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Abstract: We find necessary and sufficient conditions under which a regular shifted sampling expansion hold
on Y7,V (p(ty)) and obtain truncation error estimates of the sampling series. We also find a sufficient
condition for a function in L (R) that belongs to a sampling subspace of L?(R). We use Fourier duality between
ym .,V (e(ty)) and L2[0,2m] to find conditions under which there is a stable asymmetric multi-channel
sampling formula onY 7, V (¢(ty)) .
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I.  Introduction

Let Y7 @(ty) in L2(R) , let Y7,V (¢(ty)) = span{ X7, @(t; —n): n € Z} be the closed
subspace of L2(R)spanned by integer translates {¥" ,@(t; —n): n € Z} of ¥, p(ty,). We call
Y,V (p(ty)) the series of shift invariant space generated by Y7 ; ¢(ty) and Y7, ¢(t;) a frame or a Riesz
or an orthonormal generator if { 37, ¢(t; —n) : n € Z} is a frame or a Riesz basis or an orthonormal basis
of Y71V (p(ty)). The multi-channel sampling method goes back to the works of Shannon [16] and Fogel
[15], where reconstruction of a band-limited signal from samples of the signal and its derivatives was found.
Generalized sampling expansion using arbitrary multi-channel sampling on the Paley—Wiener space was
introduced first by Papoulis [14] .

Adam zakria , Ahmed Abdallatif ' Yousif Abdeltuif [1] and S. Kang , J.M. Kim, K.H. Kwon [12]
considered sampling expansion in a series of shift invariant spaces and symmetric multi-channel sampling in
shift-invariant spaces space V (¢)with a suitable Riesz generator ¢(t), where each channeled signal is sampled
with a uniform but distinct rate.Using Fourier duality between Y7, V (¢(t;)) and L?[0,2r] [7,8,9,12], we
derive under the same considerations a stable series of shifted asymmetric multi-channel sampling formula in

1V (p(ty)) . For example, Walter considered a real-valued continuous orthonormal generator satisfying
Y e(ty) = 0((1 + X7 1taD™°) with s > 1, Chen, Itoh, and Shiki considered a continuous Riesz

generator satisfying Y7_; @(tg) =0((1 + XY= |ta)™° with s> % and Zhou and Sun considered a
continuous frame generator .7 ; @(t;) satisfying supr ez 2i=1l@ (tq — n)|* < co. We find necessary and

sufficient conditions under which an irregular sampling expansion and a regular shifted sampling expansion
hold on Y7, V(@(ty)) . We give an illustrative examples (see[6, 12]).

Il.  Preliminaries
We consider the notations and formulas in [6, 12]. Take { ¢ n : n € Z} be a sequence of elements of a

separable Hilbert space H with the inner product (,) and V = span{ ¢ n : n € Z} the closed subspace of H
spanned by { ¢, : n € Z}. Then { ¢,, : n € Z} is called
e aBessel sequence (with a Bessel bound B) if there is a constant A + &, > 0 such that ¥,,czl(®, @, )|> <

(A+ )|l @ |I* ¢ € H (orequivalently p € V),
o aframe sequence (with frame bounds (4,4 + &,)) if there are constants 4,4 + &, > 0 such that A|| ¢ ||

<Yl o) < A+l @ ||, ¢ € V, aRiesz sequence (with Riesz bounds (4,4 + &,)) if there

are constants A + &, 4 > 0

Yo,

nez
where [|c|l? = Tnez lc(n)|?, an orthonormal sequence if (¢, 9,) = 6, forallmandninz .

2

Allell® < <@A+elcll?c = {cMnez € 1P
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If {¢p, : n € Z} is a frame sequence or a Riesz sequence or an orthonormal sequence in H, then we say that
{@, : n € Z}is aframe or a Riesz basis or an orthonormal basis of the Hilbert subspace V in H. On L?(R) N
L'(R), we take the Fourier transform to be normalized as

1 ,
= ) - - —it& 2 1
Flel(H) = ¢ Nir fq) ®)e™ dt, e (t) € L*(R) n L'(R)

so that [ - ] becomes a unitary operator from L (R) onto L?(R).

