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Abstract: Among the many families of wavelets available in the literature, Shannon wavelets  offer some more 

specific advantages which are usually missing in the others such as infinite differentiability,  analytical 

expressions, shapely boundedness in the frequency domain,  enjoying a generalization of the Shannon sampling 

theorem, giving rise to the connection coefficients which can be analytically defined for any order derivatives 

and since it is a known fact that wavelets have been finding enormous applications in science and technology 

since 1980, so it becomes very fruitful  to study the Shannon wavelet and its applications. In the literature a lot 

of study have been done in this direction, but to our knowledge no comprehensive survey of Shannon wavelet 

analysis and its applications have been done and hence we take this opportunity. The paper begins with a brief 

historical Journey from Fourier analysis to wavelet analysis presented in first section. Afterwards, Shannon 

wavelet, Shannon scaling function, reconstruction of functions and derivatives with their help have been 

presented in the next four sections.  In next eleven sections, applications of Shannon wavelet analysis to 

differential, integral and integro-differential equations, inverse heat conduction problem, and some real world 

problems have been surveyed. Finally conclusion is included in the last section.     

Keywords and phrases: Connection coefficients, 𝐶2 − functions, Integro – differential equations, 

Multiresolution Analysis, Shannon scaling function, Shannon wavelet.  

 

I. Journey From Fourier To Wavelet Analysis 

To study matter, the process becomes simpler if we start understanding quarks, then atoms, then 

molecules and finally matter. Similarly properties of  integers  can be more understood if we start working with 

primes and then proceed to analyse integers. Similarly one can understand the organisms if one firstly 

understands cells. As a general rule, ―the process of understanding becomes easier if complicated structures are 

synthesized by using simpler  ones‖.  Jean  Baptiste Joseph Fourier did the same thing.  In early 1800‘s the most 

important problem that  the scientists  were facing was ―How heat diffuses in a continuous medium‖. Along 

with others,  Jean  Baptiste Joseph Fourier  was also trying to solve  the problem. During his attempt of putting 

forward a solution, an idea(which later on proved to be one of the most important  ideas in the history of science 

and technology) of synthesizing a function  with the help of simpler functions – Sines and Cosines –came in his 

mind. As a result, on December 21,1807, Fourier submitted a manuscript to ―institute de France‖ in which he 

claimed  that  ―every periodic function can be expressed  as a weighted sum of sines and cosines‖. His 

manuscript went to a committee consisting of Laplace, Langrange, Lacroix and Monge (At that time Poisson 

was only the  committee's clerk). As the Fourier's work was based on intuitions and no rigorous approach was 

followed,  in particular with respect to the convergence of  the series, the  committee rejected  Fourier's paper 

for publication(actually, Langrange opposed most strongly among the members of  the committee). Thus, finally 

in 1808 Poisson (clerk of the committee at that time) put forward the committee's  report which was:         

―Rejected on the grounds that it contained  nothing  new or interesting''. This rejection did not  make big set 

back to the  Fourier‘s mission, probably he knew the tradition of this world: "Whenever somebody comes with a 

new idea ,people ,especially prominent ones ,oppose it".   

    He once again came, with few modifications, particularly in rigrouring   his idea, in  1811, essentially 

to the same  committee ,as `a candidate for the ―Grand pring  de mathematiques‖ for 1812. This time again the 

committee did not allow his paper for publication in ―Memories de e‘Academie  des sciences‖, although they 

awarded him the prize. In 1824, things changed  and Fourier  became the secretary of the Academie and then he 

published  his work, without  practically changing his older version.      

 Although Fourier's idea later revolutionized the science and technology, but the problem of 

convergence highlighted by  Lagrange was really serious. Thus some famous brains of that time - Poisson, 

Cauchy, Drichlet and  many others got engaged in resolving this problem. In 1826 Cauchy published a proof of 

convergence of Fourier series, but there was a flaw  in his proof  which, three years later, a 23-years old boy 

Drichlet, highlighted. He (Drichlet) himself gave some sufficient conditions for the convergence of Fourier 

series  (Drichlet  point wise convergence theorem), which later in 1881  were improved by Jorden.  In the last  

century, there had been many new sufficient conditions for the convergence of Fourier  series put forward by 

many mathematicians[1].    

 Because of the introduction of the Fourier  series  many new concepts either popped up or were made more 
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rigorous. For example,  Riemann discovered the  idea of integral (now known as Riemann  integral) only after 

getting  motivated by Fourier series. Later  Lebesgue,  inspired by some problems concerning Fourier series, 

generalized  the concept of Riemann integral  to that what is now known as  Lebesgue integral. For more details 

see [1].   

   After Fourier coined his idea of Fourier series, some related ideas such as Fourier transform, discrete 

Fourier transform, Fast Fourier transform also came up during the course of time.  Among these it is been said 

that ―Fast Fourier Transform‖ is one of the best algorithm of all times in science and technology. It was 

proposed by Cooley and Tukey in 1965 [2] and due to this algorithm  ―Fourier Transform‖ is known as the  

"king of all transforms".   

Fourier analysis  finds its application in many areas of science and technology such as  Electrical 

engineering,  Crystallography,  𝑋 −ray machines,  Harmonic signals,  Quantum mechanics,  Wave motion, 

 Turbulence, Analysis of stationary signals,  Real time signal processing  

Although, Fourier Analysis find applications in various fields of science and technology, Fourier representation  

of functions, with the help of sinusoids(Sine and Cosine functions), suffers two major drawbacks: (i) Sinusoids  

does not have compact support in "time domain''( although they have perfectly compact support in frequency 

domain).   

This makes them  non applicable to non-stationary signals (ii)  Fourier representation provides spectral 

content without the time localization. This means that non - stationary signals whose spectral content varies with 

time can't be analysed with the help of Fourier Analysis".        

   Once the above weakness in Fourier representation for non - stationary signals was realized by the 

Applied mathematicians, they started to modify it.  In this context the first modification came by Gabor in 1946, 

who was studying the representation of a communication signal  in a time - frequency plane  by using oscillatory 

basis functions. He modified the concept of Fourier transform  to ''Short Time Fourier Transform'' (STFT) by 

using a Window - Gaussian function. The trick behind the STFT is  to represent the signal by using a time - 

localized window and then doing the analysis for each segment.  This modification provides a true  time - 

frequency representation of the signal as in this case we compute Fourier transform for every window (i.e, time 

localized ) segment of the signal . One year later in 1947, Jean Ville proposed a similar transform, Winger - 

Ville transform for the representation of energy of a signal in the time frequency plane . In fact during the period 

1940 to 1970 , many similar transforms were proposed. To cite a few: Cohen Distribution, Wigner- Ville- 

Rihaczek  Distribution etc. All the above Windowed Fourier transforms differ only as far as the choice of the 

window function  is concerned.          

Although introduction of Windowed Fourier transforms served some purpose, but when we have to 

analyse a signal which has high frequency components with short time spans or low frequency components with 

long time spans, then  we need a narrow window to handle first case and a wider window to analyse the second 

case,  and since a Windowed Fourier transform uses only a single window to analyse the entire signal, 

Windowed Fourier transform is inadequate to handle such signals .Thus, using of a signal window function for 

the entire signal is a major drawback in Windowed Fourier transform.   

     In 1970's a geophysical engineer at the French oil company Elf Acquitaine, J. Morlet, was analysing a 

signal which had low frequency components with long time spans and  high frequency components with short 

time spans. As said above, Windowed Fourier transforms can't handle this situation, so Morlet tried to discover 

some thing new to handle this situation and he came up with a brilliant idea of using different window functions 

for analysis different frequency bands in a signal''.  Also, the different window functions that he used to analyse 

a signal of above type, are derived from a single function - Gaussian function - by dilation and compression. 

Due to the '' small and oscillatory'' nature of these window functions he named them as ''wavelets of constant 

shape.''   Following the tradition of Mankind of offering opposition to every new idea '', Morlet, just like 

Fourier, faced much criticism from his contemporaries. Morlet, in his search to find a mathematical rigorous 

foundation to his ideas, met a theoretical Physicists of quantum mechanics, Grossman, and discussed his ideas 

with him. Grossman, in Morlet's work, find some thing similar to the coherent states formalism , a technique he 

had been using in Quantum mechanics, and so he shown a lot of interest in it. After some time, Grossman 

succeeded in formalising Morlet's ideas and also devised an exact inversion formula for "Morlet's integral 

transform '' and did a lot of applications together with Morlet .   In the spring of 1985, Y. Meyer, while waiting 

on a line to photocopy some papers,  heard about Grossman and Morlet's work . After going into their work, 

Meyer recognised that Morlet and Grossman's analysis and inversion formula is  actually  a rediscovery  of a 

formula in Harmonic Analysis introduced by A. Calderan in 1960's. Y. Meyer not only recognised the similarity 

of Morlet and Grossman's work with A .Calderan but also found that there is a great deal of redundancy in 

wavelets .   

   Inspired by this, Meyer started working for developing wavelets with better localization properties and 

he succeeded in producing an  "orthogonal wavelet basis'' with nice time and frequency localization. 

Surprisingly, again the Meyer's orthogonal wavelet basis turned out to be a rediscovery of J.O. Stromberg - a 
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Harmonic analyst - who discovered the same basis five years earlier to Meyer.   

