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Abstract: In this paper, we elaborate some existing result of fixed point theorems, that fulfill the nature of G-
metric space and satisfy the @-maps. Previously Erdal Karapinar and Ravi Agrawal [1] have modified some
existing result of fixed point theory of Samet et.al. Int. J. Anal (2013:917158, 2013) [2] and Jleli-Samet (Fixed
point theory application. 2012: 210,2012) [3] in a different way.

I.  Introduction

The concept of G-metric spaces was introduced by Mustafa and Sims [4]. G-metric spaces is
generalization of a metric spaces( X ,d ). Mustafa and Sims characterized the Banach contraction mapping
principal [5] in the context of G-metric spaces .Subsequently many fixed point result on such spaces appeared.
Since one is adapted from other. The G-metric spaces is to understand the geometry of three points instead of
two, many result are obtained by contraction condition.

In 2013, Samet et al [2] and Jleli Samet [3] observed that some fixed point theorems in the context of a
G-metric space in literature can be concluded by some existing results in the setting of (quashi-) metric spaces.
Also the contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables
instead of three. In [2,3] the authors find d(x,y) = G(x,y,y) form a quasi-metric .Erdal Karapinar and Ravi
Agrawal modified some existing results of fixed point theorem .

Il.  Preliminaries

Definition 2.1 Let X be a non-empty set and let G : X x X X X - R™ be a function Satisfying the following
properties:
Gl G(x,y,2) = 0ifx =y = z
(G2)0 < G(x,x,y) forallx,y € Xwithx + vy,
(G3)G(x,x,y) < G(x,¥,2) forallx,y,z € Xwithy # z,
(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) =-- - (symmetry in all three variables),
(G5) G(x,y,z) < G(x,a,a) + G(a,y,z)forall x,y,z,a € X (rectangle inequality).
Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair (X, G) is
called a G-metric space.
Every G-metric on X defines a metric d; on X by

de(x,y) = G(x,y,y) + G(y,x,x),forall x,y € X.

Example 2.1 Let (X, d) be a metric space. The function G: X X X X X = [0, +), defined as
G(x,y,z) = max {d(x,y),d(y,z),d(z,x)}

Or
G(x,y,z) = d(x,y) + d(y,z) + d(z,x) ,

forall x,y,z € X, isa G-metricon X.

Definition 2.2 Let (X, G) be a G-metric space, and let {x,,} be a sequence of points of X. We say that {x,,} is G-
convergentto x € X, if

lim G(x,x,,x,)=0
n,m--+ow

That is, for any € > 0, there exists N € N such that G(x, x,,,x,,) < € foralln,m = N. We call x the limit of
the sequence and write x,, - x or limx, = x.

n—-oo

Proposition 2.1 Let (X, G) be a G-metric space. The following are equivalent:
(1) {x,} is G-convergent to x,

(2) G(x,, %, x) > 0aSN = +00,

(3) G(x,, x,x) > 0asn - 4w,

(4) G(xy, %, x) = 0asn,m — 4o,
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Definition 2.3 Let (X,G) be a G-metric space. A sequence {x,} is called a G-Cauchy sequence if, for any
e > 0, there is N € N such that G (x,,x,,,x;) < eforall m,n,l = N,thatis, G(x,,x,,x)—0anml-
0.

Proposition 2.2 Let (X, G) be a G-metric space. Then the following are equivalent:
(1) the sequence {x, } is G-Cauchy,
(2) forany € > 0, there exists N € N such that G (x,,, x,, x,,) < € forallm,n = N.

Definition 2.4 A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in
X, 6).

Lemma 2.1 Let (X, G) be a G-metric space. Then G(x,x,y) < 2G(x,y,y) forallx,y € X.

Definition2.5 Let (X, G) be a G-metric space. A mapping T: X — X is said to be G-continuous if {T'(x,)} is G-
convergent to T (x) where {x, } is any G-convergent sequence Converging to x.

In [26] , Mustafa characterized the well-known Banach contraction mapping principle in the context of G-metric
spaces in the following ways.

