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Abstract: The existence and uniqueness solution of a nonlinear partial differential equation (NPDE)of fractional
order are discussed and proved in a Banach space H due to Picard’s method depending on the properties we
expect a solution to possess. Moreover, some properties concerning the stability of solutions are obtained.A
systemof nonlinear Volterra integral equations of the second kind (SNVIES) is obtained. The modified Toeplitz
matrix method (MTMM) is used, as a numerical method, to obtain a nonlinear systemof algebraic equations
(NAS). Also, many important theorems related to the existence and uniqueness solution of the algebraic system
are derived. Finally,numerical results are obtained and the error is calculated.
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I.  Introduction and Basic formulations

The semigroups methods play a special role for partial differential equations and in applications, for
example they describe how densities of initial states evolve in time.Moreover, there are equations which
generate semigroups. These equations appear in such diverse areas as astrophysics-fluctuations in the brightness
of the Milky Way [1], population dynamics [2,3], and in the theory of jump processes.In [4], EI-Borai studied
the Cauchy problem in a Banach space E for a linear fractional evolution equation. In his paper, the existence
and uniqueness of the solution of the Cauchy problem were discussed and proved. Also, the solution was
obtained in terms of some probability densities. In [5], EI-Borai discussed the existence and uniqueness solution
of the nonlinear Cauchy problem. Also, some properties concerning the stability of solutions were obtained. In
[6] Abdou et al., improved the work of El-Borai in[4]and obtainednumerically the solution of the Cauchy
problem. More information for the PDEsand its solution can be found in [7-9].
Consider the following NPDE of fractional order:

0%u(x,t)
G = Au(x,t) + F(x, t, B(t)u(x, t)), (1.1)
with the initial condition: u(x,0) = uy(x), (1.2)

in a Banach space #, where u(x, t)is an H'-valued function on H x [0,T],T < o, A is a linear closed and
bounded operator defined on a dense setS;, {B(t),t € [0, T]}is a family of linear closed and bounded operators

defined on a dense set S, © S, in ¥ into # , F is a given abstract function defined on # x [0, T]with values

iNH,uy(x) ExHand 0 < a < 1.
It is assumed that A generates an analytic semigroup Q(t).This condition implies:

k
oI <k for t=0 ,and||AQ(t)| < m for t>0, (1.3)

where]|. || is the norm in H and k is a positive constant (see Zaidman [7] ).
Let us suppose that B(t)g is uniformly Holder continuous in t € [0, T], for every g € S; ; that is
1B(t)g — B(t)gll < ki (t, — t;)F, (1.4)
forall t, > ty,tq,t, € [0,T], where k; and 8 are positive constants, § < 1.
We suppose also that there exists a number y € (0,1), such that

k
1B (tz) Q(t1) Il < t—ZIIhII, (1.5)

1
wheret; > 0,t, € [0,T],h € Hand k,is a positive constant (see[4,8,9]).
(Notice that Q(t)h € S;for each h € H and each t > 0).
Also, it is assumed that, the function F satisfies the following conditions:
(i) F is uniformly Holder continuous in t € [0, T]; that is
”F(X, tZ'W) - F(.X', tl,W)” < l(tZ - tl)'B' (16)

for all t, > ty,t1,t; € [0,T] and all x, W € 3, where land B are positive constants; § < 1,W = B(t) u(x,t)
and||. || is the norm in H .
(i) F satisfies Lipschitz condition

|[F(x, 6, W) = F(x,t, W) < N, OIW -=W*|;  (IN(x, DIl <L), 1.7
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forallx ,W,W* € H and allt € [0, T], where [; is a positive constant.
)| F Cx, e, WH|| < U*[|[W]], (I*is a constant) . (1.8)
Following Gelfand and Shilov (see [10],[11]), we can define the integral of order « > 0 by

t

1
a — _ a—1
1F(©) = 15 [ (€= 0 r@)ds
0
If 0 <a <1, wecandefinethe derivative of ordera by
t ’
a“sfe 1 f () _ df(9)
dt* T -a)) (t—0)« a9, £ = ’
0
wherefis an abstract function with values in 7.
Now, it is suitable to rewrite the NPDE((1.1), (1.2))in the form
t
1
— _ a-1
ux, t) = ug(x) +_F(a)f(t ) Au(x,6)do
0
r( )f(t 0)* 1 F(x,0,B(0) u(x,0))do . (1.9)