    It is rather more surprising that the art of constructing orthogonal basis did not start from Stromberg or 

Meyer but it dates back to 1909, when Alfred Haar, a German Mathematician, constructed an orthonormal 

wavelet basis  although at that time the name wavelet was not in use. Later on It was also discovered that Haar's 

work of constructing orthonormal basis was expanded by Paul Levy in 1930, when he was engaged in studying 

''Brownian motion'' and also independently by Paley and Littlewood.   

   Meanwhile Daubechies, a student of Grossman, introduced the concept of ''wavelet Frames '' for the 

purpose of discretizing the time and scale parameters of the wavelet transform. This new concept offered more 

liberty in the matter of  ''choice of basis'',  although at the cost of some redundancy .   

   In 1986, the concept of Multiresolution Analysis for discrete wavelet transform was introduced by 

Mallat and Meyer. This development, later in 1988 became Ph.D. thesis of Mallat. The idea of Mallat was: 

'Decomposition of a discrete signal into its dyadic frequency bands by a series of high pass and low pass filters 

to compute its DWT from the approximation of these various scales .'' It is worth noting that the same ideas 

were familiar to electrical engineers under the name of '' quadrature Mirror Filters '' (QMF) and sub band 

filtering, for about 20 years earlier to Mallat .   

   In 1988 with the development of Daubechies wavelet orthonormal basis of compactly supported 

wavelets, the foundations of ''Modern wavelet theory'' were laid.  In last 28 years many new wavelet families 

such as Daubechies wavlet  family,  Coiflet wavelet  family,  Block spline semi - orthogonal wavelet  family,  

Battele - Lemarie's wavelet family,  Biorthogonal wavelets of Cohen family,  Shannon wavelet family,  Meyer's 

wavelet family, and MRA algorithms have been introduced. For more details on historical development of 

wavelet analysis , see [3] and the references therein.       

 Among these families of wavelets, Shannon wavelets  offer some more specific advantages, which are 

usually missing in the others such as: Shannon wavelets are infinitely differentiable,  Shannon wavelets are 

analytically defined, Shannon wavelets are shapely bounded in the frequency domain,  Shannon wavelets enjoy 

a generalization of the Shannon sampling theorem, Shannon wavelets give rise to the connection coefficients 

which can be analytically defined for any order derivatives, while for the other wavelet families they are 

computed only numerically that too  for the lower order derivatives  only. 
  In the last three decades wavelets find applications in various areas of science and technology. To cite a 

few:  Data compression, Denoising, Source and Channel Coding, Biomedical Engineering, Non destructive 

Evaluation, Study of Distant Universe, Wavelet Networks, Zero Crossing Representation, Fractals, Turbulence 

Analysis,  Financial Analysis, Medicine,  Seismology,  Computer graphics, Digital communication, Pattern 

recognition,  Approximation theory,  Sampling theory,  Statistics,  Numerical analysis,  Operator theory,  

Computer vision, Differential equations,  Natural scenes,  Mammalian visual systems.  

   As it is well known fact "nothing is perfect in this world",  wavelets too face some problems while 

dealing with objects in more than one dimension. So in last 15 years or so, some new concepts emerged. To 

name a few:  Multi directional wavelets,  Complex wavelets,  Curvelets,  Shearlets,  Composite wavelets,  

Bandelets,  Grouplets.   

   We denote the space of all measureable functions 𝑓 on ℝ  satisfying ∫  𝑓 𝑥   𝑑𝑥 < ∞
∞

−∞
 by 𝕃1  or  by  

𝕃1(ℝ) and we denote the space of all measureable functions 𝑓 on ℝ  satisfying ∫  𝑓 𝑥  2 𝑑𝑥 < ∞
∞

−∞
 by  𝕃2  or  

by  𝕃2(ℝ).  For  𝑓 ∈ 𝕃1,  we call the map which maps 𝑓 to 𝑓  , where 𝑓  𝜔 =   2𝜋 −1 ∫ 𝑓 𝑡 𝑒−𝑖𝜔𝑡  𝑑𝑡
∞

−∞
,  𝜔 ∈ ℝ,  

as the ―Fourier transform‖ and 𝑓  as the Fourier transform of 𝑓. If 𝑓 ∈ 𝕃2, then Fourier transform  𝑓  of 𝑓 is 

defined as 𝑓 (𝜔) = 𝕃2 − 𝑙𝑖𝑚
𝑁→∞

 2𝜋 −1 ∫ 𝑓 𝑡 𝑒𝑥𝑝(−𝑖𝑥𝑡)
𝑁

−𝑁
𝑑𝑡, where the expression like  𝑓(𝑡) = 𝕃2 − 𝑙𝑖𝑚

𝑛→∞
𝑓𝑛 𝑡   

means  𝑙𝑖𝑚𝑛→∞ 𝑓𝑛 − 𝑓 2 = 0. Also, we denote   ℤ𝑵 =  0,1,2, … … … . 𝑁 − 1 , equipped with the 𝜎 −Algebra as 

the set of all of its subsets and the '' measure'' as counting measure, so that every function 𝑓 ∶ ℤ𝑁 → ℂ is 

measureable and 𝕃1 ℤ𝑁 = the set of all functions from ℤ𝑁  to ℂ . If 𝑓 ∈ 𝕃1 ℤ𝑁  then '' discrete Fourier 

transform '' of 𝑓 is denoted by 𝐷𝑓 and is a function from  ℤ𝑁  to ℂ defined as  𝐷𝑓  𝑛 =  𝑓(𝑘)𝑒−2𝜋𝑖𝑘𝑛 𝑁 𝑁−1
𝑘=0 . 

The map 𝐹: 𝕃1 ℤ𝑁 → 𝕃1 ℤ𝑁  defined as 𝐹 𝑓 = 𝐷𝑓 is known as ''Discrete Fourier transform operator ''.    

    A sequence of closed subspaces  𝑉𝑗 𝑗 ∈𝑧
 in  𝕃2 ℝ  is known as MRA if it  satisfies the following 

properties: (i)  0  … 𝑉−2 𝑉−1 𝑉−0 𝑉1 𝑉2  … 𝕃2 ℝ  (ii)⋂𝑗𝜖 ℤV𝑗  =  0  (iii)  ⋃𝑗∈𝕫Vj
        = 𝕃2 ℝ  

(iv) 𝑓(𝑡) ∈ 𝑉𝑗     if and only if  𝑓(2𝑡) ∈ 𝑉𝑗−1. (iv) There exists 𝜑 ∈  𝕃2 ℝ , called scaling function, such that 

 𝜑(𝑡 − 𝑛): 𝑛 ∈  ℤ  is an orthonormal basis for 𝑉0. The function 𝜑 is known as ―scaling function of MRA‖.   

If  𝑉𝐽  𝑗 ∈ℤ 
 is an MRA with scaling  function  𝜑, it can be shown that 𝕃2 ℝ =

⨁
𝑛 ∈ ℤ

𝑊𝑛 , where  𝑊𝑛 = 𝑉𝑛
⊥ 

in 𝑉𝑛+1 This means that every MRA produces an orthogonal direct sum decomposition of the Hilbert space 

𝕃2 ℝ  . For 𝑓 ∈ 𝕃2 ℝ ; 𝑗 , 𝑘 ∈ ℤ,  we denote 𝑓𝑗 ,𝑘 𝑡 = 2
𝑗

2𝑓 2
𝑗

𝑡 − 𝑘 . If   𝑉𝐽  𝑗 ∈ℤ
is an MRA and 𝜓 ∈ 𝑉1,  then 

we say  𝜓 is a mother wavelet if   𝜓 𝑡 − 𝑛 : 𝑛 ∈ ℤ  is an orthonormal basis of 𝑊𝑂 = 𝑉0
⊥(in𝑉1). If 𝜓 is a mother 
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wavelet, then we call  𝜓𝑗 ,𝑘  ′𝑠  as wavelets and  the collection   𝜓 𝑗 ,𝑘 
𝑗 ,𝑘∈ℤ

 as ―orthonormal wavelet basis  with 

mother wavelet  𝜓 ‖. If   𝑉𝐽  𝑗 ∈ℤ 
, 𝜑  is an MRA and 𝜓 is a mother wavelet, then it can be shown that 

  𝜓 𝑗 ,𝑘 
𝑗 ,𝑘∈ℤ

 and that the collection   𝜓𝑗 ,𝑘 : 𝑗, 𝑘 ≥ 𝑎𝑛𝑑 𝑗 ≥ 0  ∪  𝜑0,𝑘 : 𝑘 ∈ ℤ  are both  orthonormal  basis 

of 𝕃2 ℝ . The method of getting a mother wavelet from an MRA   𝑉𝑗  , 𝜑  is given by Mother wavelet 

theorem[1].              