Forany 37y ¢(ty) € L2(R), let X0  &(ty) = Tner Xi-ile (ts — W17,
G,(&) = Ynezle (€ + 2nm)|*. Then @(t) = @(t + 1) € L'[0,1],

Gy,(§) = G,(§ + 2m) € L'[0,2m] and
[l Xd=10(ta) ||2L2(]R) = || 2q=1 P @) o,y = NG llitpoqy-
The normalized Fourier transform is

FloIE) = $(6) = f Zw(td)]_[ s dtd,z Pt € PR I®)

—0 d=

so that \/%_n F [-] extends to a unitary operator from L2 (R)onto L? (]R) For each Y7, ¢(t;) € L>(R), let

Cp(ta) = lp(ta +m)I? and G,(§) = 19 + 2nm)|%.
AGEDIY 2,

nezZ d=1 nez
Hence
m m
Z C,(ty) = Z C,(ta + 1) € L[0,1], G, (§) = G, (§ + 2m) € 1[0, 2]
d=1 d=1
and
m m 1
Z o(ta) PRAD = =116, [l 1 g0y
12(R) d=1 L1[0,1]

In particular, 3.5, C, (td) < ooforae Yioitg ER. We also let

Zz (ta ) —Z Zco(td e

be the Zak transform [11] of Y7, (p(td) in L2(R)). Then Zd 12, (tq,§) is well defined a.e. on R? and is quasi-
periodic in the sense that

S Zy(tg +1,8) = e X0 Z, (g, )and B0y Z, (tg, € +2m) = Xy Z, (£, ).

A Hilbert space H consisting of complex valued functions on a set E is called a reproducing kernel Hilbert space
(RKHS in short) if there is a series of a functions .7, q(s, ty) on E X E, called the reproducing kernel of H ,
satisfying

(i) Xr1q(.,ty) € Hforeach 1, t, €EE,

() (f (), 201 (s, t)) = Xy f(ta) . f € H.

In an RKHS H, any norm converging sequence also converges uniformly on any subset of E, on which

| Xd=1q(,ta) ||2H: Yd-19(ta, ty) is bounded.
A sequence {@,:n € Z} of vectors in a separable Hilbert space H is
(i) a Bessel sequence with abound A + ¢y : gy > 0 if

D Ueolt < A+eplilltp e H,g> 0,
Nnez

(ii) a frame of Hwith bounds A + ¢y = A: ¢y > 0 if
Allgl? < pr,wn < @A+ ellgllt o€ H,z> 0,

(iii) a Riesz basis of H with bounds A + g = A:gy> 0ifitiscomplete in H and

2
> e,

nez

Allell® < < (@A+elicll?,c ={cM)}ez € 12,6 > 0,

where ||c||? = z:lc(n)l2
nez
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We let Y7, V (p(t;)) be the series of the shift invariant spaces, where Y7 ; @(ty) is a series of a Riesz
generators, that is, D719 (ty —n):n € Z}isaseries of a Riesz bases of 271 V (¢(ty)) . Then

Z V(o) = {Z(c “ )(ta) = ZZc(n)w(td ~1):C = {cMher € P

d=1 nezd=1
It is well known see [5] that Y7, @ (t,) is a series of a Riesz generators if and only if there are constant A such

that A < G, (§) < A+ ¢y a.e.on|0,2r]. Inthis case, {¥5-; ¢(ty —n):n € Z} is a series of a Riesz bases of
d=1V (@(ty)) with bound &, > 0. For any ¢ = {c(n)},ez and d = {d(n)},., in 12, the discrete

convolution product of c and d is defined by

cxd= {(c*d)(®n) = Ypezc (K)d(n — k)}.Then é&* (&) d (&) belongs to L'[0,2 r] and its Fourier

seriesis (¢ * d)(n)e™™¢ so that
2

& (od (o de = 2m|lc * d|P. 1)

