case.  

(i) : 
2 2 2 2

2

(6 1) | ( (6 2 )) (6 1) ( (6 2 )) 42 14 ( 1) 0

14 (2 7) 12 14( 1) 1 1
1

6 14 6 6

l n l l l n l l l l n

n n n
l

            

       
    



 

(ii)  
2 2 2 2

2

(6 1) | ( (6 2 )) (6 1) ( (6 2 )) 42 14 ( 1) 0

14 14 12 14( 1) 1
1

6 14 6 6

l n l l l n l l l l n

n n n
l

            

    
    



 

(iii)  
2 2 2 2

2

(6 1) | ( 6 ) 36 12 1 6 42 12 ( 1) 0

12 12 168( 1) 12 13 1 13
1

84 7 12 7 6 14 6

l n l l l n l l l n

n n n n
l

           

     
       

 

 

(iv) 
2 2 2 2

2

(6 1) | ( 6 ) 36 12 1 6 42 12 ( 1) 0

12 12 168( 1) 12 13 1 13
1

84 6 14 7 6 14 6

l n l l l n l l l n

n n n n
l

           

   
     

 

 

□ 

 

3.3 Characteristics of Odd Composite Numbers 6n1 

Putting consecutive odd numbers one after another to form a sequence O by 

O={1,3, 5, 7, 9, 11,13,15, 17, … , } 

One can see that, by taking 1 to be of the form 6n+1, the number before 3_m is of the form 6n+1 and the 

number after 3_m is of the form 6n-1. It also sees that, such a law is valid for arbitrary sub-sequence Os of O, 

say Os={7,9,11,…}. For this reason, O can be partitioned by a series of group-units by 


1 2 3 4 5 6 7 8 9

10 11 12 13

{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,

55,57,59,61,63,65,67,69,71,73,75,77

g g g g g g g g g

g g g g

        

   

O

14 15 16 17

18 19 20 22 2321

,79,81,83,85,87,89,91,93,95,97,99,101,

103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,

139,141,

g g g g

g g g g g g

    

     

24 25 26 27 28 29

143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,...}

g g g g g g

     

 

Denote 
( ,1) ( ,2),i ig g and 

( ,3)ig  to express the first, the second and the third number of group ig ; then it is true for 

1,2,...i   

( ,1) ( ,2) ( 1,3)

( ,2) ( ,1) ( ,3)

( ,3) ( ,2) ( 1,1)

( , )

( ,3) ( ,1)

( , )

6( 1) 1 2 2

6( 1) 3 2 2

6( 1) 5 2 2

6( 1) 2 1, 1,2,3

( 1) / 6 ( 5) / 6

3 (1 )(mod3)

i i i

i i i

i i i

i j

i i

i j

g i g g

g i g g

g i g g

g i j j

i g g

j g





      


      

       


    
    


  

                                                       (9) 

Then the following Theorem 4 holds. 

Theorem 4: For the sequence O, the following statements are true. 

(i) For arbitrary m  Z , 0(mod5)m  leads to 
( ,1)5| mg  and 

( 1,3)5| mg 
. 

(ii) Arbitrary ,m k Z yield  

( , ) ( , )6 , 1,2,3m j m k jg k g j    

 and arbitrary integer m>1 yields  

2 2

2 2

( ,1) ( ,2)(6 10 5,1) (6 6 2,2)
, ,m mm m m m

g g g g
   

   

2

2

( ,3) (6 2 1,1)m m m
g g

 
  and 3 2

3

( ,3) (36 18 3 ,3)m m m m
g g

 
  

(iii) Arbitrary 1m n  yields
( , ) ( , ) 6( )m j n jg g m n   , where 1, 2,3j  . 

(iv) For arbitrary 0, Z   , it holds 
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( ,1) ( ,1) ( ,1) ( ,1) ( ,1) (*,1)( 6 )( 6 )m n m ng g g g g g         

( ,3) ( ,3) ( ,1) ( ,3) ( ,3) (*,1)( 6 )( 6 )m n m ng g g g g g         

where
(*,1)g means the first number of certain group. 

