Fixed Point Result Satisfying Φ - Maps in G-Metric Spaces

Madhu Shrivastava¹, Dr.K.Qureshi², Dr.A.D.Singh³

¹TIT Group of Institution, Bhopal ²Ret.Additional Director, Bhopal ³Govt.M.V.M.College, Bhopal

Abstract: In this paper, we elaborate some existing result of fixed point theorems, that fulfill the nature of G-metric space and satisfy the \emptyset -maps. Previously Erdal Karapinar and Ravi Agrawal [1] have modified some existing result of fixed point theory of Samet et.al. Int. J. Anal (2013:917158, 2013) [2] and Jleli-Samet (Fixed point theory application. 2012: 210,2012) [3] in a different way.

I. Introduction

The concept of G-metric spaces was introduced by Mustafa and Sims [4]. G-metric spaces is generalization of a metric spaces (X, d). Mustafa and Sims characterized the Banach contraction mapping principal [5] in the context of G-metric spaces .Subsequently many fixed point result on such spaces appeared. Since one is adapted from other. The G-metric spaces is to understand the geometry of three points instead of two, many result are obtained by contraction condition.

In 2013, Samet et al [2] and Jleli Samet [3] observed that some fixed point theorems in the context of a G-metric space in literature can be concluded by some existing results in the setting of (quashi-) metric spaces. Also the contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables instead of three. In [2,3] the authors find d(x,y) = G(x,y,y) form a quasi-metric .Erdal Karapinar and Ravi Agrawal modified some existing results of fixed point theorem .

II. Preliminaries

Definition 2.1 Let X be a non-empty set and let $G: X \times X \times X \to R^+$ be a function Satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,

(G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,

(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

(G5) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair (X, G) is called a G-metric space.

Every G-metric on X defines a metric d_G on X by

$$d_G(x,y) = G(x,y,y) + G(y,x,x)$$
, for all $x,y \in X$.

Example 2.1 Let (X, d) be a metric space. The function $G: X \times X \times X \to [0, +\infty)$, defined as

$$G(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\}$$

Or

$$G(x,y,z) = d(x,y) + d(y,z) + d(z,x) ,$$

for all $x, y, z \in X$, is a G-metric on X.

Definition 2.2 Let (X, G) be a G-metric space, and let $\{x_n\}$ be a sequence of points of X. We say that $\{x_n\}$ is G-convergent to $x \in X$, if

$$\lim_{n,m\to+\infty}G(x,x_n,x_m)=0$$

That is, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x, x_n, x_m) < \varepsilon$ for all $n, m \ge N$. We call x the limit of the sequence and write $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

Proposition 2.1 Let (X, G) be a G-metric space. The following are equivalent:

- (1) $\{x_n\}$ is G-convergent to x,
- (2) $G(x_n, x_n, x) \to 0$ as $n \to +\infty$,
- (3) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow +\infty$,
- $(4) \ G(x_n,x_m,x) \to 0 \ as \ n,m \to +\infty.$

Definition 2.3 Let (X,G) be a G-metric space. A sequence $\{x_n\}$ is called a G-Cauchy sequence if, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $m, n, l \ge N$, that is, $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Proposition 2.2 Let (X, G) be a G-metric space. Then the following are equivalent:

- (1) the sequence $\{x_n\}$ is G-Cauchy,
- (2) for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$ for all $m, n \ge N$.

Definition 2.4 A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Lemma 2.1 Let (X, G) be a G-metric space. Then $G(x, x, y) \le 2 G(x, y, y)$ for all $x, y \in X$.

Definition 2.5 Let (X, G) be a G-metric space. A mapping $T: X \to X$ is said to be G-continuous if $\{T(x_n)\}$ is G-convergent to T(x) where $\{x_n\}$ is any G-convergent sequence Converging to x.

In [26], Mustafa characterized the well-known Banach contraction mapping principle in the context of G-metric spaces in the following ways.

Theorem 2.1 Let (X, G) be a complete G-metric space and let $T: X \to X$ be a mapping satisfying the following condition for all $y, z \in X$: $G(Tx, Ty, Tz) \le k G(x, y, z)$, Where $k \in [0,1)$. Then T has a unique fixed point.

Theorem 2.2 Let (X, G) be a complete G-metric space and let $T: X \to X$ be a mapping satisfying the following condition for all $x, y \in X$:

$$G(Tx, Ty, Ty) \le k G(x, y, y),$$

where $k \in [0,1)$. Then T has a unique fixed point.