Let 𝑕 ∈ 𝕃2(ℝ) be fixed. Then the continuous  wavelet transform of 𝑓 ∈ 𝐿2(ℝ) induced by 𝑕 is denoted 

by 𝒲𝑕𝑓 and is a function from ℝ∗ × ℝ to ℂ defined as (𝒲𝑕𝑓) 𝑎, 𝑏 =
1

  𝑎 
∫ 𝑓 𝑡 . 𝑕  

𝑡−𝑏

𝑎
 

         +∞

−∞
𝑑𝑡, where ℝ∗ =

ℝ −  0 . Here, 𝑕 is usually known as wavelet and (𝒲𝑕𝑓) 𝑎, 𝑏  are known as continuous wavelet coefficients of 

𝑓.  When the wavelet ′𝑕′  satisfies the   admissibility condition 𝐶𝑕 = ∫  𝜔 −𝟏 𝑕 (𝜔) 
𝟐+∞

−∞
𝑑𝜔 < ∞, then it can be 

shown that if 𝑕 , 𝑕  are both windows that is, 𝑕, 𝑕 ∈ 𝕃2(ℝ) and 𝑡𝑕, 𝑡𝑕 ∈ 𝕃2(ℝ)), then ∫ 𝑕 𝑡 𝑑𝑡 = 0
+∞

−∞
 and the 

existence of inversion formula and Parseval's formula for a wavelet transform can be established [1]. Since 

inversion formula and the property ∫ 𝑕 𝑡 𝑑𝑡 = 0
+∞

−∞
 are very important tools in wavelet applications, so usually 

the admissibility condition is included in the definition of a wavelet and wavelet transform.  If we take 𝑎 =

𝑎0
𝑗
 ; 𝑏 = 𝑘𝑏0𝑎0

𝑗
 , where 𝑎0 > 0 ; 𝑏0 ∈ ℝ ; 𝑗 , 𝑘 ∈ ℤ , then (𝒲𝑕𝑓) 𝑎0 

𝑗
, 𝑘𝑏0𝑎0

𝑗
    is usually denoted by (𝒲𝑕𝑓) 𝑗, 𝑘  

are known as '' Discrete wavelet coefficients of 𝑓'' . We can recover 𝑓 by Discrete wavelet coefficients of 𝑓 in a  

numerically stable manner but if  𝑕𝑗 ,𝑘 
𝑗 ,𝑘∈ℤ

 forms a frame in 𝕃2 ℝ  [1]. If   𝑉𝑗  𝑗 ∈ℤ
, 𝜑  is an MRA with 𝜓 as 

Mother wavelet, then we know that  𝜓𝑗 ,𝑘  is an orthonormal basis of 𝕃2 ℝ   so that for any 𝑓 ∈ 𝕃2 ℝ  , we 

have 𝑓 =   𝑓, 𝜓𝑗 ,𝑘 𝜓𝑗 ,𝑘𝑗 ,𝑘∈ℤ . Thus we can know 𝑓 , by knowing  𝑓, 𝜓𝑗 ,𝑘   .But usually it takes a lot of time and 

effort. In 1989 Mallat discovered a fast way to compute these coefficients. The method that he proposed is 

known as '' Fast wavelet transform'' algorithm. For a detailed account of this concept see [4]. 

 

II. Shannon Scaling Function And Shannon Wavelet 
The function 𝜑: ℝ∗ → ℝ defined as  𝜑 𝑥 = (𝜋𝑥)−1𝑠𝑖𝑛⁡(𝜋𝑥) , where ℝ∗ = ℝ − {0}, known as the 

Shannon scaling function. It can be seen that {𝜑(∙ −𝑛) ∶ 𝑛 ∈ ℤ} is an orthonormal family in 𝐿2(ℝ) [1]. Further 

if we define 𝑉0 = {𝑓 ∈ 𝐿2 ℝ : 𝑓  𝜔 = 0 𝑓𝑜𝑟 𝜔 > 𝜋} -the space of band-Limited functions- then by Sampling 

theorem it can be shown [1] that { 𝜑(∙ −𝑛) ∶ 𝑛 ∈ ℤ} is an orthonormal basis for 𝑉0. For any real function 𝑓 , and 

𝑛 , 𝑘 ∈ ℤ , if we denote 𝑓𝑘,𝑛 𝑥 = 2−2−1𝑛𝑓 2𝑛𝑥 − 𝑘 . and 𝑉𝑛 = 𝑠𝑝𝑎𝑛 𝜑𝑘,𝑛 ∶ 𝑘 ∈ ℤ , then it can be seen  that 

𝑉𝑛= 𝑓 ∈ 𝐿2 ℝ : 𝑓  𝜔 = 0 ,  𝜔 > 2𝑛𝜋  and   𝑉𝑛 : 𝑛 ∈ ℤ   is Multiresolution Analysis (MRA), thus, the name 

Scaling function to 𝜑 is justified.. The MRA obtained above is known as Shannon MRA . Mother wavelet of 

Shannon MRA is known as " Shannon wavelet".   

  The Shannon scaling function 𝜑 in the Fourier domain is given by  𝜑  𝜔 =
1

2𝜋
𝜒 𝜔 + 3𝜋  and the 

Shannon wavelet ψ in the Fourier domain is given by 𝜓  𝜔 =
1

2𝜋
𝑒−𝑖𝜔  𝜒 2𝜔 + 𝜒 −2𝜔  , where 𝜒 is the 

characteristic function of  [2𝜋, 4𝜋]. Also, Shannon wavelet 𝜓 in the real domain is given by 𝜓 𝑥 =

 𝑠𝑖𝑛 𝜋 𝑥 − 2−1  − 𝑠𝑖𝑛⁡ 2𝜋 𝑥 − 2−1    𝜋 𝑥 − 2−1  −1.  For 𝑛, 𝑘 ∈ ℤ and Shanon wavelet  𝜓 , the functions 

𝜓𝑛,𝑘  are known as Shannon wavelets and for the Shannon scaling function 𝜑, the function 𝜑𝑛,𝑘   are known as 

Shannon scaling functions. Explicit expressions for  𝜓𝑛,𝑘  and 𝜑𝑛,𝑘  and their Fourier transforms are given as: 

𝜑𝑘,𝑛 𝑥 = 22−1𝑛 𝑠𝑖𝑛 𝜋 2𝑛𝑥 − 𝑘   𝜋 2𝑛𝑥 − 𝑘  −1,  𝜑 𝑘,𝑛 𝜔 = 2−𝑛2−1
 2𝜋 −1𝑒2−𝑛 −𝑖𝜔𝑘 𝜒 2−𝑛𝜔 + 3𝜋 ,   

𝜓𝑘,𝑛 𝑥 =  𝜋 2𝑛𝑥 − 𝑘 − 2−1  −1 × 22−1𝑛  𝑠𝑖𝑛 𝜋 2𝑛𝑥 − 𝑘 − 2−1  − 𝑠𝑖𝑛 2𝜋 2𝑛𝑥 − 𝑘 − 2−1   , and 

 𝜓 𝑘,𝑛 𝜔 =  − 2𝜋 −12−𝑛2−1
𝑒−𝑖2−𝑛 𝜔 𝑘+2−1  𝜒 𝜔2𝑛−1 + 𝜒 −𝜔2𝑛−1   [5]. Fractional derivatives of Shannon 

wavelets and Shannon scaling functions have been discussed by Cattani in [6]. 
 

III. Properties of Shannon scaling functions and Shannon wavelets  

In this section, we record some properties of Shannon wavelets, 𝜓𝑘,𝑛  and Shannon scaling functions 

, 𝜑𝑘,𝑛  form [5]. Let 𝑚, 𝑛, 𝑘, 𝑕 ∈ ℤ. Then (i)  𝜓𝑘,𝑛 , 𝜓𝑛,𝑚  = 𝛿𝑛𝑚 𝛿𝑛𝑘 , where 𝛿𝑛𝑚  and  𝛿𝑛𝑘  are Kroenecker 

symbols  (ii) If 0 ≤ 𝑚, 𝑘, 𝑕 we have  𝜑𝑘,0, 𝜓𝑕 ,𝑚  = 0 but if 𝑚 < 0, then  𝜑𝑘,0, 𝜓𝑕 ,𝑚  = 0 does not vanish in 

general. (iii)  𝜑𝑘,0, 𝜓𝑕 ,0 = 𝛿𝑘𝑕  (iv)  𝜓𝑘,𝑛 = 0 for 𝑥 = 2−𝑛 𝑘 + 2−1 ± 3−1   and 𝑛 ∈ ℕ. 

(v) 𝑙𝑖𝑚
𝑥→2−𝑛  𝑕+2−1 

𝜓𝑘,𝑛 𝑥  = −2𝑛2−1
𝛿𝑕,𝑘 (vi)  𝑙𝑖𝑚

𝑥→±∞
𝜑𝑘,𝑛 𝑥 = 0 (vi)  𝑙𝑖𝑚

𝑥→±∞
𝜓𝑘,𝑛 𝑥 = 0     

(vii) For a fixed 𝑥0  ,   

(a)  𝜑𝑘+1,𝑛(𝑥0) < 𝜑𝑘,𝑛(𝑥0)      

(b) 𝜑𝑘+1,𝑛 𝑥0  𝜑𝑘,𝑛 𝑥0  
−1

=  2𝑛𝑥 − 𝑘  2𝑛𝑥 − 𝑘 + 1 −1  
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(c)𝜓𝑘+1,𝑛 𝑥0  𝜓𝑘,𝑛 𝑥0  
−1

=            

 2𝑛+1𝑥 − 2𝑘 − 1  2 𝑠𝑖𝑛 𝜋 2𝑛𝑥 − 𝑘  − 1 ×   2𝑛+1𝑥 − 2𝑘 − 3 −1 ×  2 𝑠𝑖𝑛 𝜋 2𝑛𝑥 − 𝑘  + 1 −1   

(d) 𝜓𝑘,𝑛+1 𝑥0  𝜓𝑘,𝑛 𝑥0  
−1

=  2 2𝑛+1𝑥 − 2𝑘 − 1 ×  cos 𝜋 2𝑛+1𝑥 − 𝑘  − sin 2𝜋 2𝑛+1𝑥 − 𝑘   ×  

 2𝑛+2𝑥 − 2𝑘 − 1 −1   cos 𝜋 2𝑛𝑥 − 𝑘  − sin 2𝜋 2𝑛𝑥 − 𝑘   −1  

(vii)   𝑙𝑖𝑚
𝑥→∞

𝜓𝑘+1,𝑛 𝑥  𝜓𝑘,𝑛 𝑥  
−1

< 1 

(viii) 𝑙𝑖𝑚
𝑥→2−𝑛  𝑘+2−1 

𝜓𝑘+1,𝑛+1 𝑥  𝜓𝑘,𝑛 𝑥  
−1

= 2 2 𝑐𝑜𝑠 𝑘𝜋 − 𝑠𝑖𝑛 2𝑘𝜋    2𝑘 − 1 𝜋 
−1

        

(ix) Maximum value of 𝜑𝑘,0 is 1 at 𝑘  (x) Maximum value of 𝜓𝑘,𝑛  is 2
𝑛

2  
3 3

𝜋
  at 2−𝑛(𝑘 + 6−1 ) or 

3−12−𝑛−1(18 𝑘 + 7)  (xi) Minimum value of 𝜑𝑘,0  is approximately  𝑠𝑖𝑛  2𝜋   2𝜋 
−1

   at 𝑥 = 𝑘 − 1 ±  2  

(xii) Minimum value of 𝜓𝑘,𝑛 is −2𝑛2−1
 at 2−𝑛(2𝑘 + 1) . 