Theorem 2.1 Let (X, G) be a complete G-metric space and let T : X — X be a mapping satisfying the following
condition forall ,y,z € X: G(Tx,Ty,Tz) < k G(x,y,z),
Where k € [0,1). Then T has a unique fixed point.

Theorem 2.2 Let (X, G) be a complete G-metric space and let T : X — X be a mapping satisfying the following
condition for all x,y € X:

G (Tx,Ty,Ty) < kG(x,y,y),
where k € [0,1). Then T has a unique fixed point.

Theorem?2.3 Let (X, G) be a G-metric space. Let T : X — X be a mapping suchthat

G(Tx, Ty, Tz) < aG(x,y,z) + bG(x,Tx,Tx) + cG(y, Ty, Ty) + d G(z2,Tz,Tz)
for all x,y, z, where a, b, c,d are positive constants such thatk = a+ b+ c+d < 1. Then there is a unique
x € Xsuchthat Tx = x.

Theorem2.4 Let (X,G) be a G-metric space. Let T : X — X be a mapping such that
G(Tx,Ty,Tz) < k[G(x,Tx,Tx) + G(y,Ty,Ty) + G(2,Tz,Tz)]
forall x,y,z where k € [0,%).Then there is a unique x € X such that Tx = x.

Theorem2.5 Let (X, G) be a G-metric space. Let T : X — X be a mapping such that

G(Tx,Ty,Tz) < aG(x,y,z) + b[G(x,Tx,Tx) + G(y,Ty,Ty) + G(z,Tz,Tz)]
forall x,y,z, where a, b are positive constants such thatk = a4+ b < 1. Then there is a unique x € X such
that Tx = x.

Theorem?2.6 Let (X, G) be a G-metric space. Let T : X — X be a mapping such that

G(Tx,Ty,Tz) < aG(x,y,z) + bmax{G(x,Tx,Tx),G(y, Ty, Ty),G(z,Tz,Tz)}
for all x,y,z, where a, b are positive constants such that k = a + b < 1. Then there is a unique x € X such
that Tx = x.

Theorem2.7 Let (X, G) be a G-metric space. Let T : X — X be a mapping such that
G(Tx,Ty,Tz) < kmax{G(x,y,2),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),
G(z,Tx,Tx),G(x,Ty,Ty),G(y,Tz,Tz)}

forall x,y,z where k € [0%) Then there is a unique x € X suchthat Tx = x.

Theorem 2.8 Let (X, G) be a complete G-metric space and let T : X — X be a given mapping satisfying
G(Tx,Ty,Tz) < G(x,y,z) - ¢p(G(x,y,2))

for all x,y € X, where ¢ : [0,%0) — [0,) is continuous with ¢-1({0}) = 0. Then there is a unique x € X

suchthatTx = x
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Definition 2.6 A quasi-metric on a nonempty set X is a mapping p : X x X — [0, ) such that
(p1) x = yifandonlyifp(x,y) = 0,

(P2)p(x,y) < p(x,2) + p(z,y),
forall x,y,z € X. A pair (X, p) is said to be a quasi-metric space.

Samet et al. and Jleli-Samet noticed that p(x,y) = P;(x,y) = G(x,y,y) is a quasimetric whenever G : X X
X X X - [0,0) is a G-metric. It is well known that each quasi-metric induces a metric. Indeed, if (X,p) is a
quasi-metric space, then the function defined by d(x,y) = d;(x,y) = max{p(x,y),p(y,x)} for all
x,y € X isametric on X.

Theorem 2.9 Let (X, d) be a complete metric space and let T : X — X be a mapping with the property
d(Tx,Ty) < gqmax {d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}
forall x € X, where q is a constant such that g € [0,1). Then T has a unique fixed point.

Proposition 2.3
(A) If (X, G) is a complete G-metric space, then (X, d) is a complete metric space.
(B) If (X, G) is a sequentially G-compact G-metric space, then (X, d) is a compact metric space.