Theorem2.3 Let (X, G) be a G-metric space. Let $T: X \to X$ be a mapping suchthat $G(Tx, Ty, Tz) \le a G(x, y, z) + b G(x, Tx, Tx) + c G(y, Ty, Ty) + d G(z, Tz, Tz)$ for all x, y, z, where a, b, c, d are positive constants such that k = a + b + c + d < 1. Then there is a unique $x \in X$ such that Tx = x.

Theorem2.4 Let (X,G) be a G-metric space. Let $T: X \to X$ be a mapping such that $G(Tx, Ty, Tz) \le k \left[G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz) \right]$ for all x, y, z, where $k \in \left[0, \frac{1}{2}\right]$. Then there is a unique $x \in X$ such that Tx = x.

Theorem2.5 Let (X, G) be a G-metric space. Let $T: X \to X$ be a mapping such that $G(Tx, Ty, Tz) \le a G(x, y, z) + b[G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)]$

for all x, y, z, where a, b are positive constants such that k = a + b < 1. Then there is a unique $x \in X$ such that Tx = x.

Theorem2.6 Let (X, G) be a G-metric space. Let $T: X \to X$ be a mapping such that $G(Tx, Ty, Tz) \le a G(x, y, z) + b \max\{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\}$

for all x, y, z, where a, b are positive constants such that k = a + b < 1. Then there is a unique $x \in X$ such that Tx = x.

Theorem2.7 Let (X, G) be a G-metric space. Let $T: X \to X$ be a mapping such that $G(Tx, Ty, Tz) \le k \max\{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz), G(z, Tx, Tx), G(x, Ty, Ty), G(y, Tz, Tz)\}$

for all x, y, z where $k \in \left[0, \frac{1}{2}\right)$. Then there is a unique $x \in X$ such that Tx = x.

Theorem 2.8 Let (X,G) be a complete G-metric space and let $T: X \to X$ be a given mapping satisfying $G(Tx,Ty,Tz) \le G(x,y,z) - \phi(G(x,y,z))$

for all $x, y \in X$, where $\phi : [0, \infty) \to [0, \infty)$ is continuous with $\phi - 1(\{0\}) = 0$. Then there is a unique $x \in X$ such that Tx = x

Definition 2.6 A quasi-metric on a nonempty set X is a mapping $p: X \times X \to [0, \infty)$ such that

(p1) x = y if and only if p(x, y) = 0,

 $(p2) p(x,y) \le p(x,z) + p(z,y),$

for all $x, y, z \in X$. A pair (X, p) is said to be a quasi-metric space.

Samet et al. and Jleli-Samet noticed that $p(x,y) = P_G(x,y) = G(x,y,y)$ is a quasimetric whenever $G: X \times X \times X \to [0,\infty)$ is a G-metric. It is well known that each quasi-metric induces a metric. Indeed, if (X,p) is a quasi-metric space, then the function defined by $d(x,y) = d_G(x,y) = max\{p(x,y),p(y,x)\}$ for all $x,y \in X$ is a metric on X.

Theorem 2.9 Let (X, d) be a complete metric space and let $T: X \to X$ be a mapping with the property

 $d(Tx,Ty) \leq q \max \{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}$

for all $x \in X$, where q is a constant such that $q \in [0,1)$. Then T has a unique fixed point.

Proposition 2.3

- (A) If (X, G) is a complete G-metric space, then (X, d) is a complete metric space.
- (B) If (X, G) is a sequentially G-compact G-metric space, then (X, d) is a compact metric space.

III. Main Result

Theorem-3.1- Let
$$(X, G)$$
 be a complete G-metric space and let $f: X \to X$ be a given mapping satisfy $G(fx, f^2x, fy) \le \varphi(G(x, fx, y))$ (1)

for all $x, y \in X$, where $\varphi: [0,1] \to [0,1]$ is continuous function s.t. $\varphi(s) < s$, and $\varphi(0) = 0$ then there is a unique $x \in X$ s.t. fx = x.

Proof:- We first show that if the fixed point of the operator f exist, then it is unique.

Suppose, on contrary ,that x and y are two fixed point of f, such that $x \neq y$, Hence $G(x, x, y) \neq 0$ From equation (1), we get

$$G(fx, f^2x, fy) \le \varphi(G(x, fx, y))$$

Which is equivalent to,

$$G(x,x,y) \le \varphi(G(x,x,y)) < G(x,x,y)$$

Which is a contradiction, hence f has a unique fixed point.

Let $x_0 \in X$, we define a sequence $\{x_n\}$ by $x_n = fx_{n-1}$, $n \in N$.

If $x_{n_0} = x_{n_0+1}$, for some $n_0 \in N$, then trivially f has a fixed point.