 

IV. Reconstruction of  Functions By Shannon Scaling Functions And Shannon Wavelets 

In this section, we record two results from [7] showing the reconstruction of a function with the help of 

Shannon scaling functions and Shannon wavelets .The first result is the famous Shannon sampling theorem and 

the second is generalisation of this theorem.  

 

4.1 Theorem [7]:  (Shannon Sampling theorem): If 𝑓 ∈ 𝕃2(ℝ) and 𝑠𝑢𝑝𝑝 𝑓  ⊂  −𝜋, 𝜋 , then the series 

 𝛼𝑘𝜑𝑘,0
∞
𝑘=−∞  converges uniformly to 𝑓, 𝑜𝑛 ℝ, and 𝛼𝑘 = 𝑓(𝑘).   

(Shannon Generalization) If 𝑓 ∈ 𝐵𝜓  and 𝑠𝑢𝑝𝑝 𝑓 ⊆ ℝ , then the series  𝛼𝑕𝜑𝑕,0 +   𝛽𝑘,𝑛𝜓𝑘,𝑛
∞
𝑘=−∞

∞
𝑛=0

∞
𝑕=−∞  

converges to 𝑓. In particular, if 𝑠𝑢𝑝𝑝𝑓 ⊂ [2−𝑁𝜋, 2𝑁𝜋] , then  𝛼𝑕𝜑𝑕,0 +   𝛽𝑘,𝑛𝜓𝑘,𝑛
∞
𝑘=−∞

∞
𝑛=0

∞
𝑕=−∞  converges 

to 𝑓, where 𝜓 is Shannon wavelet and 𝐵𝜓  is the space of all those functions 𝑓 such that 

𝛼𝑘 = ∫ 𝑓 𝑥 𝜑𝑘,0 𝑥 𝑑𝑥 = ∫ 𝑓  𝜔 𝑒𝑖𝜔𝑘+𝜋

−𝜋
  

+∞

−∞
 is finite and   𝛽𝑘,𝑛 = ∫ 𝑓 𝑥 𝜓𝑘,𝑛 𝑥 𝑑𝑥 = −2−𝑛2−1

  
+∞

−∞
 

∫ 𝑓  𝜔 𝑒𝑖𝜔 𝑘+2−1 2−𝑛
𝑑𝜔 −

2𝑛+1𝜋

2𝑛𝜋
2−𝑛2−1

×  ∫ 𝑓  𝜔 𝑒𝑖𝜔 𝑘+2−1 2−𝑛
𝑑𝜔

−2𝑛 𝜋

−2𝑛+1𝜋
 is finite.   

  If we fix an upper bound in the series involved in the Shannon generalisation in such a way that we 

have approximation of 𝑓 as         

   𝑓 𝑥 ≅  𝛼𝑕𝜑𝑕 ,0 𝑥 𝑘
𝑕=−𝑘 +   𝛽𝑘,𝑛𝜓𝑘,𝑛

𝑠
𝑘=−𝑠 (𝑥)𝑁

𝑛=0      (1) 

then the approximation error according to [8] satisfies:   

 𝑓 𝑥 −  𝛼𝑘𝜑𝑕,0 𝑥 𝑘
𝑕=−𝑘 +   𝛽𝑘,𝑛𝜓𝑘,𝑛

𝑠
𝑘=−𝑠 (𝑥)𝑁

𝑛=0  ≤  𝑓 −𝑘 − 1 + 𝑓 𝑘 + 1 − 3 3𝜋−1 𝑓 2−𝑁−1 −𝑠 −

2−1+ 𝑓2−𝑁−1𝑠+1.5. In [7], the absolute values of approximation errors for some functions for given values 

of 𝑘 and 𝑁 have been calculated. For example for the function 𝑓 𝑥 = 𝑒−4𝑥2
𝑐𝑜𝑠 2𝜋𝑥   𝑥 ∈ ℝ , the absolute 

value of the approximation error is computed for  𝑁 = 3 and  𝑘 ≤ 3 and is found to be less than 7%.  

 

V. Reconstruction of the derivatives by using Shannon scaling functions and Shannon wavelets 
Let 𝑓 ∈ 𝐿2(ℝ) ∩ 𝐶𝑃(ℝ) for sufficiently high value of 𝑝.Then by Shannon generalisation we can write  
𝑑 𝑙

𝑑𝑥 𝑙 𝑓 𝑥 =  𝛼𝑕
∞
𝑕=−∞  

𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑕,0 𝑥 +       𝛽𝑘,𝑛
∞
𝑘=−∞

𝑑 𝑙

𝑑𝑥 𝑙 𝜓𝑘,𝑛(𝑥)∞
𝑛=0 . This equation suggests that we may know 

𝑑 𝑙

𝑑𝑥 𝑙 𝑓 𝑥  provided we know  
𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑕,0 𝑥  and  
𝑑 𝑙

𝑑𝑥 𝑙 𝜓𝑘,𝑛 . These two quantities can be known easily  for 𝑙 = 1,2, 

[7], but for higher values of  𝑙  the  direct computation of the above two quantities is  very difficult. Cattani in 

[7] provided following expressions for calculating these quantities:        

 

5.1 Theorem [7]:  Under Usual notations,  we  have     

(i)   
𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑕,0 𝑥  =   𝜆𝑕𝑘
 𝑙 𝜑𝑘,0

 𝑥 
 ∞

𝑘=−∞          

(ii)  
𝑑 𝑙

𝑑𝑥 𝑙 𝜓𝑕 ,𝑚  𝑥 =   , γ
𝑕𝑘
 𝑙 𝑚𝑛 𝜓𝑘,𝑛 𝑥  ∞,

𝑘=−∞
∞
𝑛=0      

(iii)   
𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑕,0 ,
𝑑𝑝

𝑑𝑥 𝑝 𝜓𝑕 ,𝑚  =  0    

Here in this theorem the quantities 𝜆𝑘𝑕h
(𝑙)

 , γ
𝑕𝑕kh

 𝑙 𝑛𝑚
 are known as Connection coefficients or Cattani connection 

coefficients and are given  by  
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(i) 𝜆𝑘𝑕h
 𝑙 =  

𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑘,0, 𝜑𝑕,0    =    −1 𝑘−𝑕 𝑖𝑙

2𝜋
 

𝑙!𝜋𝑠  −1𝑠−1  

𝑠! 𝑖 𝑘−𝑕  𝑙−𝑠+1
𝑙
𝑠=1        𝑖𝑓 𝑘 ≠ 𝑕  and     

𝜆𝑘𝑕h
 𝑙 =  

𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑘,0, 𝜑𝑕,0 =   
𝑖𝑙𝜋𝑙+1

2𝜋(𝑙+1)
  1 +  −1 𝑙                    𝑖𝑓 𝑘 = 𝑕  

(ii)  𝛾𝑘h
(𝑙)𝑛𝑚

 =  
𝑑 𝑙

𝑑𝑥 𝑙 𝜓𝑘,𝑛 , 𝜓𝑘,𝑚  =  𝛿𝑛𝑚  𝑖𝑙 1 −  𝜇 𝑕 − 𝑘     
𝜋𝑙2𝑛𝑙 −1

𝑙+1
+  2𝑙+1 − 1  1 +  −1 𝑙 𝜇 𝑕 − 𝑘  

×     −1  1+𝜇 𝑕−𝑘   2𝑙−𝑠+1 2 
𝑙! 𝑖𝑙−𝑠𝜋𝑙−𝑠

 𝑙 − 𝑠 + 1 !   𝑕 − 𝑘 𝑠
(−1)−𝑠−2(𝑕+𝑘)2𝑛𝑙 −𝑠−1 ×

𝑙+1

𝑠=1

 

 2𝑙+1  −1 4𝑕+𝑠 +  −1 4𝑕+𝑙 − 2𝑠  −1 3𝑘+𝑕+𝑙 +  −1 3𝑕+𝑘+𝑠             𝑓𝑜𝑟  𝑙 ≥ 1 

and  γ
𝑕𝑕𝑘𝑕
 0 𝑛𝑚 = 𝛿𝑘𝑕𝛿𝑛𝑚 , where 𝛿𝑛𝑚  is Kroenecker symbol.   