0
Proposition 2.1: Let Y7, ¢(t;) € L>*(R)and A > 0. Then

(@) {XG=19(tq —n) : n € Z} is a Bessel sequence with a Bessel bound A + ¢, ifand only if 27 G, (§) <
A+ ¢eyae onf0,2n],
(b) {271 @(ty —n) : n € Z}isaframe sequence with frame bounds (4, 4 + &) if and only if
A<2nG, (§) < A+ga.e onE,, (2)
©{Xm,o(ty —n): n € Z}isaRiesz sequence with Riesz bounds
(A, A+ ¢g)ifandonlyif A <2mG, (£).(A+¢g) ae.on[0,2n],
d) { X071 @(ty —n): n € Z} isan orthonormal sequence if and only if
2nG, (§)=1lae.on[0,2m].
Proof: (See [6] ) For each Y7, ¢(ty) € L*(R)and ¢ = {c(n)},ez € [*, let
T)=(c * @)(t) =Yrezrg=1c(k) ¢ (t4 — k) be the semi-discrete convolution product of ¢ and
>m  @(ty), which may or may not converge in L?(R). In terms of the operator T, called the pre-frame
operator of { Y7, @(ty —n): n € Z}, (see [6]): {X71-1¢(ty —n): n € Z}is a Bessel sequence with a
Bessel bound B if and only if T is a bounded linear operator from 12 into Y7, V (¢(t,)) and ”T(C)HZLZ(JR) <
A+ gllcl)? ¢ € I3, {¥™p(ty —n): n € Z}is a frame sequence with frame bounds (4,4 + &) if and
only if T is a bounded linear operator from 12 onto Y7, V (¢(t;)) and
Allell> < TN 2y < A+ &)llcll?c € N, 3)
where N(T) = Ker T = {c € I?: T(c) = 0} and N(T)* is the orthogonal complement of N(T) in [?,
{Yi-19(t;—n): n € Z} is a Riesz sequence with Riesz bounds (4,4 + &,) if and only if T is an
isomorphism from 12 onto Y7, V (¢(t4)) and
Allell? < ITOI? 2g) < (A+e)llell? ¢ € 1 {Zi¢(ts —n) : n € Z} is an orthonormal sequence
if and only if T is a unitary operator from 12 onto X7, V (¢(t,)) .
Lemma2.2: Let Y7 o(ty) € L*(R). If{¥7" ¢ (ty — n): n € Z}is aBessel sequence, then for any
= {cMnez in e () = ¢ (9P &) (4)

so that

oo

I DOP e = [ 16 (De@Fs

—00

f ()26, ()dE . )
0

Proof: See [2,18]. Let X7, ¢(t;) be a frame or a Riesz generator. Then T is an isomorphism from N (T)*
onto X, V (p(ty)) so that

D Ve = [Z(c Q) ¢ € 12] - {Z(c < )(ta):c € N(D*
d=1 d=1 d=1
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where YL f(ta) = Xiti(c * ¢)(ta) is the L?-limit of ¥rez X1 ¢ (k) @ (ta — k). Applying (5), we
have N(T) = {c € I?: ¢é*(§) = 0ae.onE, }sothat

N(T)' = {c e l*: é&(¢§) =0aeonh, }. (6)
Proposition 2.3: putting Y7, ¢(ty) € L*(R) be a frame generator and
Y| f(ty) = Y0i(c x @)(ty) € XM,V (¢(ty)) hence ¢ € I2. Then ¢ € N(T)* if and only if c(k) =
(f)(ta - k))2py k € Z,1<d <m,hence {¥7_,9 (t; —k): k € Z} is the canonical dual frame of
{19 (ta—k) ke Z}.
Proof: Applying (4) forany Y0, f(ts) = (c * ¢)(t) € Xi=1V (¢ (ta))

DD - D)y = € (D e P g
d=1

= (@99 (f),%xsupp Gy (e ™€ )2
¢

2m
1 )
— o [ € Ox, e ds ke
0

since ¥ (&) = 266(5(){) xsupp G, (&) (see [13]), where x; (&) is the characteristic function of a subset E of R.
by

Hence

2m

. 1 .

2. - Dy e™ = 32 ) j & (s, (%5 d
= ¢'(9) xx, ©)

Now, ¢ € N(T)* ifand only if ¢* (&) =0a.e.on N, (see (6)).

Thatis, ¢* (&) = ¢* (&) XE, (&) a.e. on [0, 2]. Hence the conclusion follows. A Hilbert space H consisting

of complex-valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if the
point evaluation I, (f) = f(t) is a bounded linear functional on H for each t in E. In an RKHS H, there is a
function k(s,t) on E X E, called the reproducing kernel of H satisfying

(i) k(-,s) € HforeachsinE,

(ii) (f (). k(t,8)) = f(s).f € H.

Moreover, any norm converging sequence in an RKHS H converges also uniformly on any subset of E, on
which k(¢, t) is bounded (see [4]).