I11.  Main Result

Theorem-3.1- Let (X, G) be a complete G-metric space and let f : X — X be a given mapping satisfy

G(fx, f2x, fy) < o(G(x, fx,y)) (D
for all x,y € X, where ¢:[0,1] — [0,1] is continuous function s.t. ¢(s) < s, and ¢(0) = 0 then there is a
unique x € X s.t. fx = «x.
Proof:- We first show that if the fixed point of the operator f exist , then it is unique .
Suppose, on contrary ,that x and y are two fixed point of f, such that x # y , Hence G(x,x,y) # 0
From equation (1), we get

G(fx, f2x, fy) < (G(x, fx,y))

Which is equivalent to,
G(xxy) <o (6G0xy)<GxxYy)

Which is a contradiction, hence f has a unique fixed point.
Let xq€e X, we define a sequence {x,, } by x, = fx,_1 n € N.
If x,, = xp,41, for some n, € N, then trivially f has a fixed point.
Takingx =x, Y=2=x,44
Now from equation (1), we have
G(xn+1txn+2:xn+2) = G(fxy, fzxn,fxn+l,)
= G(fxn,fxn+lfxn+l)
< ¢(G(xn'fxn'xn+1))
= (P( G(xn'xn+1' xn+1))
< G(xn'xn+1’xn+1) (2)

This shows that {G(x,,x,+1,%,4+1)} IS monotone positive decreasing sequence , thus the sequence
{G(x,, xp41, X, 41)} cONverges to s = 0 .We shall show that s = 0.
Suppose, on contrary that s > 0,
Letting n — oo,in equation (2)
Weget s<0(s) <s
It is a contradiction, Hence conclude that lim,, _,..G{(x,, X 41, Xn+1)} = 0
By lemma [2.1],
limn—mcG{(xn'xn!xn+1)} =0 (3)
Now next we show that the {x,, }is G-Cauchy, on contrary let {x, } is not G-Cauchy sequence, so there exist
€ > 0 and subsequence {x,, } and {x,,, } of {x,} withn(k) > m(k) > k.
Such that G(xnk,xmk,xmk) >e,forallkeN 4
Moreover, corresponding to m; , we can choose ny, such that it is the smallest integer with n;, > m,
Satisfying equation (4).
Then that G(xnk_l,xmk,xmk) <e vkeN
()

Then we have by triangular inequality,
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€< G(xnk,xmk,xmk)
< G(xnk’xnk—l’xnk—l) + G(xnk—l’xmk‘xmk) (6)

Setting k — <o and using equation (3),

lim, ., G(xnk,xmk,xmk) =€ (.
Now,
G(xnk+1’ ka+1, ka+1) S G(xnk+1’ xnk’ xnk) + G(xnk’ xmk‘ xmk) + G(xmk’ xmk+1’ xmk+1)

(®)

and
G(xnk’ ka,xmk) S G(xnk' xnk+1’xnk+1) + G(xnk+1’xmk+1’ xmk+1) + G(xkarl’ xmk’ xmk) (9)
Letting k — oo in above inequality and using (3) and (5)
lim n — oo, G(xnk+1’xmk+1’xmk+1) =€ (10)
Further we have
G(xnk’ ka, ka) = G(xnk’ xmk' xmk+1) = (xnk' ka, xmk) + (xmk’ xmk’ xmk+1) (11)

By G-3 and the triangular inequality, Letting k — o in (11) and using (3) and (7)
We conclude that
Lim G (%) Xinys Xmy,y) = €

Analogously, we have
G(xnk+1’xmk+1'xmk+1) = G(xnk+1'xmk+2'xmk+1)
S G(xnkﬂ'xmkﬂ’xmkﬂ) + G(xmk+1’xmk+2’xmk+1)

By G-3 and the triangular inequality, Letting k — oo in (11),
G(xnk+1'xmk+2’xmk+1) =€
Now again from equation (1) and (4), we have
€ < G(f Xt [2%Xmyr fXn,)
= G(xmk+1'xmk+z'xnk+1
= G(xnk+1'xmk+2'xmk+1)
= ‘P(G(xnk'fxmwxmkn)
= (p(G(xnk'xmk:xmkH)) < G(xnk'xmk:xmkH)