Let Cy (H x [0, T])be the set of all continuous functlons u(x, t) € 3, and define on Cy (3 X [0, T])a norm by
Il Ollcse@exioryy = maxlluCx, O)lly , forallt € [0,T],x € .

By a solution of the NPDE((1.1),(1.2)), we mean an abstract functionu(x, t) such that the following conditions
are satisfied:
@u(x,t) € Csr(H % [0,T]) and u(x, t) € S; forallt € [0,T],x € H.
(b) wexwts and continuous on H x [0, T], where0 < a <1 .

(c)u(x t) satisfies Eq.(1.1) with the initial condition (1.2) on £ x [0,T] .
Lemma 1(without proof):If A >1 and0 < § < 1 , then
t

Je’“] (t—n)°tdn << ) [1+ ] (1.10)
0

Il.  The existence and unigueness solution of NPDE of fractional order
Here, the existence and uniqueness solution of Eq. (1.9) and consequently its equivalent NPDE ((1.1),(1.2)),will
be discussed and proved in a Banach space # by virtue of Picard’s method.
The formula (1.9) is equivalent to the following integral equation(see[4])
(o) t o

u(x,6) = f £.(0)Q(t°0)ug(x)d0 + a j j 8(t — 1)*1€, (6)Q((t — ) )W (x,7) d6 dn, @.1)

0 00
whereé, (0) is a probability density function defined on [0, ),
w(x, t) = F(x, t, B(t)u(x, t)) = F(x, t, W(x, t)), (2.2)
and

W t) = f £, (0)B(DQ(t70)ug(x) d8
0

va [ [ 0 -m16.0) BOQE - W owwndodn.  23)
00
Theoreml: The NPDE((1.1),(1.2)) has a unique solution in the Banach spaceC;(H x [0,T]) .
The proof of this theorem comes as a result of the following lemmas.

Lemma 2: Under the conditions (1.5) and (1.7), the integral equation (2.1) has a solution inC; (H x [0, T]).
Proof: Using the method of successive approximations, the formulas (2.2) and (2.3),lead to

s (x,6) = F(x, 1, f £,(8) B(D) Q(t“0)uo(x)d6
0

ta f f 8(t — 1)*1€,(6) B(t) Q((t — 1)*8), (x,17) d6 dn) .
00

Hence, in view of the condition (1.7), we get
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17,115, 0) = 7, G, Ol <
al; f f 8(t — )£, (O)IBOQ(E — M) 8)) [ (. m) — W1 G )]l dOcln .
00

Using the condition (1.5), we obtain
t

”Wn+1 (x, t) - Wn (X, t)” <M H;%X[e_l(t-‘—X)”Wn(x' t) - Wn—l(x' t)”] J. el(n+X)(t - U)v_l d77 ’ (24)
0

where,

fee]

v=a(l-y), M"= allj 017vé,(0)d  and A > 1. (2.5)

0
Introducing (1.10) in (2.4),we have

1\" 1
max[e 4, 1 06, 0) = W, Co O] < M (5) 1+ ] maxe €01, (2, 0) = Wy (O]
X, X,
We can choose A sufficiently large such that

1\Y 1
Hence, the above inequality can be adapted in the form
max[e ||, 41 (x, £) — W, (x, O] < pmax[e 2, (x, ) = Wy G, O]

By a successive application of the above inequality, we get
max [e 1,41 Cx, £) = Wy Cx, O] < pemax|e AW, (v, 6) = B0 (O]
X, X

< i max[e @, (x,8) = W, (6, O] < -
< " max[e @ (6, 6) = Wy, O]

wherei, (x, t) is the zero approximation which can be taken the zero element in thespace 7.