If a series of shift invariant space .7, V (¢ (t;)) with a frame generator Y7 ¢(t;) is an RKHS, then its
reproducing kernel is given by

m

i ko) = ). D olta— mpG-mn) = Ziw(td -WeG-m )
d=1 1

nezZ d= nezZd=1
where {37, ¥ (t; — n) : n € Z}is the canonical dual frame of { X', ¢ (t; — n) : n € Z}. We now find

conditions on the generator Y,7; @(t;) under which Y7, V (¢(t;)) can be recognized as an RKHS. Since all
functions in an RKHS must be pointwise well defined, we only consider generators
1 @(ty) satisfying X7 @(ty) is a complex valued square integrable
function well defined every whereon R . 3
If X521V (o(ty)) is recognizable as an RKHS with the reproducing kernel Y7, k(t4,s) as in (7), where
-1 ¢(ty) isaframe generator satisfying (8), hence

o) = D lpl-ml = > 3 k)@ — Mgl

nez nezZd=1

< A+ elKC)IP g = A+ edk(s,5)s € R

therefore A + g is an upper frame bound of { ¥7; @ (t; — n) : n € Z}. Hence

D (t;) = lo (t; - n)|> < oo for any t in R . 9
Swa=Y S

nezZd=1
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Conversely, we have:

11, Asymmetric multi-channel sampling Lemmas
The aim of this paper is as follows (see [11]). Let {L(14¢,) [‘]: &1 = 0} be N LTI (linear time-invariant)
systems with impulse responses {35 L14¢,)(t4): & = 0}. Develop a stable series of shifted multi-channel
sampling formula for any signal Y7-; f(t;) € X7,V (¢(ty)) using discrete sample values from
{(X=1La+e)(ta): &1 = 0}, where each channeled signal Y.7'_; Li4.) [ f1(tg) for & > 0 is assigned with a
distinct sampling rate

Z f(ty) = Z Z Z Layep [f (0(1+51) +(1+ 82)(1+£1)n)5d(1+51)n (ta),

e1=0n€Zd=
Zf(td) e ZV(w(td)). (10)

where {2:;;1 Sd(1eyn(ta): &1 20,0 € Z} is a series of frames or a Riesz basis of Y7, V (¢(t4)),

{(1 + &) (14¢y) * & = 0} are positive integers, and {o(;4.,): &, = 0} are real constants. Note that the series of
shifting of sampling instants is unavoidable in some uniform sampling [11] and arises naturally when we allow
rational sampling periods in (10). Here, we assume that each L.,y [-] is one of the following three types: the
impulse response Y7 ; I(t,) of an LTI system is such that

() =1 l(ta) = Xg=16(tq +a),a € Ror

(i) g1 U(ta) € L*(R) or

(iii) I(¢ ) € L”(R) U L*(R) when

Hy(§)=Xnez | (¢ + 2nm)| € L*[0, 2] .For type (i),

YL F1(t) = Y0 f(ty + @), f € L*(R) so that L[]: L2(R) » L?(R) is an isomorphism. In
particular, for any 3.0, f(t4) = if-1(c * @)(ta) € TF—1V (9(t),

YELLLf 1) = Xy (c * ) (ty) converges absolutely on R since

ch(td)_ ZZIlp(td + ) < oo, th € R,where

nezZd=1
Y (ty) =27 [(p](td) = Y19 (ty + a). For types (ii) and (|||) we have the following results (see
[11]):
Lemma 3.1. Putting L[-] be an LTI system with the impulse response Y7, I(t;) of the type (ii) or (iii) as
above and

iy W(ta) = B L)) = Shaae * D(e) Then
(@) Zw(td) € Ca(R) = [Z u(t) € CR): L, lim > u(ta) =o},

d=1 d=1ltal=>e £
(b) Sule 2d=1Cy(tg) <o}
(c) for each Y7, f(ty) = Zd:l(c * @)(tg) € Y=V (‘P(td)),
TALLf1ty) = 2z, (c * P)(ty) converges absolutely and uniformly on R.