Taking $x = x_n$, $y = z = x_{n+1}$

Now from equation (1), we have

$$G(x_{n+1}, x_{n+2}, x_{n+2}) = G(fx_n, f^2x_{n}, fx_{n+1})$$

$$= G(fx_n, fx_{n+1}, fx_{n+1})$$

$$\leq \varphi(G(x_n, fx_n, x_{n+1}))$$

$$= \varphi(G(x_n, x_{n+1}, x_{n+1}))$$

$$\leq G(x_n, x_{n+1}, x_{n+1})$$
(2)

This shows that $\{G(x_n, x_{n+1}, x_{n+1})\}$ is monotone positive decreasing sequence, thus the sequence $\{G(x_n, x_{n+1}, x_{n+1})\}$ converges to $s \ge 0$. We shall show that s = 0.

Suppose, on contrary that s > 0,

Letting $n \to \infty$, in equation (2)

We get $s \le \emptyset(s) < s$

It is a contradiction, Hence conclude that $\lim_{n\to\infty} G\{(x_n,x_{n+1},x_{n+1})\}=0$

By lemma [2.1],

$$\lim_{n \to \infty} G\{(x_n, x_n, x_{n+1})\} = 0$$
 (3)

Now next we show that the $\{x_n\}$ is G-Cauchy, on contrary let $\{x_n\}$ is not G-Cauchy sequence, so there exist $\epsilon > 0$ and subsequence $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ with n(k) > m(k) > k.

Such that
$$G(x_{n_k}, x_{m_k}, x_{m_k}) \ge \epsilon$$
, for all $k \in \mathbb{N}$ (4)

Moreover, corresponding to m_k , we can choose n_k , such that it is the smallest integer with $n_k > m_k$ Satisfying equation (4).

Then that $G(x_{n_{k-1}}, x_{m_k}, x_{m_k}) < \epsilon \quad \forall k \in \mathbb{N}$

(5)

Then we have by triangular inequality,

$$\epsilon \le G(x_{n_k}, x_{m_k}, x_{m_k})
\le G(x_{n_k}, x_{n_{k-1}}, x_{n_{k-1}}) + G(x_{n_{k-1}}, x_{m_k}, x_{m_k})$$
(6)

Setting $k \to \infty$ and using equation (3),

$$\lim_{n\to\infty}G(x_{n_k},x_{m_k},x_{m_k})=\epsilon\tag{7}.$$

$$G(x_{n_{k+1}}, x_{m_{k+1}}, x_{m_{k+1}}) \le G(x_{n_{k+1}}, x_{n_k}, x_{n_k}) + G(x_{n_k}, x_{m_k}, x_{m_k}) + G(x_{m_k}, x_{m_{k+1}}, x_{m_{k+1}})$$
(8)

and

$$G(x_{n_k}, x_{m_k}, x_{m_k}) \le G(x_{n_k}, x_{n_{k+1}}, x_{n_{k+1}}) + G(x_{n_k+1}, x_{m_{k+1}}, x_{m_{k+1}}) + G(x_{m_{k+1}}, x_{m_k}, x_{m_k})$$
Letting $k \to \infty$ in above inequality and using (3) and (5)

$$\lim n \to \infty, G(x_{n_{k+1}}, x_{m_{k+1}}, x_{m_{k+1}}) = \epsilon$$
 (10)

Further we have

$$G(x_{n_k}, x_{m_k}, x_{m_k}) \le G(x_{n_k}, x_{m_k}, x_{m_k}, x_{m_k}, x_{m_k}) + (x_{m_k}, x_{m_k}, x_{m_k}, x_{m_{k+1}})$$

$$(11)$$

By G-3 and the triangular inequality, Letting $k \to \infty$ in (11) and using (3) and (7) We conclude that

$$\lim_{n\to\infty}G(x_{n_k},x_{m_k},x_{m_{k+1}})=\epsilon$$

Analogously, we have

$$G(x_{n_{k+1}}, x_{m_{k+1}}, x_{m_{k+1}}) \le G(x_{n_{k+1}}, x_{m_{k+2}}, x_{m_{k+1}})$$

$$\le G(x_{n_{k+1}}, x_{m_{k+1}}, x_{m_{k+1}}) + G(x_{m_{k+1}}, x_{m_{k+2}}, x_{m_{k+1}})$$