 

 Although infinite sums in above expressions  suggest that these expressions for the derivatives are not 

good enough,  but practically this is not the case as  we can obtain a very good approximation  of the derivatives 

just by considering only a first few terms of the series, because these series involve Shannon wavelets which are 

mainly localized in a short range interval.   Also, if we consider only a few terms in above equations, we have 

error estimates as stated in [6] which read as:  

(i)   
𝑑 𝑙

𝑑𝑥 𝑙 𝜑𝑕,0 𝑥 −  𝜆𝑕𝑕𝑘
(𝑙)

 𝜑𝑘,0 𝑥 𝑁
𝑘=−𝑁  ≤  𝜆𝑕(−𝑁−1)

 𝑙 + 𝜆𝑕(𝑁+1)
 𝑙   

(ii) 
𝑑 𝑙

𝑑𝑥 𝑙 𝜓𝑕 ,𝑚  𝑥 −    𝛾𝑘𝑕
 𝑙 𝑛𝑚 𝜓𝑘,𝑛 𝑥 𝑆

𝑘=−𝑆
𝑁
𝑛=0  ≤  2𝑙 𝑚−1 +2−1𝑚 3 3

𝜋
 𝛾𝑕(−𝑠−1)

 𝑙 11 + 𝛾𝑕(𝑠+1)
 𝑙 11   . In [6] Cattani has 

provided some recursive formulae for connection coefficients: 

(i)   𝜆𝑘h
(𝑙+1)

=
𝑙+1

𝑘−𝑕
𝜆𝑘𝑕

 𝑙 −  −1 𝑘−𝑕 𝑖𝑙𝜋𝑙+1

𝑘−𝑕
 −1𝑙 + 1  𝑖𝑓 𝑘 ≠ 𝑕 

(ii)  𝜆𝑘𝑕
(𝑙+1)

= 𝑖𝜋
𝑙+1

𝑙+2
𝜆𝑘𝑕

 𝑙 +
−(𝑖)𝑙+1𝜋𝑙+1

𝑙+2
 𝑖𝑓 𝑘 = 𝑕 

(iii)   γ
𝑕𝑕𝑘𝑕
 𝑙 𝑛𝑛 = 2𝑙(𝑛−1) γ

𝑘𝑕
 𝑙 11  

In [9] some identities satisfied by connection coefficients have been proved.     

  

VI. Applications of Shannon Wavelet Analysis to Integro- Differential Equations 
Since many real world situations are modelled by integro-differential equations- it becomes necessary 

to formulate suitable methods to solve such equations, and since it is not always possible to get analytical 

solutions of these equations ,applied mathematicians have been busy to develop methods of getting efficient 

numerical solutions of these equations over the years. In this direction, wavelet analysis is playing a huge role 

and, in particular, Shannon wavelet. Consider the integro - differential equation  𝐴
𝑑𝑢

𝑑𝑥
= 𝐵 ∫ 𝑘 𝑥, 𝑦 𝑢 𝑦 𝑑𝑦 +

𝑑

𝑐
 

𝐶𝑢 𝑥 + 𝑞 𝑥 , where 𝐴, 𝐵 ∈ ℝ ; 𝑘 𝑥, 𝑦 , 𝑞 𝑥  are given and 𝑢 is unknown function.   

    Cattani in [8] proposed a method of solving this equation numerically by using Shannon wavelet 

analysis  with Petrov Galerkin method in the case 𝑘 𝑥, 𝑦 = 𝑓 𝑥 × 𝑔 𝑥  with 𝑓, 𝑔 ∈ 𝕃2 ℝ , 𝑐 = −∞, 𝑑 = ∞ 

and 𝐴 = 𝐵 = 𝐶 = 1. In this paper the author  also illustrated the method by discussing some specific examples.

 Maleknejad and Attary in [10] proposed  a method of obtaining the numerical solution of the equation  

by using Shannon wavelet analysis with collocation approach when 𝑐 = 𝑎 ∈ ℝ; 𝑑 = 𝑏 ∈ ℝ ,𝐴 = 𝐵 = 𝐶 = 1 and 

𝑞 ∈ 𝑙2 ℝ . In this paper, the author also discussed error analysis and illustrated the method by supplying some 

examples and compared their results with the methods of solving them as proposed in [11] or [12]. For the 

example 𝑓 ′ 𝑡 − 𝑓 𝑡 − ∫ 𝑒𝑠𝑡𝑓 𝑠 𝑑𝑠 =
1−𝑒 𝑡+1

𝑡+1

1

0
; 𝑓 0 = 1,  the authors have shown that Shannon 

approximation produced better numerical results in comparison to Hybrid Legendre Block Plus functions 

approximation of the problem as proposed in [11] and for the example 𝑓 ′ 𝑡 − 𝑓 𝑡 −
1

 𝑙𝑛 2 2 ∫
𝑡

𝑠+1
𝑓 𝑠 𝑑𝑠 =

1

𝑡+1

1

0
 

−
𝑡

2
− 𝑙𝑛 𝑡 + 1  ; 𝑓 0 = 0, the authors calculated maximal error and  compared the method with the method 

Proposed in [12], where the problem have been solved by a method based on Whittaker Cardinal expansion 

approach and found that both methods produce nearly equivalent approximation solution for small values of 𝑁 

and 𝑀. It has been claimed by Maleknejad  and Attary [10] that extremely good numerical results can be 

achieved for 𝑁 ≥ 2 and 𝑀 ≥ 3. 

 

VII. Applications of Shannon Wavelet Analysis  to Integral Equations 

To solve integral equations numerically, traditional quadrature formula methods and spline 

approximation methods are used by the Applied Mathematicians. While using these methods, it is required to 

solve systems of linear equations for which usually matrix methods are applied, and if the number of linear 

equations is too large, we get big matrices and hence we require too many arithmetic operations and huge 

storage capacity. But if we can replace fully populated transpose matrix by a sparse matrix, we can reduce both 
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number of arithmetic operations and storage capacity. But if we can replace the fully populated matrix by a 

sparse matrix, we can reduce the both number of operations and the storage capacity. One way of replacing the 

given matrices by sparse matrices is by using wavelet basis, because the wavelet basis functions are orthogonal 

to each other. Probabaly the first approach to solve integral equations by wavelet methods is work done by 

Beylkin et al [13], in 1991. Various contributions were made by many Applied mathematicians in which 

Daubechies wavelets, adaptive Battle-Lemarie wavelets, Hermatic type trigonometric wavelets; Haar wavelet, 

linear B-Splines, Walsh functions, Chen and Albert wavelets were used. For example one can see [14], [15] 

[16], [17],[18] ,[19] ,[20] ,[21], [22], [23], [24], [25], [26].  

     But the Shannon wavelets have been used by Danesfahani et al [27] to solve Fredholm integral 

equations of first and second kind. In this paper the authors used Shannon wavelet analysis with the method of 

moments to present methods of solving Fredholm integral equations of first and second kind. The method that 

they proposed for solving Fredholm integral equation of first kind − ∫ 𝑘 𝑠, 𝑡 𝑥 𝑡 
𝑏

𝑎
𝑑𝑡 = 𝑦 𝑠 , where 𝑘 𝑠, 𝑡 ∈

𝐿2  𝑎, 𝑏) ×  𝑎, 𝑏   ] ; 𝑦 𝑠 ∈ 𝐿2 [𝑎, 𝑏)  are known functions and 𝑥 𝑡  is unknown− is:   

Step 1:  Assume 𝑥 𝑡 ∈  𝑉𝑗  for some 𝑗 ∈ ℤ so that one can write 𝑥 =  𝑐𝑘𝑘∈ℤ 𝜑𝑘,𝑗    

Step 2: Assume 𝑛 = 2𝑗  and approximate 𝑥 as 𝑥 =  𝑐𝑘
𝑛
𝑘=0 𝜑𝑘,𝑗  ...(a), so that we have       

      𝑐𝑘
𝑛
𝑘=0 ∫ 𝑘 𝑠, 𝑡 

𝑏

𝑎
𝜑𝑘,𝑗   𝑡  𝑑𝑡 = 𝑦 𝑠 .   

Step 3: Choose 𝑠1  , 𝑠2,.....  , 𝑠𝑛      in  𝑎, 𝑏)  so that on substituting for s equation (a) of step 2,  we get a system of  

𝑛 equations:        𝑐𝑘
𝑛
𝑘=1 ∫ 𝑘 𝑠𝑖 , 𝑡 

𝑏

𝑎
𝜑𝑘,𝑗   𝑡  𝑑𝑡 = 𝑦 𝑠𝑖  ;  1 ≤ 𝑖 ≤ 𝑛 . 

Step 4: Solve this system of 𝑛 linear  equations  in 𝑛 unknown 𝑐1 , 𝑐2,....  , 𝑐𝑛  and put in equation (a) of step 2, 

thus getting approximate solution.   

    Similar method for solving Fredholm integral equations of second kind can be seen in the same paper 

[27].  In the same paper [27],  the above methods have been illustrated by applying to some examples and it has 

been found that the proposed methods have a high accuracy and efficiency in the case in which the kernel 

function is of the form 𝑘 𝑠, 𝑡 = 𝐻0
2 𝛼 𝑠 − 𝑡  ,   where 𝐻0

2 is the Hankel function of 2nd kind of order zero. 