Thus, the series Z [|Wy, 41 (x, t) — W, (x, t)|| converges uniformly in 7 x [0, T].
n=0
Since W, 41 (x, t) = X1o(W;41 (x, t) — W;(x, t)) , it follows that the sequence {W, (x, t)}converges
uniformly in the space C;-(H x [0,T]) to a continuous function F(x, t, Wi(x, t)) which satisfies Eq.(2.1) for
all(x,t) € 7 x [0, T]. Consequently, u(x,t) € Csr (3 % [0,T]), where
[’} t oo

u(x ) = f £(0) Q(t“0)uy (0)dO + j j 8(t — n)*1&,(0)Q((t — m) 6)F (x,m, W (x, n))d6dn .
0 00

Lemma 3: Under the conditions (1.5) and (1.7), the integral equation (2.3) has a uniquesolution in Cy (H X
Proof: Let u;(x,t) and u,(x,t) be two solutions of Eq.(2.1), then from the formulas (2.2) and (2.3) with the
aid of condition (1.7) , we have

t oo

W, (x, ) =W (x, Ol < aly f f 0t —m* & (OB QUt —m*O) W, (x,m) — Wy (x, M]lldOdn .

00
Using the same argument of lemma (2), we get
max[e A+, (x, €) = Wy (x, Ollae] < o,

where p = maxx,t[e_’l(t”)llwz (x‘, t) — w, (x, t)llﬂ].
Thus, from (2.6) we have
p= me}X[e‘m”)IIWz (x, t) = Wi (x, )llz] = 0.
X

This completes the proof of the lemma.

Lemma 4(without proof): Under the conditions (1.4), (1.5) and (1.6), the solution u(x, t) of Eq.(2.1) satisfies a

uniform Holder condition.(see [4])

Proof of Theorem 1:By virtue oflemmas (2), (3)and (4), we deduce that the solution u(x,t) of Eq.(2.1)

represents the unique solution of the NPDE((1.1),(1.2)) in the Banach space Cy (3 X [0,T]), and u(x,t) € S; .
Now, we will prove the stability of the solutions of the NPDE((1.1),(1.2)).In other words, we will show

that the NPDE((1.1), (1.2))is correctly formulated.

Theorem 2 : Let {u, (x,t)} be a sequence of functions, each of which is a solution of Eq.(1.1) with the initial

condition u, (x, 0) = g,,(x), where g,,(x) € S;(n = 1,2, ...). If the sequence {g,(x)} converges to an element
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ug(x) € S1, the sequence {Ag,(x)} converges and the sequence {B(t)g,(x)} converges uniformly on
J x [0,T] . Then, the sequence of solutions {u, (x,t)} converges uniformly on ' x [0, T] to a limit function
u(x, t), which is the solution of the NPDE((1.1),(1.2)).

Proof: Consider the sequences {f, (x, t)} and {u;, (x, t)}, where

a%u; (x, t)
Y Au;(x! t) = ﬁl(x! t) )
u’:l (x' tt) =u, (.X', t) —I9n (X) ’ un(xl 0) =0n (X) ’

w0 =a f f B(t — )™ &, (0)Q((t — 1) 6)f, (x, n)d6dln,
00

and

fur, ©) = F(x,t, B(t)uy, (x, ) + B(£) g, (x)) + Ag (x) .
Thus, we get
”fn (X, t) - fm (x' t)” < ”Agn (X) - Agm (X)” +

|F (. t, B(®)w; (x,8) + B(£) g, (x)) — F(x,t, B(Ou (x, ) + B(£)gm (X)) -

Using the condition (1.7), we obtain
£ G, t) = frn G, Ol < LB [y, (x, t) — up, Cx, O]