By G-3 and the triangular inequality, Letting $k \to \infty$ in (11),

$$G(x_{n_{k+1}}, x_{m_{k+2}}, x_{m_{k+1}}) = \epsilon$$

Now again from equation (1) and (4), we have

$$\epsilon \leq G(fx_{mk}, f^2x_{m_k}, fx_{n_k})
= G(x_{m_{k+1}}, x_{m_{k+2}}, x_{n_{k+1}})
= G(x_{n_{k+1}}, x_{m_{k+2}}, x_{m_{k+1}})
\leq \varphi(G(x_{n_k}, fx_{m_k}, x_{m_{k+1}})
= \varphi(G(x_{n_k}, x_{m_k}, x_{m_{k+1}})) < G(x_{n_k}, x_{m_k}, x_{m_{k+1}})$$

Letting $k \to \infty$, we hav, $\epsilon \le \emptyset(\epsilon) < \epsilon$, Which is a contradiction.

This shows that $\{x_n\}$ is G-cauchy sequence in X. Since X is complete G-metric space.

So there exists $z \in X$, such that $\lim_{n\to\infty} x_n \to z$,

Now we claim that f z = z.

Consider

$$G(x_{n+1}, x_{n+2}, fz) = G(fx_n, f^2x_n, fz)$$

$$\leq \varphi(G(x_n, fx_n, z))$$

$$= \varphi(G(x_n, x_{n+1}, z))$$

Let $k \to \infty$, we get

$$G(z,z,fz) \le \varphi(G(z,z,z)) = \varphi(0) = 0$$

Hence G(fz, z, z) = 0, i. e, fz = z. Hence z is a unique fixed point.

Theorem 3.2:- Let (X, G) be a G-metric space .Let $f: X \to X$ be a mapping such that

$$G(fx, fy, fz) \le k M(x, y, z) \tag{1}$$

for all $x, y, z \in X$ and $k \in [0,1)$ and

$$M(x,y,z) = \max\{G(x,y,z), G(f^2x,fy,fz), G(z,fx,fy), G(y,f^2x,fy), G(x,fx,fx) \\ G(y,fy,fy), G(z,fz,fz), G(fx,f^2x,fz), G(z,f^2x,fz), G(fx,f^2x,fy)\}$$

Then there is a unique $x \in X$ such that fx = x.

Proof: Let $x_0 \in X$, We define $\{x_n\}$ in the following $fx_n = x_{n+1}$, $n \in N$

Taking $x = x_n$, $y = z = x_{n+1}$ we get from eq.(1)

$$G(fx_n, fx_{n+1}, fx_{n+1}) \le k M(x_n, x_{n+1}, x_{n+1})$$

(3)

Where

$$\begin{split} M(x_{n},x_{n+1},x_{n+1}) &= max\{G\left(x_{n},x_{n+1},x_{n+1}\right),G(f^{2}x_{n},fx_{n+1},fx_{n+1}),G(x_{n+1},fx_{n},fx_{n+1}),\\ &\quad G(fx_{n+1},f^{2}x_{n},fx_{n+1}) G(x_{n},fx_{n},fx_{n}),G(x_{n+1},fx_{n+1},fx_{n+1}),\\ &\quad G(x_{n+1},fx_{n+1},fx_{n+1}),G(fx_{n},f^{2}x_{n},fx_{n+1}),G(x_{n+1},f^{2}x_{n},fx_{n+1}),G(fx_{n},f^{2}x_{n},fx_{n+1})\}\\ &= max\{G(x_{n},x_{n+1},x_{n+1}),G(x_{n+2},x_{n+2},x_{n+2}),G(x_{n+1},x_{n+1},x_{n+2}),\\ &\quad G(x_{n+2},x_{n+2},x_{n+2}),G(x_{n},x_{n+1},x_{n+1}),G(x_{n+1},x_{n+2},x_{n+2}),\\ &\quad G(x_{n+1},x_{n+2},x_{n+2})G(x_{n+1},x_{n+2},x_{n+2}),G(x_{n+1},x_{n+2},x_{n+2})\}\\ &= max\,\left\{G(x_{n},x_{n+1},x_{n+1}),G(x_{n+1},x_{n+2},x_{n+2}),G(x_{n+1},x_{n+1},x_{n+2})\right\} \end{split}$$

Case (i)- First let $M(x_n, x_{n+1}, x_{n+1}) = G(x_{n+1}, x_{n+1}, x_{n+2})$

By G_5 , we get from above

$$G(x_{n+1}, x_{n+2}, x_{n+2}) = G(fx_n, fx_{n+1}, fx_{n+1})$$

$$\leq kM(x_n, x_{n+1}, x_{n+1})$$

$$= kG(x_{n+1}, x_{n+1}, x_{n+2})$$

$$\leq k[G(x_{n+1}, x_{n+2}, x_{n+2}) + G(x_{n+2}, x_{n+1}, x_{n+2})]$$
(5)

Which is a contradiction, since $0 \le k < 1$.