 

VIII. Applications of Shannon Wavelet Analysis  To Differential Equations 
 It is well known that most of the real world problems are usually get modelled in the form of 

differential equations and exact solution of differential equations are either hard or sometimes impossible to 

find. So, Applied Mathematicians are always remain busy for  proposing new and efficient numerical methods 

for solving  differential  equations. For example one can see [28], [29], [30], [31], [32], [33], [17].  In [9]  Shi 

and Li used  1-periodized   Shannon wavelets  for solving higher order differential equations. The authors of the 

paper defined 1- periodic Shannon wavelets and 1- periodic Shannon scaling functions as:  If 𝜑, 𝜓 be the  

Shannon scaling function and  Shannon wavelet, then for any 𝑛, 𝑘 ∈ ℤ, the 1- periodic Shannon scaling 

functions,  𝜑 𝑘,𝑛  and 1- periodic Shannon wavelets,  𝜓 𝑘,𝑛  are defined as 𝜑 𝑘,𝑛 𝑥 =  𝜑𝑘,𝑛 𝑥 + 𝑟  , 𝑥 ∈ ℝ𝑟∈ℤ  and 

𝜓 𝑘,𝑛 𝑥 = 

 𝜓𝑘,𝑛 𝑥 + 𝑟  , 𝑥 ∈ ℝ 𝑟∈ℤ . In the same paper, the authors have proved many properties of 1- periodic Shannon 

wavelets and 1- periodic Shannon scaling functions similar to the ones we have recorded for Shannon wavelets 

and Shannon scling function in searlier sections. As with the Shannon scaling function and Shannon wavelet, we 

have connection coefficients 𝛾 𝑘,𝑛;𝑙,𝑚
 𝑠 

 for 1-periodised Shannon scaling function and Shannon wavelet too, which 

are defined as 𝛾 𝑘,𝑛;𝑙,𝑚
 𝑠 

=  
𝑑𝑠

𝑑𝑥 𝑠 𝜓 𝑘,𝑛 , 𝜓 𝑙,𝑚  . These connection coefficients are connected to the Cattani connection 

coefficients by the relations: (i) 𝛾 𝑘,𝑛;𝑙,𝑚
(𝑠)

= 0 𝑖𝑓 𝑛 ≠ 𝑚 (ii) 𝛾 𝑘,𝑛;𝑙,𝑛
(𝑠)

=  𝛾𝑘,𝑛;𝑙−2𝑛 𝑟,𝑛

(𝑠)
𝑟∈ℤ   (Here 𝛾𝑘,𝑛;𝑙,𝑚 = 𝛾𝑘𝑙

𝑛𝑚 ). By 

using connection coefficients, we have: For any 𝑢 ∈ 𝕃2 0,1  which is sufficiently differentiable, 
𝑑𝑠

𝑑𝑥 𝑠 𝑢 𝑥 =

   𝛽 𝑘,𝑛
2𝑛 −1
𝑘=0

∞
𝑛=0     𝛾 𝑘,𝑛;𝑙−2𝑛 𝑟,𝑛

 𝑠 
𝑟∈ℤ  2𝑛−1

𝑙=0 𝜓 𝑙,𝑛 (𝑥)  [9].        

To solve higher order differential equations the authors of [9] used the approximations of 𝑢 and 𝑢 𝑠  as 

  𝑢 𝑥 = 𝛼0 +   𝛽 𝑘,𝑛
2𝑛−1
𝑘=0

𝑁
𝑛=0 𝜓 𝑙,𝑛 (𝑥) ;  𝑥 ∈  0,1        

and   
𝑑𝑠

𝑑𝑥 𝑠 𝑢 𝑥 =   𝛽 𝑘,𝑛
2𝑛−1
𝑘=0

𝑁
𝑛=0     𝛾 𝑘,𝑛;𝑙−2𝑛 𝑟,𝑛

 𝑠 𝑀
𝑟=−𝑀  2𝑛 −1

𝑙=0 𝜓 𝑙,𝑛 (𝑥)  ; 𝑥 ∈  0,1  and 

demonstrated the method by solving BVP: 𝑦 12  𝑥 − 𝑦 𝑥 = −12 2𝑥𝑐𝑜𝑠𝑥 + 11𝑠𝑖𝑛𝑥 ; −1 ≤ 𝑥 ≤ 1 subject to 

the  boundary conditions: 𝑦 −1 = 𝑦 1 = 0; 𝑦′ −1 = 𝑦′ 1 = 2𝑠𝑖𝑛⁡(1) ;𝑦′′ −1 = −𝑦′′ 1 =
−4𝑐𝑜 𝑠 1 − 2 𝑠𝑖𝑛 1  ;𝑦′′′ −1 = 𝑦′′′ 1 = 6𝑐𝑜𝑠⁡1 − 6 𝑠𝑖𝑛⁡1; 𝑦(4) −1 = −𝑦(4) 1 = 8 𝑐𝑜𝑠 1 + 12 𝑠𝑖𝑛⁡(1) 

;𝑦5 −1 = 𝑦(5) 1 = −20 𝑐𝑜𝑠(1) + 10 𝑠𝑖𝑛⁡(1). They also estimated the error by the formula               

𝐸𝑟𝑟𝑜𝑟 =     𝑦𝑒 𝑘 − 𝑦(𝑘)2 𝑋
𝑘=1  𝑥−1 2−1

  where 𝑋 = No.of collocation points; 𝑦 is the approximation solution 

and  𝑦𝑒  is the exact solution and got error estimates for 𝑁 = 4,5,6,7 and 𝑀 = 50. The error estimates show that 

the method is very efficient. Shi and Li also demonstrated the method by taking another BVP and compared its 
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results  to those of [32]. Although the method demonstrated in [9] is by taking problems involving ordinary 

differential equations, but the authors  strongly believe that the method is also applicable to partial differential 

equations. 

 

IX. Method of solving inverse heat conduction problems by using Shannon wavelet analysis 
In many industrial problems, surface of a body is inaccessible, but we need to measure its (surface) 

temperature. In these problems, we measure the temperature of the body by using temperature history at a fixed 

point inside the body. This process is known as " Inverse Heat Conduction Problem (IHCP)" and is a subject of 

great interest in recent years. The standard Inverse Heat conduction Problem is : 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2  ;   𝑥 > 0, 𝑡 >

0 ;  𝑢 𝑥, 0 = 0 ;  𝑥 ≥ 0 ;  𝑢 1, 𝑡 = 𝑔 𝑡 ;  𝑡 ≥ 0 ; 𝑢 𝑥, 𝑡 remains bounded as 𝑥 → ∞. The solution of the 

problem IHCP has been a subject of great interest and has been discussed by many Applied Mathematicians. For 

example, Reginska and Elden [34] solved the problem by using a wavelet - Galerkin method; Wang in al [35 ] 

presented a multiresolution method for solving the problem; Scidman and Elden [36] proposed an optimal 

filtering method for the problem; Carano [37] and Qion et al. [38] also presented methods of solving the 

problem; Carasso [39] and Fu [40] used Tikhonov methods to analyse IHCP; Mollification method has been 

used by Musio [41] and by Hao et al [42] to analyse IHCP; Wavelet Galerkin methods have been used by Elden 

et al in [43],[44],[45],[46] and [47] to discuss IHCP; Cheng et al in [48] used a modified Ti Khonov method for 

the IHCP and Tautenhahn [49] obtained optimal approximations for IHCP. The above cited methods mostly 

dealt  with IHCP in semi unbounded domain, however, some methods have also been applied to IHCP with 

bounded domain . For example, Chen et al [50] studied IHCP in a rectangular plate by applying hybrid 

numerical algorithim of Laplace Transform  technique; Busby and Trujillo in [51] discussed IHCP in a slab by 

using dynamical programming method; Alifanov and kerov  [52] and Louahlia - Gualou et al  [53]discussed 

IHCP in a cylinder.  Also the non standard Inverse heat conduction problem: 
𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2  ;   𝑥 > 0 𝑎𝑛𝑑 𝑡 >

0 ; 𝑢 𝑥, 0 = 0 ;  𝑥 ≥ 0 ; 𝑢 1, 𝑡 = 𝑔 𝑡 ;  𝑡 ≥ 0 ; 𝑢 𝑥, 𝑡  remains bounded as 𝑥 → ∞ ;   𝑡 ≥ 0 ;  which is 

connected to IHCP appears in many applied subjects and is a subject of study by many applied  mathematicians. 

For example, Xiong et.al [54],[55] investigated the problem  by central difference method ; Reginska  [56] 

presented solution of the problem in the interval [0,1) by using wavelet dual least square method,  in which they 

used Meyer wavelet.            