Hence Y71 L[ f 1(ts) € C(R).
Proof .Suppose that Y™ ,[(t;) € L*(R). Then Y™, ¥(t;) € C,(R) by the Riemann-Lebesgue lemma

since P(&) = P&)I(E) € L'(R). Since
~ 1 1
DB +20m)| <6, (026,62

nez
2 2m
> e +2nm)| < [ 6@ G < 2|6y )l gy 1P ey
nez LZ[OZn] 0

Thus for any Y7 t in R, we have by the Poisson summatlon formula (se [1])

Zl,l}(f + 2n7r)1_[ itaG+2nm) — ZZ Y(t, +n)e ™ in L2 [0,27]

nez nezZd=1

Therefore any >7_;t; inR
Z Z Yty +n)e ™

i C,(to) = ZZW(td + )2 =
d=1 nezZd=

nezZd=

2

L2 [0,27]

DOI: 10.9790/5728-1205085564 www.iosrjournals.org 59 | Page



Sampling Expansion with Symmetric Multi-Channel Sampling in a series of Shift-Invariant Spaces

le(f +2n7r)1_[ itq(§+2nm)

nez

= ”G(p (f )”Loo ®) ” ”2L2(]R)'
By Young’s inequality on the convolution product, ||L[ f ]ll=®) < IIf ll.2@lllIl 12y SO that L[] : L*(R) -
L”(R)isa bounded linear operator Where

Zﬂm = Z(c Pt = ch(nyp(td —n) € Zvap(tw

nezZd=

ZL[f](td) —ZZc(n)L Dlta =] ZZc(n)w(td —n),

nezZd=1 nezZd=
which converges absolutely and uniformly on R by (b). Now assume that H,(§) € L* [0,2m]. The case

[(§) € L*(R)is reduced to type (ii). So let {(§) € L”(R). Then $(§) € LZ(]R{) N L*(R) so that P(&) =
POIE) € 2(R) n LY(R) and so Y(&) € Co(R) NLA(R)). Since

ZWJ({ + 2n7'[)| < Il .= ryH, (€ ), we have again

nez

by the Poisson summation formula
m
Z Cy(ta) = Zzp(f + 2nm) n itq (¢ +2nm)
d=1 nez

S ”l”Z LDO(R)”HgD (f)” LZ [0'27.[]
so that supg Y=y Cy (tg) < . Forany f € L*(R),
m

1 .
ILLF 1Dz = I * Uy = —== [IFEDIE)] 2
; d /L2 (R) L*(R) NeT L*(R)

1% [0,27]

L2 [0,27]

= ”lA”Loo(R)”f ”LZ(R)'
Hence L[-] : L*(R) - L?(R) is a bounded linear operator so that for any
Y1 f(ta) = Xi=1(c * @) (ta) € X1V (@(ta)) T LLf 1(ta) = Zii(c * ) (ta) converges in L*(R).
By (b), X771 (c * ) (ty) also converges absolutely and uniformly on R .
By Lemma 3.2(b), Y™, ¥(ty) € L*(R) . However, ¥, (c * ¥)(t;) may not converge in L?(R) unless
ity — n):n € Z}is a Bessel sequence.
Lemma 3.2(b) improves Lemma 1 in [9], in which the proof uses Y7, I(t;) € L*(R) n L}'(R),
supg =1 Cy (tq) < oo, and the integral version of Minkowski inequality. Note that the condition H, (¢ ) €
L*[0,2mr] implies ¥, @(ty) € L*(R) N C,((R) and supg Xj=; C, (t4) < oo. (see [1]). Note also that
H,(¢) € I*[0,2n] if @& = 0o((Q + €D~ ), (1 + &)(14e) > 1,& =0, which holds e.g. for
Y0, (tg) = Xi-1(@o * ©,_1)(ty) the cardinal B-spline of degree n (= 1), where
@0 = Xd=12X0,1)(ts)- We have as a consequence of Lemma 3.2: Let L[-] be an LTI system with impulse
response Y7, l(ty) of type (i) or (ii) or (iii) as above and Y5, ¥ (ty) = >i=iLlp](ty). Then for any
Yi=1f(tg) = Xg=1(JF ) (ta) € 22”=1V(<p(td)),F(€) € L?[0, 27r]

Z LLF 1) Z (€523 EarDtom (11

since L[] is a bounded linear operator from LZ(IR) into L2(R) or L°° (R)and {¥7,Y(ty —n):n € Z} € 2,
Yd-1ta € R Let Yd=1Va+ep(ta) = Xa=1La+eple](ts) and
9a+ep€) = - Zy ey (O4e,) §)r €1 2 0. Then we have by (11)