Case-(ii)- If
$$M(x_n, x_{n+1}, x_{n+1}) = G(x_{n+1}, x_{n+2}, x_{n+2})$$

Then we get $G(x_{n+1}, x_{n+2}, x_{n+2}) = G(fx_n, fx_{n+1}, fx_{n+1}),$
 $\leq kM(x_n, x_{n+1}, x_{n+1})$
 $= kG(x_{n+1}, x_{n+2}, x_{n+2})$ (6)

This is a contradiction, since $0 \le k < 1$.

Case (iii)- If
$$M(x_n, x_{n+1}, x_{n+1}) = G(x_n, x_{n+1}, x_{n+1})$$

Then we get, $G(x_{n+2}, x_{n+2}, x_{n+1}) \le kG(x_{n+1}, x_{n+1}, x_n)$ (7)

Continuing in this way, we get

$$G(x_{n+2}, x_{n+2}, x_{n+1}) \le k^{n+1} G(x_1, x_1, x_0)$$
(8)

Again,

$$G(x_m, x_m x_n) \le G(x_{n+1}, x_{n+1}, x_n) + G(x_{n+2}, x_{n+2}, x_{n+1}) + \cdots \dots G(x_{m-1}, x_{m-1}, x_{m-2}) + G(x_m, x_m, x_{m-1})$$

$$\le k^n G(x_1, x_1, x_0) + k^{n+1} G(x_1, x_1, x_0) + \cdots \dots \dots + k^{m-1} G(x_1, x_1, x_0)$$

Let $n, m \to \infty$ we get, $G(x_m, x_m x_n) \to 0$. (9)

Hence $\{x_n\}$ is a Cauchy sequence in X. Since (X,G) is G-complete, then there exist $z \in X$ s.t. $\{x_n\}$ is G-converges to z. Let on contrary that $z \neq fz$. for this let $x_{n+1} = fx_n$

$$G(x_{n+1}, fz, fz) = G(fx_n, fz, fz)$$

$$\leq kM(x_n, z, z)$$
(10)

Where

$$\begin{split} M(x_n,z,z) &= \max \mathbb{E}(x_n,z,z), G(fz,f^2x_n,fz), G(z,fx_n,fz), G(z,f^2x_n,fz), \\ &G(x_n,fx_n,fx_n), (z,fz,fz), G(x_n,fz,fz), G(fx_n,f^2x_n,fz), \\ &(z,f^2x_n,fz), (fx_n,f^2x_n,fz)\} \\ &= \max \mathbb{E}(x_n,z,z), G(fz,x_{n+2},fz), G(z,x_{n+1},fz), G(z,x_{n+2},fz), \\ &G(x_n,x_{n+1},x_{n+1}), \quad (z,fz,fz), G(x_n,fz,fz), G(fx_n,x_{n+2},fz), \\ &(z,x_{n+2},fz), (x_{n+1},x_{n+2},fz)\} \end{split}$$

Letting $n \rightarrow \infty$, since G is continuous, we get

$$G(z, fz, fz) \le kG(z, fz, fz)$$

Or

$$G(z, fz, fz) \le kG(z, z, fz)$$

$$\le k[G(z, fz, fz) + G(fz, z, fz)]$$

$$= k[2G(z, fz, fz)]$$

so

$$G(z, fz, fz) \le 2kG(z, fz, fz)$$
, Since $0 \le k < 1$.

This is a contradiction. G(z, fz, fz) = 0. So fz = z.

Uniqueness - Next we show that uniqueness of z of f. suppose on contrary, there exist another common fixed point $u \in X$ with $z \neq u$.

We get

$$G(z, z, u) = G(fz, fz, fu)$$

 $\leq kM(z, z, u)$

We get a contradiction, since $0 \le k < 1$. Thus z = u is a unique fixed point of f.

Theorem 3.3 - Let (X, G) be a G-metric space .Let $f: X \to X$ be a mapping such

$$G(fx, fy, fz) \le kM(x, y, z)$$
, for all $x, y, z \in X$ and $k \in \left[0, \frac{1}{2}\right)$ and

$$M(x,y,z) = \max\{G(x,y,z), G(f^2x,fy,fz), G(z,fx,fy), G(y,f^2x,fy), G(x,fx,fx) \\ G(y,fy,fy), G(z,fz,fz), G(fx,f^2x,fz), G(z,f^2x,fz), G(fx,f^2x,fy)\}$$

Then there is a unique $x \in X$ such that fx = x.