The problem has also has been solved by using wavelet dual least square method generated by the Shannon 

wavelets [57]. In this method, firstly the functions 𝑢 𝑥, .  , 𝑔 .  , 𝑢 𝑜, .  = 𝑓(. ) are extended from the domain 

[0,∞) to ℝ by putting 𝑢 𝑥, 𝑡 = 0 , 𝑔 𝑡 = 0 and  𝑢 0, 𝑡 = 0 𝑓𝑜𝑟 𝑡 < 0 ,  so that we can work in 𝕃2(ℝ). After 

that it was assumed that for given '𝑔', the solution '𝑢' of the problem exists and satisfies an a - priori bound: 

 𝑢(0, . ) 𝑝 ≤ 𝐸 , 𝑝 ≥ 0 , where  (. ) 𝑝  stands for  ∫  1 + 𝜉2 𝑝  𝑓  𝜉  
2
𝑑𝜉

∞

−∞
 

1
2 

 =  𝑓 𝑝 . Further since 𝑔 is to be 

measured by the thermocouple, it was assumed that there is some function 𝑔𝛿 ∈ 𝕃2(ℝ) satisfying  𝑔𝛿 .  −
𝑔(. ) 𝐿2 ℝ ≤ 𝛿, where  𝛿 represents a bound on the measurement error. Further it was also assumed that 

 𝑢 𝑥, .    is bounded which will assure the uniqueness of the solution  [58]. Finally after proving various results 

the authors of [57] presented the method of solving the problem as:     Choose two 

families of subspaces 𝑉𝑗   and  𝑌𝑗    of 𝐿2 ℝ  such that 𝑉𝑗 ⊂ 𝑅(𝐾∗) and 𝐾∗𝑌𝑗    = 𝑉𝑗  . Then choose 𝑦𝜆   satisfying 

𝐾∗𝑦𝜆   = 𝑘𝜆   Ψ𝜆  ,  𝑦𝜆    = 1, where    Ψ𝜆 𝜆∈𝐼 𝑗
 is an orthogonal basis of 𝑉𝑗 , so that we have following 

approximation 𝑢𝑗 =   𝑔, 𝑦𝜆     𝑘𝜆    
−1

𝜆∈𝐼 𝑗
. For noisy data 𝑔𝛿 , we take wavelet dual least squares approximation 

solution of the problem in the interval 0 ≤ 𝑥 < 1 as 𝑃𝐽 𝑢
𝛿 𝑥, 𝑡 = 𝑢𝐽

𝛿 =   𝑔𝛿 , 𝑦𝜆  𝜆∈𝐼 𝐽

1

𝑘𝜆
Ψ𝜆 =

   𝑢𝛿 , Ψ𝜆  𝜆∈𝐼 𝐽 Ψ𝜆  .          

 Here in this method, for 𝑥 ∈  0,1 , 𝐾𝑥  is the operator on 𝕃2 ℝ  defined as  𝐾𝑥  𝑢 𝑥, .  = 𝑔 .   and 𝐾𝑥
∗ is 

the adjoint of 𝐾𝑥 .  Also,  𝑃𝐽 : 𝐿2 ℝ → 𝑉𝐽   is defined as 𝑃𝐽𝑠 =   𝑠, Ψ𝜆 Ψ𝜆  , ∀ 𝑠 ∈𝜆∈ 𝐼 𝐽
𝐿2 ℝ . The properties of 

these operators have been recorded in [57].   

 Finally, following result is presented by the authors of [57] which measures the error:   

9.1 Theorem[57]  Let 𝑢 be the exact solution of the problem and  𝑃𝐽𝑢
𝛿  is given as in the above proposed 

method. Let 𝑔𝛿(𝑡), satisfy the previously imposed assumption at 𝑥 = 1. Let 𝐽 = log2 2𝜋−1 𝑙𝑛 𝛿−1𝐸 𝑙𝑛 𝐸 −

𝑙𝑛𝛿 −2𝑝  2 . Then for any fixed 𝑥 ∈  0,1 ,  𝑢 𝑥, .  − 𝑃𝐽𝑢
𝛿 (𝑥, . )  ≤ 𝐸1−𝑥𝛿𝑥  ln

𝐸

𝛿
 

−2𝑝 1−𝑥 

  𝑒 + 1 +

𝑜 1   𝑎𝑠  𝛿 → 0.           

 Note that  if 𝑝 = 0 and 0 < 𝑥 < 1 , then the conclusion in the above theorem is Holder stability 

estimate given by   𝑢 𝑥, .  − 𝑃𝑗 𝑢
𝛿 (𝑥, . ) ≤   𝑒 + 1 𝐸1−𝑥𝛿𝑥 ; if 𝑝 > 0 and 0 ≤ 𝑥 < 1,  then the conclusion in 

the above theorem is logarithmic Holder stability estimate and if 𝑝 > 0 and 𝑥 = 0 ,  then the conclusion in the 
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above theorem becomes  𝑢 0, .  − 𝑃𝑗 𝑢
𝛿 (0, . )  𝑢𝛿(𝑥, . ) ≤ 𝐸  ln

𝐸

𝛿
 

−2𝑝

  𝑒 + 1 + 𝑜 1    𝑎𝑠 𝛿 ⟶ 0, which is 

similar to the convergence estimate in [59]. In general, the a - priori bound 𝐸 is unknown in practice.  In this 

case, with𝐽 = log2 2𝜋−1 𝑙𝑛 𝛿−1𝐸 𝑙𝑛 𝐸 − 𝑙𝑛𝛿 −2𝑝  2 , we have  𝑢 𝑥, .  − 𝑃𝑗 𝑢
𝛿(𝑥, . ) ≤ 𝛿𝑥  

 ln
1

𝛿
 

−2𝑝 1−𝑥 

  𝑒𝐸 + 1 + 𝑜 1   𝑎𝑠 𝛿 → 0, where 𝐸 is only a bounded positive constant and it is not exactly 

necessary known.  

    It is  claimed by Cheng et al [57] that most results putting forward error estimates  in the literature are 

of Holder's type:  𝑢 𝑥, .  − 𝑣(𝑥, . ) ≤ 2𝐸1−𝑥𝛿𝑥 , where 𝐸 is an a Priori bound of the function 𝑢 0, .  . 

Therefore, as 𝑥 → 0+, the accuracy of the regularized solution becomes lower .Infact at 𝑥 = 0 , we have 

 𝑢 𝑥, .  − 𝑣(𝑥, . ) ≤ 2𝐸, i.e at 𝑥 = 0, it tells us only that error is bounded by 2𝐸 and does not prove 

convergence. In the discussion made in above lines,  by taking suitable value of 𝐽,  we not only obtain the 

Holder continuity with 𝑝 = 0 for 0 < 𝑥 < 1, but also get a logarithimic Holder convergence estimate with 

𝑝 > 0 and 0 < 𝑥 < 1 . Especially we gained the logarithmic type convergence estimate on the boundary 𝑥 = 0 . 

This is in fact an improvement of various results in [43] 

 

X. Second order approximation of 𝑪𝟐 functions by using Shannon wavelet  analysis 
The 2nd order approximation of a function 𝑓 𝑥 ∈ 𝐶2 in  𝑥0 , is defined as 𝑓 𝑥 ≅ 𝑓 𝑥0 + 𝑎𝑝 𝑥 +

𝑏𝑞 𝑥 , where 𝑝 𝑥  , 𝑞 𝑥  are chosen in a such a way that 𝑝 𝑥0 = 0 , 𝑞 𝑥0 = 0,  𝑝′ 𝑥0 ≠ 0 , 𝑝′′ 𝑥0 = 0, 
 𝑞′ 𝑥0 = 0 , 𝑞′′ 𝑥0 = 0. In [60], Cattani has established following approximation of  𝐶2 functions by using 

Shannon wavelet  analysis.   

10.1 Theorem [60]: Let 𝑓 be a given function such that for a fixed 𝑛, 𝑘, in one of the two points 𝑥± =

2−𝑛 𝑘 + 2−1 ± 3−1 , it is at least 𝐶2 and   𝑓 ′ 𝑥+ > 0 ,   𝑓 ′ 𝑥−_
 < 0, then in an open interval centred at  

𝑥+ ,   𝑓(𝑥) can be approximated upto the second order by 𝑓 𝑥 ≅   𝑓 𝑥± + 9−121−3×2−1𝑛   𝑓 ′ 𝑥±  𝜓𝑘,𝑛 𝑛  −

6 𝜋−2𝑓 ′′ 𝑥±  𝜑 𝑥 − 𝑥± − 1 . 
    Practically in approximation problems, 𝑓(𝑥) and the point 𝑥0 are given, and we need to approximate  

𝑓(𝑥) up to 2nd order by equation given in above result. So to obtain the values of 𝑛 , 𝑘 we fix one parameter and 

obtain the  other by the equation 𝑥0 = 2−𝑛 𝑘 + 2−1 ± 3−1 . In fact , we take 𝑘 =  𝑥0 −  2−1 ± 3−1  ,       𝑛 =
 𝑙𝑜𝑔2   𝑘 + 2−1 ± 3−1  𝑥0 −1  , where  𝑥  denotes the greatest integer less than or equal to 𝑥. Following 

theorem gives us an estimate of  approximation error under some further restrictions on  𝑓.  

10.2Theorem [60]: Let 𝑓 be a given bounded function, such that, for fixed 𝑛 , 𝑘, in one of the two points 

𝑥± = 2−𝑛 𝑘 +  2−1 ± 3−1  , it is at least 𝐶2 and 𝑓 ′ 𝑥+ > 0 , 𝑓 ′ 𝑥− < 0 with 𝑓 𝑥 < 𝐾, 𝑥 ∈ 𝐼± = (𝑥± −

𝛿 , 𝑥± + 𝛿)  for some 𝛿 > 0.  Then in 𝐼± the approximation error ,∈ ±   satisfies ∈± ≤ 𝐾 +   

 ∓9−121−3×2−1𝑛 𝑓 ′ 𝑥±  𝜓𝑘,𝑛 𝑥± ∓ 𝛿  + 6𝜋−2𝑓 ′′ 𝑥±  𝜑 𝛿 − 1  , 𝑥 ∈ 𝐼±.  
    It is claimed in [60] that up to second order, the approximation  presented in theorem 10.1  is more 

efficient than the representation given in (1).  Moreover, the approximation  presented in theorem 10.1  can be 

used for a more general class of functions, 𝐶2 functions although locally, while (1) is restricted only to the  

𝕃2(ℝ) functions,  in fact only for case when  𝑓 ∈ 𝐵𝜓 .  