Lasyep If ](0(1+£1) + 1+ 52)(1+£1)n) (F (f) Z¢(1+£1) (G(1+£1) + (1 + &) 4ep™ f))LZ [0,27]
=(F (£ ), gasep € )e IFeDarenndy 00 (12)

for any Y0o, f(ty) = X7-1(J F)(ty) € Yi=1V ((ty)) and & = 0. Then by (12) and the isomorphism J
from L2 [0,27] onto X7, V (e(t4)), the sampling expansion (10) is equivalent to
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N

FE) = D D F G Gare GIe D™, o864 a€)
e1=0n€zZ
F (§) € L* [0,2m], where {Sq11¢).(§): & = 0,n € Z} is a series of frames or a Riesz basis of L* [0,27]. This
observation leads us to consider the problem when is {g(14¢,) (§ e tteD e ne, & =0,n €Z}aseries of
frames or a Riesz basis of L? [0,2r]. Note that
{ g(1+€1) (E )e—i(1+€2)(1+£1)‘ﬂ§: & >0,n € Z} —

. (1 + 82)
—i(14+ep)né .
{g(lﬂl)‘m(lHl) (6 )e ¥ria 201 < M+en) = (1 + 52)(1+e1) el

where (1+¢&) = lem{(1+ &)14ey : &1 =0} and
Ja+epmare§) = Jarep(€ YelFeddaten (Maten = VS for ¢ > 0. Let D be the unitary operator from

2m

L% [0,2]onto L2(1)(1+e2)  where I = [0, 1oy » defined by
£2
_ 2 (1+£2) 2
DF = [F (5 + k-1 (mz))]k:l JF (£) € L2 [0,21]. We also let
T
GE)= [D91,1(5 ),---,Dgl a+ep) (€ ),---ngN,l(f ):---:DQN a+ep (€) (13)
"(1+e2)1 "(1+e2)n
(1+&) .
be a —— | X(1+ &) matrixon I and 4,,(£), A4 (§)

“= I+ &) atep

be the smallest and the largest eigenvalues of the positive semi-definite (1 + &) X (1 +¢&,) matrix G(&) *
G (&), respectively.
Lemma3.2: Let F(§) € LY(R) so that f(t) =F [F](t) € C(R)and 0 < o < 1.Then

Z elo(§ +2mIE (& 4+ 2nm) converges absolutely in L'[0, 2] and

NeEz

| 1
Zew(f“m)F(f + 20m) ~——2;(0,€)
s

V2
1 .
= EZ f(O' + n)e""i (14)

Nnez

nez

- 1 . . . .
which means that Ezf (o, &) is the Fourier series expansion of

Zei”(f“m)F(f + 2nm) . If moreover Z el +20mp(E + 2nmr)

nez nez
converges in L?[0, 2r] or equivalently {f (¢ + n)},e, € (2, then
) 1
el (EH2mp(E 4+ 2nm) = —17Z¢(0,§) in L2[0,27]. 15
Z (¢ + 2nm) = ——=2/(0,8)in L2[0,2n] (15)
Proof: Assume that (§) € L'(R) . Then
2
D llew2mres + 2nml,y,, = O [ IFG + 2nmldg
nez nez Q
2(n+)m +o0
=3 | s = | Foas
Nnez 2nm —o0
so that
Zei"(“Z””)F(E + 2nm) converges absolutely in L![0,2n] .
nez
Hence

Zei“(“Z””)F(f + 2nm)
nez
1 . , ,
~2_Z Z ew(f +2n7r)F(f + 21’17’[) , e—lkg‘ >L2[0 2m] e—ka’
T )

k€z nez
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where
(Z eloC+2mp(E 4 2nm), e~ )12[0.21]

nez
2m

=J- Ze""(“z"”)F(f + 2nm) ek d &

0 nez
2m

= Zj el +EE + 2nm) e d &

nez
+o0

= f F(§)e'wthide =\2m f(o + k)

by the Lebesgue dominated convergence theorem. Hence (14) holds. Now assume that F(§) € L!(R) and
Z elo(§+2nm)p (& + 2nm) converges in L2[0, 2rr]. Then (15) becomes

Nnez
an orthonormal basis expansion of Zei"(“Z””)F({ + 2nm) in L2[0, 27

Nnez

so that (15) holds.
Corollary 3.3: (see [3]). If F(£) is measurable on R and

Ynez F(E + 2nm) converges absolutely in L?[0, 27t], then

1
ZF(E +2nm) = ==7,0,§) where f(t) = F[FI(0),

Proof : Assume that Z F(¢§ + 2nm) converges absolutely in L2[0, 2 ]. Then
Nnez
Z F(§ + 2nm) converges absolutely also in L'[0,2 ] so that F(§) € L'[0,2 n]