(v) Every 26 8 2m n n   yields  

( ,1) (6 1)(6 7)mg n n   , n  Z  

and generally , every 2(6 1) (6 2 ) 1m a n n n      yields 

( ,1) (6 1)(6 6 1)mg n n a    , ,a n Z  

(vi) Every 26 4 1m n n   yields 

( ,1) (6 1)(6 5)mg n n   , n  Z  

and generally, every 2(6 1) (6 2 )a n n n   yields 

( ,1) (6 1)(6 6 1)mg n n a    , ,a n  Z  

(vii) Every 26 6 1m n n   yields 

( ,3) (6 1)(6 5)mg n n   , n  Z  

and generally, every 2(6 1) 6a n n  yields 

( ,3) (6 1)(6 6 1)mg n n a    , ,a n  Z  

(viii) For arbitrary integers , ,m n   Z and 1n m  , 
( , ) | ( )m jg n m  or 

( , )( ) | m jn m g  leads to 
( , ) ( , )|m j n jg g  or 

( , )( ) | n jn m g respectively, where 1, 2,3j  ; particularly, if (mod )n m  and 
( , )| m jg , then 

( , )| n jg and thus 

( , ) ( , )( , ) |m j n jn m g g ; consequently, 
( ,1)mg  and 

( ,1)ng are of the same form of either (6k+1)(6l+1) or  (6k-1)(6l-1). 

(ix) For arbitrary integers , ,m n   Z and 1n m  , if
( , ) ( , )|m j n jg g , then 

( , )( , ) ( , )|
m jm j n g jg g  ; if

( , ) ( , )|
n nm j n jg g , then 

( , )( , ) ( , )|
m m j nm

m j n g jg g   

(x) For arbitrary integers ,m n Z and 1m n  , it holds 
( , ) ( , )|

n mn j m jg g , where m and 
mj  are given by 

    

( , )

( , )

(mod3)

3 3

( )(mod3)

n

n

n j

n j n

m n

r kg

kg j
m n

j r j




   
      

  
  

                                                                  (10) 

in which k  Z . 

Proof: (i), (ii) and (iii) are from basic formulas (9), Lemma 3 and direct calculations. (iv) is from Lemma 3; 

(v) ,(vi) and (vii) are from Theorem 3; (viii) is from (iii); (ix) is from (ii) and (viii). (x) is from Lemma 4. 

□ 

Theorem 5: For arbitrary integers , ,m n   Z and 1n m   , suppose 
( , ) ( , )|

n mm j n jg g  and 
( , ) ( , )mj m jg g

   2k ; 

then ( , ) ( , )|j jg g
    if ( , ) ( , )nj n jg g

  6k . 

Proof: The condition that
( , ) ( , ) 2

mj m jg g k
   means there are k numbers between ( , )jg

 and ( , )mm jg , thus 

consider two neighboring numbers first, say 
( ,1)ig and 

( ,2)ig . By lemma 4, the (
( ,1)ig )

th
 number that is counted 

from 
( ,2)ig is a multiple p of 

( ,1)ig , and the (
( ,2)ig )

th
 number that is counted from 

( ,2) 2ig  , namely the one next to 

( ,2)ig , is a multiple q of 
( ,2)ig .  That is to say, q is the 3

rd
 number following p. Figure 1 can intuitively depicts the 

case. And so forth, the first multiple s of ( , )jg
 is the (3k)

th
 number following the first multiple t of 

( , )mm jg . 

Consequently, if
( , ) ( , )|

n mm j n jg g and ( , ) ( , ) 6
nj n jg g k

    then ( , ) ( , )|j jg g
   , as depicted by figure 2. 