Proof – Proof of the theorem is same as above.

Example:-Let
$$X = [0, \infty)$$
, $G: X \times X \times X \to R$ be defined by

$$G(x,y,z) = \begin{cases} 0, & \text{if } x = y = z \\ max\{x,y,z\}, & \text{otherwise} \end{cases}$$
Then (X,G) is a complete G-metric space

Let $f: X \to X$ be defined by

$$\begin{cases} \frac{1}{3}x, & \text{if } 0 \le x < \frac{1}{2} \\ \frac{1}{6}x^3, & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

And
$$\varphi(t) = \frac{2}{3} t$$
, for all $t \in [0, \infty)$

Solution:- First we examine the following cases:

Let
$$0 \le x, y < \frac{1}{2}$$
, then

$$G(fx, f^{2}x, fy) = \max \left\{ \frac{1}{3}x, \frac{1}{9}x, \frac{1}{3}y \right\}$$

$$\leq \frac{1}{3}\max \left\{ x, \frac{1}{3}x, y \right\}$$
Let $\frac{1}{2} \leq x, y < 1$, then
$$G(fx, f^{2}x, fy) = \max \left\{ \frac{1}{6}x^{3}, \frac{1}{36}x^{9}, \frac{1}{6}y^{3} \right\}$$

$$\leq \frac{1}{3}\max \left\{ x, \frac{1}{6}x^{3}, y \right\}$$
Let $0 \leq x < \frac{1}{6} \leq y < 1$, then

Let
$$\frac{1}{2} \le x, y < 1$$
, then

$$G(fx, f^{2}x, fy) = \max\{\frac{1}{6}x^{3}, \frac{1}{36}x^{9}, \frac{1}{6}y^{3}\}$$

$$\leq \frac{1}{2}\max\{x, \frac{1}{6}x^{3}, y\}$$

Let
$$0 \le x < \frac{1}{2} \le y < 1$$
, then

$$G(fx, f^{2}x, fy) = \max\left\{\frac{1}{3}x, \frac{1}{9}x\frac{1}{6}y^{3}\right\}$$

$$\leq \frac{1}{3}\max\{x, \frac{1}{3}x, y\}$$

Let
$$0 \le y < \frac{1}{2} \le x < 1$$
, then

$$G(fx, f^{2}x, fy) = \max\left\{\frac{1}{6}x^{3}, \frac{1}{36}x^{9}, \frac{1}{3}y\right\}$$

$$\leq \frac{1}{3}\max\{x, \frac{1}{6}x^{3}, y\}$$

Above cases hold the condition -

$$G(fx, f^2x, fy) = \varphi(G(x, fx, y))$$

Hence f has a unique fixed point.

Here (0, 0, 0) is a fixed point.

Theorem -3.4 Let (X, G) be a G-metric space and let f and g be self mappings on X satisfying the followings – (1) $g(X) \subseteq f(X)$

(2) f(X) or g(X) is complete subspace of X.

$$(3)G(gx, gy, gz) \le \varphi(G(fx, fy, fz))$$

where $\varphi: [0,1] \to [0,1]$ is continuous function s.t. $\varphi(s) < s$, and $\varphi(0) = 0$.

Then, f and g have a point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof –Let $x_0 \in X$, from eq.(1), we can construct a sequence $\{x_n\}$ and $\{y_n\}$ in X,

$$y_n = f x_{n+1} = g x_n$$
 , $n = 0,1,2,3 \dots \dots$

From eq. (3), we have

$$G(y_{n}, y_{n+1}, y_{n+1}) = G(gx_{n}, gx_{n+1}, gx_{n+1})) \le \varphi(G(fx_{n}, fx_{n+1}, fx_{n+1}))$$

$$= \varphi(G(y_{n-1}, y_{n}, y_{n}))$$

$$< G(y_{n-1}, y_{n}, y_{n})$$

$$(4)$$

Since φ is non-decreasing, therefore we have

$$G(y_n, y_{n+1}, y_{n+1}) \le G(y_{n-1}, y_n, y_n)$$

let $s_n = G(y_n, y_{n+1}, y_{n+1})$, then $0 \le s_n \le s_{n-1}$, for all n > 0.

it follows that the sequence $\{s_n\}$ is monotonically decreasing and bounded below . So there exist some $r \ge 0$.