NneEz

and Y, F (& + 2n m) converges in L2[0, 2r]. Hence the conclusion follows from Lemma 3.1 for ¢ = 0.
Example 3.4: (see [1],[19] and [15]). Let ¥.7_; @0 (ts) = XG=1 X[0,1)(ta) and

m m 1 m m m
Dot = Y ot 90t = [ D uala = s n=1,Y @ul) = ) Busa(ta)
d=1 d=1 0 d=1 d=1 d=1

be the cardinal B-spline of degree n. Then
i n+1

- 1 (1—e7t N 1 , &
7O = =) and 19n@) = = |sinc £

It is known in [5] that Y7, @o(t4) are an orthonormals generators and Y74 (¢, (t4) for n = 1is a continuous
Riesz generator. Moreover since Y., (¢, (t;) has compact support,

m m m
supqubn(td) = sup]RZ Z|<pn(td - k)|? < o so that ZV (¢ (tg)) is an RKHS for

d=1 kez d=1 d=1
n = 0.Since go(oc + n) =4y, forn €Zand0<0<1, Z, (0,§) =1

so that by Theorem 3.3 in [1], we have an orthonormal expansion
m

D= D o+ eolta = 1) L f € DV (o ()
d=1 1 d=1

nezZ d=
which converges in L2(R) and uniformly on R since

i Dy (ty) = Zikpo(td -nm*=1 onR.
d=1

nezd=1
For YX0_101(ts) = txpn(ty) + 2 — ) XGiixp2 (tg), and 0 <o < 1, ¢1(t) = o,
pi(c +1) =1—-0,¢;(0 + n) =0forn = 0,1 so that Z, (5,) =0 + (1 — a)e”™. Then
12y, (0., =120 = 1land ||Z,,(s,8)]| =1. Hence by Theorem 3.3 in [1], for any o with

n+1

,n = 0.
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1
0<o<1lando=# 77
we have a Riesz basis expansion

if(td)=z if(a+n)5‘(td—n) ) feiV(%(td))
d=1 d=1

nezZ d=1
which converges in L?(R) and uniformly on R . For

1 1 1 . R
Yd=1P2(tg) = gtz Y1 X2 (ta) + @(& —2-3) i1 xn2 (ta) + 2 B-0*¥i, X2 (Eg), it s
known (see [1] and [11]) that
1 1 1 . . R .
|z,,(, (,‘)||0 = 0but ;< ”Z(,,2 (E ,f)”o < ”Z(,,2 (E ,f)”m < 1 so that there is a Riesz basis expansion
m

i = D r(3+n)st. —m.r e iv @) (16)
d=1 1 =1

nez d=
which converges in L2(R) and uniformly on R. Since the optimal upper Riesz bound of the Riesz sequence

{o,(ty — k) : k,d € Z}is1 (see [5]), we have for the sampling series (16)

iumf)(td)nzz(m < oY (3 e iv (02 (&) -
d=1 lk]>n d=1

On the other hand, we have

Hor () =) 162 (5 + 2km)| = \/%Z |Si"0(%+")|3
kezZ

k€L
1

<= (i) -7
s —— Sinc \ — = —.
2m & 2 2T
2
Example 3.5: (See [1]) Let X0, o (tq) =117 er be the Gauss kernel . Then
—¢2
@) =ez and 0 < [|G,(Ollo < 1G,( )lo < o0 so that ¥7_; ¢(ty) is a continuous Riesz generator

satisfying

supg ) (ts) = sups ) > 1@ (tg =IO < w0.Since ¢ (¢) € L'(R)
d=1 keZ d=1
and { @ (N)}ez € 1, we have by Lemma 3.1

-1
2,006 =V2m ) e sothat0 < 12, @)l < 12, Ol < .
nez

Hence by Theorem 3.3in [1], 25, V (@(ty)) isan RKHS and there is a Riesz basis expansion

i OEDY if(n)S(td —n).f e iv (9(t2))
=1 neh = a=1

which converges in L2(R) and uniformly on R .