□ 

 

 
Fig 1. Neighboring numbers and their first multiples 
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Fig 2. Mapping of two odd numbers to their first multiples 

 

IV. Experiments and Examples 
Using the theorems proved previously, approaches to factorize a big composite number can be derived 

out. First, Theorem 1, 2 and 3 provide a kind of direct search approach such that finding an x to satisfy 

(6 1) | ( )x n x   or (6 1) | ( )x n x  for big odd number 6 1N n  , or finding an x to satisfy (6 1) | ( )x n x   or 

(6 1)x   | ( )n x  for big odd number 6 1N n  . Either Theorem 2 or 3 shows that the searching processes is 

limited although they might be of very long time. Secondly, Theorem 4 provides another new searching 

approach that find an m such that 
( ,1) | (mg n

2(6m  10 5))m   or 
( ,3)mg  3 2| ( (36 18 3 ))n m m m   . In the end, it can 

see that Theorem 5 provides a possible inquiry approach to find a divisor of the number 6n1 by inquiring its 

neighboring composite number.  This approach is indeed a fresh one and is of very high efficiency, which will 

be specially introduced in my following article.  

The following examples are respectively about to show approaches mentioned before. The examples 1 to 5 are 

based on Theorem 2 and 3; the example 5 and 6 are based on Theorem 4 and the last one is based on Theorem5. 

Example 1: Let N=2993; then 2993=6499-1;so n=499 and 
499 1

12
2

l


  . It can see that 7l   

(6 1 41)l   | ((499 7) 492) 12   . Hence 41 must be a factor of 2993 as the fact shows 2993=4173. 

Example 2: Let N=4573;then 4573=6762+1;so n=762 and 
762 1

15
2

l


  . It can see that 3l   

(6 1 17) | ((762 3) 765) 45l      . Hence 17 must be a factor of 4573 as the fact shows 4573=17269. 

Example 3: Let 112 1N   ; then N=6341+1;so n=341 and 
341 1

10
2

l


  . It can see that 4 (6 1 23)k l     

| ((341 4) 345) 15   . Hence 23 must be a factor of 112 1  as the fact shows 112 1 23 89   . 

Example 4: Let 7891N  ; then 7891 6 1315 1    n= 1315
1315

1 7
6

l    ;It can see that 2 ((6 1) 13)l l     

| ((1315 6 2 2 2 2) 1827) 99       which says 13| 7891  as the fact shows 7891=13607 

Example 5: Let 23461N  ; then 23461 6 3910 1    n= 
3910

3910 1 12
6

l    ;It can see that 5 ((6 1) 29)l l     

| ((3910 6 5 5 2 5) 3770) 130       which says 29 | 23461  as the fact shows 23461=29809. 

Example 6: Let 789435281N  ; then N=6131572547-1and it has factor of the form 6 1x  . Note that N= 

6131572547-1n=131572547. So need to find an m in 
(*,3)g such that 

3 2

( ,3) | ( (36 18 3 ))mg n m m m   . 

Computation shows that 
(10,3)( 59) | (131572547g   3 2(36 10 18 10 3 10) 131538317) 2229463        ; 

hence, 59| 789435281 .  789435281 59 2833 4273   . 

Example 7: Let 
292 1 536870911N    ; then N=6 89478485+1n=89478486 and N has factors of the form 

either 6x+1 or 6x-1. Need to find an m in 
(*,1)g such that 2

( ,1) | ( (6 10 5))mg n m m   . Computation shows that 

2

(349,1)( 2089) | (89478486 (6 349 10 349 5)g       88751165) 42485 ; hence, 2089 | 536870911  

536870911 2089 256999  . 

Example 8: Let
232 1 33554431N    ; since (2

23
-1)-(2

11
-1)=2

11
(2

12
-1)=579132

11
=613652

10
 and 2

11
-

1=2389, test 23+2k and then find 31|33554431 311082401. 
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V. Conclusions 
Factorization of big integers has been a research topic in fields of information security. Up to now, 

human beings have developed many valuated approaches. Nevertheless, new approaches are still necessary for 

both scientific research and technical demands. By defining seeds of composite number and constructing sieve 

of odd composite numbers, this article turns factorization of a big odd composite number to that of its seed, and 

to finding its neighboring composite number. Experiments show that the new approaches are valid and practical. 

The author thinks that, by aids with other methods, the new approaches are sure to be effective ones. 
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