 

XI. Method of solving fractional differential equations by using Shannon wavelet analysis 

Since fractional order differential equations appear in the modelling of real world problems occurring 

in many fields such as fluid mechanics, bio medical signal processing, engineering, computer science, physics 

etc, a lot of attention has been paid to formulate methods to find exact and numerical solutions of fractional 

differential equations. As analytic solutions are usually hard to obtain much effort has been paid to obtain 

methods which solve fractional differential equations numerically. For example, Gejji and Jafari in [61], Ray et 

al in [62] and Wang in [63] used Adominian  Decomposition method; Momani and Odibat in [64], Nawaz in 

[65], and Obidat et al in [63] used variation Iteration method; Hosseinnia et al in [67] and Sweilam et al in [68] 

used Homotopy Perturbation method; Zurigat et al in [69] used Homotopy analysis method; Ervin and Roop in 

[70] and Saadatmandi  and Dehghan in [71] used spectral methods  and Chen and Wu in [72] used Haar wavelet 

method to solve fractional order differential equations. Also, Saeedi et al in [73] used CAS wavelet operational 

matrix of fractional order integration to solve integro- differential equation of fractional order.   

 Motivated by these works, Nouri and Siavashani [74] used Shannon wavelet analysis for solving 

boundary value problems of fractional differential equations. In fact, the authors derived a Shannon wavelet 

operational matrix of fractional order integration and applied it to find the solution of the Boundary value 

problems for fractional differential equation 𝐷𝛼𝑦 𝑡 = 𝑓  𝑡, 𝑦 𝑡 , 𝐷𝛽  𝑡  ,    0 ≤ 𝑡 ≤ 1 with boundary 

conditions 𝑦 0 = 𝑦0  , 𝑦 1 = 𝑦1 and  𝛼 , 𝛽 > 0.  
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XII. Evaluation of radar cross section(RCS) by using Shannon wavelet analysis  

Scientists have been engaged, for several decades to study scattering problems [27]. One of the most 

important parameters, among many, in the study of scattering is the electromagnetic scattering by a target which 

is traditionally represented  by its RCS [27] . The RCS is defined as "the area intercepting the amount of power 

that, when scattered isotropically, produces at the receiver a density that is equal to the density scattered by the 

actual target'' [75].  If the location of the transmitter and receiver is same, then RCS is usually known as 

''monostatic'' otherwise RCS is known as ''bistatic''. In [27] , Danesfahani and Varmazyar used Shannon wavelet 

basis to the method of moments to find RCS of conductive and resistive surfaces. They used Fredholm integral 

equations of first and second kind to model the problem; afterwards they used the method, proposed by them 

and recorded by us in section 7, based on the ''method of moments'' and ''Shannon wavelet basis '',  to solve the 

obtained Fredholm integral equations  and hence to evaluated the RCS .  

 

XIII. Applications of Shannon wavelet analysis to study human DNA 

Deoxyribonucleic acid (DNA) is a double helix consisting of two polymers which are connected by 

hydrogen atoms. The constituent polymers of DNA are  three types of nucleotides:   Deoxyribose,    Phosphate 

group and Nitrogenous base. Nitrogenous bases are further of four types: Thymine (denoted by the symbol T), 

Adenine (denoted by the symbol A), Guanine (denoted by the symbol G) and  Cytosine (denoted by the symbol 

C).The four bases are connected in such a way that one strand is connected with exactly one type of base on 

other strand, thus forming a pairing known as ―base pairing‖. In fact A is connected to T and C is connected to 

G.  The genetic code is based on these four bases and they instruct the cells of the body, how to synthesis 

proteins and enzymes. On average each chromosome contains 160 million nucleotide pairs and there are 24 

chromosomes in each cell. A lot of chromosomes data has been collected during recent years and is made 

available for scientific research. The available chromosomes data also includes a fifth symbol ‗N‘ in addition to 

T, C, A and G, but it partically does not have role in DNA coding. While coding the symbols T, C, A, G, N, are 

being transformed to numerical values. But since N does not have any effect in coding and pairing happens in T, 

C, A, G, so while translating the symbols into numerical values (for analysis) care must be taken to reflect the 

base pairing restriction and the fifth symbol existence. Keeping these points in view, we follow the following 

symbol translation: 𝐴 =  1 +  𝑖0, 𝐶 =  −1 +  𝑖0, 𝑇 =  0 +  𝑖1, 𝐺 =  0 −  𝑖1, 𝑁 =  0 +  𝑖0, where  𝑖 =  −1. 

Because of this numerical transformation of symbols, a sequence of numbers is obtained along the DNA strand 

and thus we get a signal 𝑥 𝑡 . Usually the signal 𝑥(𝑡) is complicated and can‘t be analysed  in ―time domain‖. 

Thus to study various characteristics of 𝑥(𝑡), we study it in frequency domain by applying some transform on it.  

Machado  et al [76] applied continuous wavelet transform by using followings six mother wavelets: Haar 

wavelet, Richer Wavelet, Shannon Wavelet, Hermition wavelet and Morlet Wavelet. They found that best 

results(with respect to interpretation and comparison) are obtained by using Shannon wavelets. 

 

XIV. Application Of Shannon wavelet analysis to improve quality of science for telemedicine 

In Intensive Care Unit (ICU) telemedicine, the most common form of telecommunication that has been 

used is ―Broad band‖. But generally Broadband, particularly in rural areas, has not been installed because of 

high cost on its networks infrastructure. So in rural areas, generally, lower bandwidth is installed for 

telecommunication in ICU telemedicine. As a result there is service contention at the customer‘s place. Thus a 

challenging   task is to have better service with a lower bandwidth. In their research work [77], the authors have 

used Shannon wavelets along with Daubechies wavelet to compress the data of ICU and thus achieving the goal 

of ''Providing quality service (up to a certain level ) using lower bandwidth in on access pipes.''  

 

XV. Applications of Shannon wavelet analysis to pathologic onion image segmentation 

As it is a known fact that in the post harvesting process, one important step is to store onion for future 

use. But when the onion is stored, it gets infected with Pathogen due to pests, soak and over- nitrogen. This 

leads to rotting in the packages and hence onion loss. Thus it is very important to grade and classify onions, in 

the post harvesting, so that the loss of onions get reduce. For this manual grading and classification of onions is 

really a huge task and is also not too fruitful, thus technology is required for this purpose. In this direction Image 

measurement technology discussed by Chen et al [78] is a new method in addition to earlier existing methods. 

One of the important part of this  image measurement technology  is Image segmentation. There are several 

classical image segmentation methods such as Sobel, Canny, quadtree and OTSU algorithm. All these methods  

take the gradient of the image as the feature descriptor directly in image segmentation. But  in these methods 

analysis of geometric properties of the target remains difficult to handle as the object boundary and target pixels, 

obtained by these methods, are often unclosed, thus econometric analysis of segmentation results is very 

difficult. So some new methods are  required to this end. In this context wavelet precise integration method 

(WPIM) has been developed, in recent years, to solve non-linear partial differential equations for image 

processing which really has been proving to produce efficient and precise image processing.   
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   In [79], Wang and Thei used Shannon wavelet in WPIM for pathologic onion image segmentation. 

After comparing they found that their method produced much better result in comparison to others. In their 

method, they firstly constructed a ―Shannon wavelet interpolation scheme‖ by exploiting the interpolation 

property of Shannon wavelet and homotopy perturbation method and as collection points of WPIM they took 

image pixels of  Burkholderia Capacia infected onions. Then they discretized the image segmentation model (C-

V model) into a system of non-linear ordinary differential equation. They solved this system of ODEs by the 

half analytical scheme combined with HPM and the precision integration method. At the end of their work, they 

discussed and compared the numerical efficiency and precision of WPIM with other methods such as OSTU 

method and  Sobel operator.    

   

XVI. Applications to finance 
[80] used Shannon wavelet analysis to value financial options. The technique that the authors 

developed is named as Shannon wavelet inverse Fourier technique(SWIFT). The exceptional nature of the local 

Shannon wavelets basis enabled the authors to adaptively determine the proper size of the computational 

interval. The authors climed that the SWIFT method will be applied to early-exercise options as well as in the 

context of risk management to compute the risk measures. 

 

XVII. Conclusions 

As said earlier,  among the many families of wavelets available in the literature,  Shannon wavelets  offer 

some more specific advantages, which are usually missing in the others such as:  

(1) Shannon wavelets are infinitely differentiable ; 

(2) Shannon wavelets are analytically defined;  

(3) Shannon wavelets are shapely bounded in the frequency domain;  

(4) Shannon wavelets enjoy a generalization of the Shannon sampling theorem; 

(5) Shannon wavelets give rise to the connection coefficients which can be analytically defined for any order 

derivatives, while for the other wavelet families they are computed only numerically that too for the lower order 

derivatives  only.             

 
Keeping this in mind it is clear that Shannon wavelets have  huge potential to get applied to solve 

differential, integral and real world problems. Although good amount of work has been done in this direction, 

yet in comparison to the Haar wavelet [17] a very small amount of work has been done. So for researchers there 

is a huge opportunity to work with Shannon wavelets extensively, which may provide efficient methods of 

handling differential, integral and real world problems,  as we have already seen in this survey in many cases 

where Shannon wavelets have been utilised.          
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