+4L[1B#) gy (x) = B) g (I + 1Agn (x) — Agn (O -
Consequently,

1 Go ) — fn (e, Ol < aly f j 8(t — )™ & (OIBOQ(E — MBI f G m) — fin e, m)]lldOdln

00
+ LIB(6)gn (x) = B(£)gm (Il + 114G, (x) — Agm ().
In view of the conditions (1.5) and (2.5), the above inequality becomes
t

1, Ger ) = fon G DIl < M f (& = )" faCom) — i Gl d

0
+ LIB(£)gn (x) — B(6)gm (Il + 114 g (x) — A g (Ol -
Given € > 0, we can find a positive integer N = N (&) such that
t

1fu (%, 8) = fiu (x, O] < M” f(t =" Gom = frnComlildn + (1 — ) &,
0

forallm,m = N and (x,t) € H x [0, T].
Using (1.10), the above inequality takes the form

(L= @We L0 t) = fu (e, Ol < (1= e e
Thus, for sufficiently large A, we get

max [e £, (6, 0) = fuCe D] < &

Since H is a complete space, it follows that the sequence{f, (x,t)} converges uniformly onH x [0,T] to a
continuous function f(x,t), so the sequence {u; (x,t)} converges uniformly on# x [0,T] to a continuous
functionu*(x, t). It can be proved that f (x, t)satisfies a uniform Holder condition on[0, T , thus u*(x,t) € S;.
Corollary 1: The integral equation (2.1) has a unique solution in the Banach space Cx(R X [0, T]).

I11.  The numerical solution of the NPDEof fractional order
In this section, we will usethe (MTMM)to obtain numerically, the solution of the NPDE((1.1),(1.2))in the
Banach space Cy (R % [0, T]), where
I, Ollguxory = maxfu(x, O], ve € [0,7], —e0 < x < oo.

For this, we write Eq.(2.2) in the form
t

w(o ) = o0 t) +a f p (6, m)Q° (6, ))F (x,m, B(DuCe, m)dn 3.1)

0
where,

oo

f) = f £.(0) Qt“O)uy(x) d6,  Q*(t,) = f 0£,(6)Q((t — 1)*6)d6,

0 0
and the bad kernel

pt,)=(t—-m*! , 0<a<1,0<n<t<T; T<»).
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Here, the unknown function u(x,t) € Cx(R x [0, T]), while f*(x,t), Q*(t,n) and p(t,n)are known functions
and satisfy the following conditions:
(1) f*(x,t) is a continuous function in (R x [0,T]) .
(2') Q*(t,n) with its partial derivatives are continuous function in [0, T], hence there exists a constant ¢; such
that:[Q"(t, M| < ¢;.
(3') p(t, n)is a badly behaved function of its arguments such that:
@ for each continuous function u(x,t)and 0 < t; <t, < t, the integrals
t2

f p(t, Q" (6, M)F (x,m, B(u(x, 7))dn , and f p(t6,m)Q* (t,n) F(x,m, B)uCo,n))dn
0

t
are continuous functions in (R x [0, T]).
(b) p(t,n)is absolutely integrable with respect to nfor all0 < t < T, thus there exists a constant ¢, ,such
that: [31p(t,m)ldn < c, .
(4)The given functionF(x, t, B(t) u(x, t)) is continuous inR x [0, T], and satisfies Lipschitz condition
|F(x,t, B(t)u(x, t)) — F(x,t, B(t)v(x,t))|
<N DBO@E O —ve )|, (maxiv ol <L),
forall u(x, t),v(x,t) € Cx(R x [0,T]) , whereL* is a positive constant. ’
Putting x =x; , x; =ih, h = x;41 — x;, and using the following notations
utx)=w@® , frt,x)=f)
F (x;,n,B M u(x,m) =F(n,Bmum),
the integral equation (3.1) can be transformed to the following (SNVIEs)

w®) = £+ a f p*(t, ME(n, B Muw))dn 32)
0

where,p*(t,n) = p (t,n) Q"(t,n).
Remark 1: let E be the set of all continuous functions
U@ = {u (&), uy(t), .., u;(t), ...}, where u; (t)e C[0, T], forall ,and define on E the norm:

U @®llz = sup Jmax [u; ()] = sgpllui(t)llc[o Vi
Then Z is a Banach space.