Such that
$$\lim_{n\to\infty} G((y_{n+1}, y_n, y_n)) = \lim_{n\to\infty} s_n = r$$
 (5)

From eq.(4) and (5), and letting
$$n \to \infty$$
, we have that $\lim_{n \to \infty} G\{(y_{n+1}, y_n, y_n)\} = 0$ (6)

Now next we show that the $\{y_n\}$ is G-Cauchy sequence, on contrary let $\{y_n\}$ is not G-cauchy sequence then so there exist $\epsilon > 0$ and subsequence $\{y_{n_k}\}$ and $\{y_{m_k}\}$ of $\{y_n\}$

with n(k) > m(k) > k.

Such that
$$G(y_{n_k}, y_{m_k}, y_{m_k}) \ge \epsilon$$
, for all $k \in \mathbb{N}$ (7)

More over, corresponding to m_k , we can choose n_k , such that it is the smallest integer with $n_k > m_k$ Satisfying equation (4).

Then that
$$G(y_{n_{k-1}}, y_{m_k}, y_{m_k}) < \epsilon$$
 (8)

Then we have,

$$\epsilon \leq G(y_{n_k}, y_{m_k}, y_{m_k})
\leq G(y_{n_k}, y_{n_{k-1}}, y_{n_{k-1}}) + G(y_{n_{k-1}}, y_{m_k}, y_{m_k})
< \epsilon + G(y_{n_k}, y_{n_{k-1}}, y_{n_{k-1}})$$
(9)

Setting $k \to \infty$ and using equation (6), $\lim_{k \to \infty} G(y_{n_k}, y_{n_{k-1}}, y_{n_{k-1}}) = 0$

Then from (8),
$$\lim_{k \to \infty} G(y_{n_k}, y_{m_k}, y_{m_k}) = \epsilon$$
 (10)

Moreover we have,

$$G\left(y_{n_k}, y_{m_k}, y_{m_k}, y_{m_k}\right) \leq G\left(y_{n_k}, y_{n_{k-1}}, y_{n_{k-1}}\right) + G\left(y_{n_{k-1}}, y_{m_{k-1}}, y_{m_{k-1}}\right) + G\left(y_{m_{k-1}}, y_{m_k}, y_{m_k}\right)$$

$$G\left(y_{n_k-1}, y_{m_{k-1}}, y_{m_{k-1}}\right) \leq G\left(y_{n_k-1}, y_{n_k}, y_{n_k}\right) + G\left(y_{n_k}, y_{m_k}, y_{m_k}\right) + G\left(y_{m_k}, y_{m_{k-1}}, y_{m_{k-1}}, y_{m_{k-1}}\right)$$
Now letting $k \to \infty$ in the above inequality and using (6)-(10), we get

$$\lim_{k \to \infty} G(y_{n_k-1}, y_{m_{k-1}}, y_{m_{k-1}}) = \epsilon \tag{11}$$

Taking $x = x_{nk}$, $y = x_{mk}$ in (3), we get,

$$G(y_{n_k}, y_{m_k}, y_{m_k}) = G(gx_{n_k}, gx_{m_k}, gx_{m_k}) \le \varphi(G(fx_{n_k}, fx_{m_k}, fx_{m_k}))$$

$$= \varphi(G(y_{n_{k-1}}, y_{m_{k-1}}, y_{m_{k-1}})) < G(y_{n_{k-1}}, y_{m_{k-1}}, y_{m_{k-1}})$$

letting $k \to \infty$ in the above inequality (11), we get

 $\epsilon \le \varphi(\epsilon) < \epsilon$, which is a contradiction, since $\epsilon > 0$.

Thus $\{y_n\}$ is a G-cauchy sequence.

Since f(X) is complete subspace of X, so there exist a point $u \in f(X)$, such that

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} f x_{n+1} = u \tag{12}$$

Now we show that u is a common fixed point of f and g.

Since $u \in f(X)$, so there exist a point $p \in X$, such that fp = u.

From eq.(3),

$$G(fp,gp,gp) = \lim_{n \to \infty} G(gx_n,gp,gp) \le \lim_{n \to \infty} \varphi(G(fx_n,gp,gp))$$

Using (12) and the property of φ , we have

 $G(fp, gp, gp) \le \varphi(0) = 0$, hence fp = gp = u.

hence u is the coincidence point of f and g.

Since fp = gp and f, g are weakly compatible, we have fu = fgp = gfp = gu.

Now we claim that fu = gu = u.

Let if possible, $gu \neq u$, from eq. (3), we get

$$G(gu, u, u) = G(gu, gp, gp) \le \varphi G(fu, fp, fp) = \varphi G(gu, u, u) < G(gu, u, u)$$

Which is a contradiction, hence gu = u = fu. so u is a common fixed point of f and g

Uniqueness – let v be another common fixed point of f and g so that fv = gv = v.