Corollary 3.6. (Cf. Theorem 3.2 in [19].) Let N = 1. Then there is a series of Riesz bases {>.7-; s, (tz):n €
Z} of 35, V(e(ty)) such that
m

Y =D LA+ A+ ems ), ) fE) € Y V(o) (17)
d=1 d=1 d=1

nezd=1
ifand only if e, = 0 and

0 <[z, @O, < Iz, @O, - (18)
In this case, we also have
(i) ZZL:lSn(td)A(; d=15(tg —m),n € Z,
cen A _ %)
(i) $6) = ;7%
(iii) L[s](o +n) = 6,9,n € L (19)
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2
Proof .Note that for &, =0,G(¢) = % Zy(0,8) and 24,(§) = Ay(§) = (i) |Z¢(a,§)|2 so that
0 <a; <pP; <oo if and only if (18) holds. Therefore, everything except (19) follows from Theorem 3.4 in

[1]. Finally applying (17) to X5 ¢(ta) gives Xi—y @(ta) = Xy ez Xa=1 ¥ (0 +n)s(ta —n)

from which we have (19) by taking the Fourier transform. When »7_, I(t;) = X7 6(t,) so that L[-] is the
identity operator, Corollary 3.6 reduces to a series of regular shifted sampling on Y7 V(@(t;)) (see
Theorem 3.3 in [17]).

Corollary 3.7. Suppose Z, (2 — &y,¢) € L*[0,2m],0 < & < q — 1,then the following are all equivalent.

(i) There is a series of frames {zggl s, (tg):n € Z}of ¥,y V((p(td)) for WhICh

Zf(td) -> ZL 12 = &)si (), Zf(td) e va(td))

nezZd=
(ii) There is a serles of frames {Zm 1Ssep (ta—n)i & >0,7n e Z} of Zm 1 V((p(td)) for which

Zf(m =3 Z LUF1(n = 20 )5crsepy (ba = 1) Zf(td) e Z V(9 (o).

neZe120d=

(i) Z 12,2 - .9l > 0.
£120
Proof: Since
{LIf12—e)}={L[f1(n—& ): n € Z} .Now we have {L(y.,) []: & > 0} with
Liasey [1=L[1 & >0 . Then gy (€) = izw(z —&,&),& > 0and
2 R R
GG = (2%)228120|Z¢(2 —&,¢)|" . There for a; > 0ifand only if

0

Y1z, -z. 9l |[o> 0.

8120

References

[1]. Adam zakria , Ahmed Abdallatif , Yousif Abdeltuif [17] sampling expansion in a series of shift invariant spaces ISSN 2321
3361 © 2016 IJESC

[2]. O. Christensen, An Introduction to Frames and Riesz Bases (Birkh auser, 2003).

[3]- J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford University Press, 1996).

[4]. G. G.Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory 38 (1992) 881-884.

[5] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2001.

[6]. 1. Djokovic, P.P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE

[7]. A.G. Garcia, M.A. Herndndez-Medina, G. Pérez-Villalén, Oversampling and reconstruction functions with compact support, J.
Comput. Appl. Math. 227(2009) 245-253.

[8]. A.G. Garcia, G. Pérez-Villalon, Dual frames in L2 (0,1) connected with generalized sampling in shift-invariant spaces, Appl.
Comput. Harmon. Anal. 20(2006) 422-433.

[9]. A.G. Garcia, G. Pérez-Villalon, A. Portal, Riesz bases in L2 (0,1) related to sampling in shift-invariant spaces, J. Math. Anal.
Appl. 308 (2005) 703-713.

[10]. Y.M. Hong, J.M. Kim, K.H. Kwon, E.H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf.
Process. 5 (2007) 753-767.

[11]. AJ.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. 41 (1993) 3360—
3364.

[12]. S.Kang, J.M. Kim, K.H. Kwon Asymmetric multi-channel sampling in shift invariant spaces J. Math. Anal. Appl. 367 (2010) 20—
28

[13].  X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. 5 (1999) 347-354.

[14].  A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst. 24 (1977) 652-654.

[15].  L.J. Fogel, A note on the sampling theorem, IRE Trans. Inform.Theory IT-1(1995) 47—48.

[16]. C.E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Eng. 37 (1949) 10-21.

[17].  J.M. Kim, K.H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008) 223-248.

[18]. Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf.
Process. 5 (2007) 753-767.

DOI: 10.9790/5728-1205085564 www.iosrjournals.org 64 | Page