3.1. The existence of a unique solution of aSNVIEs:
In order to guarantee the existence of a unique solution of the SNVIEs (3.2) in the Banach space = , we write
this system in the integral operator form

Lu;(t) = f(t) + Lu(t) Vi (3.3)
where,

Lu(®=a j p* (6, mF(n, B (w@))d 7 . (34)
0

Then assume the following conditions:
1*) sup Organgfi*(t)I =|f*(t)llz <D , (Disconstant).
i <t <

2*) The known continuous functions F;(t, B (t)u;(¢)) for all i, satisfy for the constants A7 , A3 and A" >

max{A; , A3}, the following conditions:
(ap) sup max |F;(t,B (Du, (1)) < AillU @Dz ,
i 0<t<T

@) |F (£, Bou’®) - F (¢, BeuP®)| < a3u®® - wP @)

3*) The kernelp*(t,n) is a discontinuous function which satisfies:

(b, )foreachcontinuous function Fi(t,B ®u,( t))and 0 <t <ty < t,theintegrals:

20" @ mFi(n, B mw(m))dn,and f; p* (¢, mF:(n, B (w,(n))d n

are continuous in [0, T] .

(by)p*(t,n) is absolutely integrable with respect to n for all 0 <t < T, thus there exists a constant c*, such
that:f, [p*(¢,m)| dnp < c*.

Theorem 3 (without proof): The formula (3.2) has a unique solution in the space Z under the following
condition:§* = a A*c* < 1.

3.2.The modified Toeplitz matrix method (MTMM):
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Here, we present the MTMM to obtain the numerical solution of a NVIE of the second kind with singular
kernel. So, we assume the NVIE:
t

w(®) =0 +a f p*(t.m) F (n, B(n) u () di. (35)

0
Following the same way of Abdou etal.,(see [12],[13]), we can apply the MTMM for Volterra term to obtain the
following equation

N
u(t) —a Z D, (t) F (nh, B (nh*) u(nh?)) = £*(t). (3.6)
Putting t = mh*,h* = — ,in (3.6) and using the following notations
u(mh*) =Uy, ,Dy(Mh") =Dy, f*(Mh") =f5
F(mh*,B (mh*) u(mh*)) = F, (B, um) (3.7)
we get the following NAS
m—aZDmnFn(Bnun)=f,; ., 0<n<m<N, (3.8)
where,
Ay(mh™) ,n=0
D, = {A,(mh*) + B;;_;(mh") ,0<n<N (3.9
Bi—y(mh”) =N,
F(nh* 4+ h*,(nh* + h*) B(nh* + h*)) I(t) — F(nh* + h*,B(nh* + h*) J(t
4(0) = (n (n ) B(n ) 1(t) = F(n (n )J(t) . (310
h
F (nh*, B (nh* t) — F (nh*,nh* B (nh*)) I(t
Boe) = F (B D) ] (0) r (nh,nh" B (nh) 1(t) .1
1
where,
= [F (nh*,B(nh")) F (nh* + h*, (nh* + K*)B(nh* + h"))
—F (nh*,nh* B(nh*)) F(nh* + h* ,B(nh* + h*)], (3.12)
and

nh*+h* nh*+h*
©= [ PEFmBm, IO =] pEnFemBm)d . G13)
nh* nh*
The matrix D,,, can be written in the Toeplitz matrix form:
Dmn = Gmn - Emn .
Here, the matrix

Gy = A,(mh*)+B:_;(mh) , 0<n<m<N, (3.14)
is called the Toeplitz matrix of order (N + 1)and
B*,(mh*) ,n=0
J 0 0<n<N (3.15)
Ay(mh*) ,n=N,

represents a matrix of order (N + 1) whose elements are zeros except the first and the last rows (columns).
Definition 1: The Toeplitz matrix method is said to be convergent of order r in the interval [0, T], if and only if
for sufficiently large N, there exists a constant d* > Oindependent on N such that

lu(@®) — uy@| <d*N7" . (3.16)
Definition 2: The estimate local error Ry takes the form