We claim that,u = v. let if possible $u \neq v$.

From eq. (3),

$$G(u, v, v) = G(gu, gv, gv) \le \varphi G(fu, fv, fv) < G(fu, fv, fv) = G(u, v, v)$$

Which is a contradiction. we get, u = v

Hence u is the common fixed point of f and g.

Reference

- [1]. Karapinar, E, Agarwal, R.P: Further fixed point results on G-metric spaces, Fixed point theory and application 2013,2013:154
- [2]. Samet, B, Vetro, C, Vetro, F: Remarks on G-metric spaces. Int. J. Anal. 2013, Article ID 917158 (2013)
- [3]. Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, Article ID 210 (2012)
- [4]. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)
- [5]. Banach, S: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam.Math. 3, 133-181 (1922)
- [6]. Abbas, M, Sintunavarat, W, Kumam, P: Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces. Fixed Point Theory Appl. 2012, Article ID 31 (2012)
- [7]. Abbas, M, Nazir, T, Vetro, P: Common fixed point results for three maps in G-metric spaces. Filomat 25(4), 1-17 (2011)
- [8]. Agarwal, R, Karapınar, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl.2013, Article ID 2 (2013)
- [9]. Aydi, H, Shatanawi, W, Vetro, C: On generalized weak G-contraction mapping in G-metric spaces. Comput. Math.Appl. 62, 4223-4229 (2011)
- [10]. Aydi, H, Karapinar, E, Shatnawi, W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, ArticleID 314279 (2012)
- [11]. Aydi, H, Karapinar, E, Mustafa, Z: On common fixed points in G-metric spaces using (E.A) property. Comput. Math.Appl. 64(6), 1944-1956 (2012)
- [12]. Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for (ψ,φ)-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298-309 (2012)
- [13]. Aydi, H, Karapınar, E, Shatanawi, W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, ArticleID 314279 (2012)
- [14]. Aydi, H, Damjanovi'c, B, Samet, B, Shatanawi, W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443-2450 (2011)
- [15]. Berinde, V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metricspaces. Nonlinear Anal. 74, 7347-7355 (2011)
- [16]. Berinde, V: Coupled fixed point theorems for _-contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 75, 3218-3228 (2012)
- [17]. Berinde, V: Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl.(2012). doi:10.1016/j.camwa.2012.02.012
- [18]. Cho, YJ, Rhoades, BE, Saadati, R, Samet, B, Shatanawi, W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012, Article ID 8 (2012)
- [19]. Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73, 2524-2531 (2010)
- [20]. Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54, 73-79(2011)
- [21]. Ciri'c, L: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45(2), 267-273 (1974)
- [22]. 'Ciri'c, L, Agarwal, RP, Samet, B: Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl. 2011, Article ID 56 (2011)
- [23]. Ding, H-S, Karapınar, E: A note on some coupled fixed point theorems on G-metric space. J. Inequal. Appl. 2012, Article ID 170 (2012)
- [24]. Mustafa, Z, Aydi, H, Karapınar, E: On common fixed points in image-metric spaces using (E.A) property. Comput.Math. Appl. 64(6), 1944-1956 (2012)
- [25]. Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. thesis, TheUniversity of Newcastle, Australia (2005)
- [26]. Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID 189870 (2008)
- [27]. Mustafa, Z, Khandaqji, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48,304-319 (2011)
- [28]. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)
- [29]. Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009)
- [30]. Mustafa, Z, Obiedat, H: A fixed point theorem of Reich in G-metric spaces. CUBO 12(1), 83-93 (2010)
- [31]. Nashine, HK: Coupled common fixed point results in ordered G-metric spaces. J. Nonlinear Sci. Appl. 1, 1-13 (2012)
- [32]. Rasouli, SH, Bahrampour, M: A remark on the coupled fixed point theorems for mixed monotone operators in partially ordered metric spaces. J. Math. Comput Sci. 3(2), 246-261 (2011)
- [33]. Samet, B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 74, 4508-4517 (2010)
- [34]. Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 40(3), 441-447 (2011)
- [35]. Shatanawi, W: Fixed point theory for contractive mappings satisfying _-maps in G-metric spaces. Fixed Point Theory Appl. 2010, Article ID 181650 (2010)
- [36]. Shatanawi, W: Some fixed point theorems in ordered G-metric spaces and applications. Abstr. Appl. Anal. 2011, Article ID 126205 (2011)
- [37]. Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 40(3), 441-447 (2011)
- [38]. Shatanawi, W, Abbas, M, Nazir, T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011, Article ID 80 (2011)
- [39]. Tahat, N, Aydi, H, Karapınar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, Article ID 48 (2012)