Ry = f P*(t,mF (n,B (n)u (n)dn — ZDmnF (Byun)| - (3.17)
Lemma 5: If the kernelp*(t, n)of Eq. (3.5) satisfies condition (3*) and the foIIowmg condition
l * (1 * 7
S [ -pemian=o s icelor (3.18)
0
N

then suleDmnl exists ,and lim sup ) |Dj, — Dpnl =0.
N mom oy e
- n=
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Proof: From the formulas (3.10) and (3.13), we get

nh*+hn*
|4, (0)] ST IF(nh* + k", (nh* + h")B(nh* + h"))| f lp* (&, MIIF (m, B(m)|dn

nh*
nh*+h*

+|F(nh* + h*, B(nh" + h")| f lp* &, M |F (m,mn B(ldn].
nh*
Summing fromn = 0to n = N, then taking in account the continuity of the function F(t,B(t) u(t)) in the
interval [0, T] and finaIIy using the condition (3*),there exists a small constant M, ,

ZIA Ol <M wN. (M, = zﬁlcl IF & BOWO| <L, )
Since , each term of Zn OIA (t)| is bounded above hence for t = mh*, we deduce
snglAn (mh")| < M; . (3.19)
Similarly, from the formulas (3.11) and (3.13), V\T/Le;%ave
snglB{{(mh*)l <M. (3.20)

n=0
In the light of (3.9), and with the help of (3.19) and (3.20), there exists a small constant M, such that
N N N

supZ|Dmn| < supZmn(mh*n + sngw::(mh*n <M,, (M,=2M,).
n=0 n=0

Hence, sup Z |D,, | exists.

By virtue of the formulas (3.10) and (3.13), we have for t, t €[0,T]
1
|4, (t) — 4, (O] < —[|F(nh* + 1", (nh* + R*)B(nh* + 1")))|

|hil
nh*+h*
Xf lp*(t',m) — (& MI|F(n,n B())|dn +
nh*
nh*+h*
|F(nh* + h*, B(nh* + h)))| J lp*(t',m) — p* (&, MIIF (M, n Bm)ldn)|.
nh*

Summing fromn = 0ton = N, and taking in account the continuity of the function F, the above inequality can
be adapted in the form

supZm ©)-a,01 207 f|P (&'m = P(e.ml d,
Putting t = mh*,t' = m'h*, then using the condltlon (3.19), We get

mh—>mm snglAn(m h*) — A, (mh*)| =0. (3.21)
Similarly, in view of the formulas (3.11) and (BTTI\%), we can prove that

Jim sup Z |B:(m'h") — B (mh*)| = 0. (3.22)

n=0
Finally, with the aid of (3.9), (3.21) and (3.22), we have
N

lim supZ|Dm'n — D1 =0.
m -m N =

IV.  The existence of a unique solution of NAS
The SNVIEs(3.2) after using MTMM takes the form
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= fim + “Z DI Fon (Bt (@1)

Lemma 6 (without proof):If the kernel p*(¢,n) of Eq (3 2) satisfies the conditions (3*) and (3.18), then we
have
=0.

supZ | | exists, andlim, _,, | pll _ pli}

According to lemma (5) and in order to guarantee the existence of a unique solution of the NAS (4.1) in the
Banach space ¢ , we write this system in the following operator form
Vupm = fim + Vi ,(Vi,m) (4.2)

where,

N
Vui,m = Z Ln(BLnuln) (43)

Then we assume the following conditions:

N
I) sup|fim| <H ,(H isaconstant). 1) supZ|D,[,gl <
im iN =

n=
I11) The known continuous functions Fi‘n(Bi_nui_n satisfy (Vv i,n)and for the constants q;,q, and q =
max{q, , q,} the following conditions:

(al)sup|Fln(Blnuln)| < q1||uln||€00'

(b1)|Fln(BlTlu(1)) Fln(BLnu(Z))| < q2 |u(1) i(i) .
Theorem 4 (without proof): The formula (4.2) has a unique solution in the Banach space £ under the
following condition:c* = aqe < 1.

Definition 3: The estimate total error R; is determined by the relation
t

N
R = jp*(t;ﬁ) F(x,n,B(mu(x,n)) dn — Z DT[rll’]n Fin (Bintin
0 n=0

when j = max{N, i} —» oo, then the sum
t

Z D, Li] -y (Binuin) tends to fP*(t n) F(x n, Bmu(x, 17)) dn .

Theorem 5: If the sequence of continuous functions {fn (x,t)} converges uniformly to the function f* (x t),
and the functions Q*(t,n),p(t,n) and F(x, t, B()u(x, t)) satisfy, respectively, the conditions (2'), (3 — b)
and (4'). Then, the sequence of approximate solutions {u, (x,t)} converges uniformly to the exact solution of
Eq.(3.1) in the Banach space Cyx(R % [0,T]).

Proof: The formula (3.1) with its approximate solution give

maxu(x, t) — u, (x, )] < max|f*(x,t) — fii (x, )|

+aflp(t.n)|IQ*(t.n)I rr;ﬁXIF(t.n.B(n) u(x,m)) — F(t,n, B(u, (x,n))|dn,
0

VO <t<T,—o0o<x<o00,
Since B is a bounded operator, there exists a positive constant M , such that
L B@ux, )Nl < M lulx, Ol . (4.4)
In view of the conditions (4.4), (2), (3 — b) , and (4), the above inequality can be adapted in the form

1
lluCx, £) = up (x, Oll ey mxporn < a-0) f=Ce, t) = fi Ce, Ollcgrxpory s (DF = acieaMLY).

Since [If*(x,£) — f; (6, Ollcyeanxto;rp = 0 as n = 00,50 that

lu(x, t) — u, Cx, Ol cgmxiorn = O-
Theorem 6 : The total error R, satisfies lim R =0.

}—>00

Proof: From the definition of R; , we have
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IR| < sup |ui(mh*) - (ui(mh*))j|
ij

N
+ sup Z |D,[,i1L
i,N
n=0

Using the conditions (1) and (111 - b) , we get
|Ri| < (1+eq) ”ui(mh*) - (ui(mh*))j ”{,m Y .
Since each term of |R; | is bounded above, hence for t = mh*, we deduce
Sl}lp|Rj| <(1+eq SIL;p max |ui(t) — (ui(t))],| =1+ eq) ”ui(t) — (ui (t))j ”_

The above inequality can be adapted in the form

Since ”u(x, t)—(u(x, t))j ”

I8 ], < +eq) u o)~ (ut ) |

Cr@x[0,T])

V.

Application

INEq. 3.1) let 0 <a<1,Q*(t,n) =1,F(x,t,B(t) u(xt)) = (x? +t2)3,
thus, we get a NVIE of the second kind with Abel kernel

w0 = (00 +a f C—met o dn
0

where the exact solution: u(x,t) = x% + t2.

Using

Maple

12,

the

results

are

obtained

numerically

for

sup |Fl- (nh*, B;(nh*)u; (nh*)) - (Fl- (nh*, B;(nh*)u; (nh*))) |
ij

Cr@®RX[0,T])

—»0as j— 00,then||Rj||{)oo - 0 , and consequently

x =t €[0,0.8]

)

(5.1)

,  with

a =0.98,0.8,0.6,0.4,0.1 and 0.02.Theinterval[0,0.8]is divided into N = 40 unites. The following tables and
diagrams are selected from a large amount of data to compare betweentheexactsolutionof Eq. (5.1) (Exact.sol.)
and its numerical solution (Approx.sol.).

x=t Up a=0.98 a=038 a=04
Ur Er Ur Ep Ur Er
0 0 0 0 0 0 0 0
0.08 0.0128 0.012798366 1.63363E-06 1.27982E-02 1.77133E-06 1.27979E-02 2.13568E-06
0.16 0.0512 0.051099467 0.000100533 5.10885E-02 0.000111494 5.10627E-02 1.37250E-04
0.24 0.1152 0.114122314 0.001077686 0.113991204 | 0.001208796 0.11370819 0.00149181
0.32 0.2048 0.199327485 0.005472515 0.198664247 0.006135753 0.197359549 0.007440451
0.40 0.32 0.302160901 0.0178391 0.30023762 0.01976238 0.296880041 0.023119959
0.48 0.4608 0.417910805 0.042889195 0.414242829 0.046557171 0.40874595 0.05205405
0.56 0.6272 0.544459139 0.082740861 0.539576412 0.087623588 0.533658437 0.093541563
0.64 0.8192 0.683408633 0.135791367 0.679324851 0.139875149 0.676370856 0.142829144
0.72 1.0368 0.839208791 0.197591209 0.840044456 | 0.196755544 0.845757589 0.191042411
0.80 1.28 1.017679793 0.262320207 1.034279351 0.245720649 1.075850445 0.204149555
Table (1)

~an

x=t a =0.02
Er Ur Er
0 0 0 0 0 0
0.08 0.0128 1.27981E-02 | 1.94784E-06 | 1.27978E-02 | 2.24925E-06 | 1.27979E-02 2.14171E-06
0.16 0.0512 5.10753E-02 | 1.24660E-04 | 5.10578E-02 | 1.42172E-04 | 5.10650E-02 1.34994E-04
0.24 0.1152 0.113841226 | 0.001358774 | 0.113675557 | 0.001524443 | 0.113753121 0.001446879
0.32 0.2048 0.197944613 | 0.006855387 | 0.197355258 | 0.007444742 | 0.197749012 0.007050988
0.40 0.32 0.298282951 | 0.021717049 | 0.297504399 | 0.022495601 | 0.298769511 0.021230489
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0.48 0.4608 0.41079253 0.05000747 [ 0.411522694 [ 0.049277306 | 0.414411032 0.046388968

0.56 0.6272 0.535390987 | 0.091809013 | 0540332414 | 0.086867586 | 0.545310163 0.081889837

0.64 0.8192 0.676367701 | 0.142832299 | 0.687175892 | 0.132024108 | 0.693690718 0.125509283

0.72 1.0368 0.842100807 | 0.194699193 | 0.856922144 | 0.179877856 | 0.862027837 0.174772163

0.80 1.28 1.055921233 | 0.224078767 | 1.071585681 | 0.208414319 | 1.056464672 0.223535328
Table (2)

a=0.1 a =0.02
Dig. (2)

VI. Conclusions

From this paper, we can conclude the following points:
1) The NPDE ((1.1),(1.2)) of fractional order is equivalent to the following NVIE:

u(x,t) = uo(x)+r( )f(t—é’)“ YAu(x,0)d0 + —

— a—1
r() (t—6)*"1 F(x,6,B(6) u(x,0))do .

From the above integral equatlon, we can discuss many cases for the nonlinear integro- differential equation if
for example F(x, ¢, B(t) u(x,0)) = f U (X,t),u, (X,t),u, (X,t)).

2) The MTMM, as a best method to solve the singular integral equations, is used to obtain a NAS, and many
theorems are derived to prove the existence and uniqueness of theNAS.

3) From the numerical results, we establish the following:

For fixed values of « , the error values are increasing with the increase values of x and t .

a)
b)

c)
d)

[1].
[2].

(31
[4].

[5].
[6].

[71.
[8].
[9].

[10].
[11].
[12].

[13].

For fixed values of x and t,the error values are slowly increasing with the decrease values of a.So ,
change in the values of « is lightly effective in the numerical calculations.

The error is 0 at x = t = 0 for all cases we have studied.
The maximum value of the error at @ = 0.98 is 0.262320207, while the maximum value of the error at
a = 0.02is0.223535328, forx =t = 0.8.

the
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