Letting k — oo, we hav, € < @(e) < €, Which is a contradiction.
This shows that {x,, } is G-cauchy sequence in X. Since X is complete G-metric space.
So there exists z € X, such that lim,_ x, — z,
Now we claim that fz = z.
Consider G(Xpi1) Xy f2) = G(fxn f2%, f2)

< @(G(xn, fxn, 2))

= (p(G(xnﬂxn+1'Z))
Let k - o, we get

G(z,z,fz) < (p(G(z, Z, z)) =¢@0)=0

Hence G(fz,z,z) = 0,i.e,fz = z.Hence zis a unique fixed point.
Theorem 3.2:- Let (X, G) be a G-metric space .Let f:X — X be a mapping such that

G(fx,fy,fz) <k M(x,y,2) @
forallx,y,z € Xand k € [0,1) and
M(x,y,2) = maxifiG(x,y,2), G(f*x, fy,2),G(z fx f¥), G, fx, fy), G(x, fx, fx)
GO, fy.f),G(z fz,f2),G(fx, f*x, f2),G(z, f*x, f2), G(fx, f*x, f¥)}
Then there is a unique xeX such that fx = x.
Proof: Let xoeX ,We define {x,} in the following fx, = x,.1 n€N
)

Taking x = x,,y = z = x,,1, We get fromeq.(1)
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G(fxn'fxn+1,fxn+1) <k M(xn'xn+1lxn+1)
©)
Where
M(xn'xn+1:xn+1) = max{G (xnvxn+1'xn+1)v G(fzxn’fxn+1: fxn+1)’ G(xn+1’ fxn: fxn+1):
G(fxn+1' fzxn'fxn+1) G(xn' fxn' fxn)' G(xn+1' fxn+1l fxn+1)'
G(xn+1' fxn+1v fxn+1)v G(fxn' fzxn’ fxn+1)’ G(xn+1’ fzxn: fxn+1): G(fxnt fzxn: fxn+1)}
= max{?FG(xnv Xn+1 Xn+1)» G(xn+2! Xn+2, xn+2): G(xn+1: Xn+1s xn+2)
G(xn+2' Xn+2, xn+2)' G(xn' Xn+1» xn+1)' G(xn+ll Xn+2, xn+2)'
G(xn+1v Xn+42, xn+2)G(xn+1' Xn+2, xn+2)! G(xn+1! Xn+2, xn+2): G(xn+1: Xn 42, xn+2)}
= max { G(xn' Xn+1» xn+1)' G(xn+ll Xn+2, xn+2)' G(xn+1' Xn+1s xn+2)} (4)

Case (I)' First let M(xn'xn+1'xn+1) = G(xn+1'xn+1'xn+2)
By Gs, we get from above
G(Xnt1 Xnt2 Xnt2) = G(fxn, fXn 41, [Xn41)
< kM(xn' Xn+1s xn+1)
= kG (Xn 41, Xn11, Xn12)
(5) S k[G(xn+1' xn+2'xn+2) + G(xn+2' Xn+1s xn+2)}

Which is a contradiction, since 0 < k < 1.

Case-(ii)- If M(xp, Xy 11, Xn41) = G (X 11, Xn 42, Xn42)
Then we QEt G(xn+1'xn+2:xn+2) = G(fxn'fxn+1: fxn+1):

< kM(xn'xn+1'xn+1)

= kG(xn+l'xn+2'xn+2) (6)
This is a contradiction, since 0 < k < 1.

Case (”I)' If M(xnvxn+1'xn+l) = G(xntxn+1'xn+l)
Then we get, G (Xn+2, Xn+2, Xn+1) < kG (Xn 41, X 11, %) O

Continuing in this way, we get

G (Xn42) Xna2 Xng1) < K16 (x1, X1, %) 8
Again,
G, X X)) < G (X 41, X101, %) + G (42, X2, Xng1) + oo e G(Xm—1)Xm—1, Xm—2) + GO, X, X —1)
S knG(xl,xl,xo) + kn+1G(x1,x1,x0) + R T N LI + km_1G(x1,x1,x0)
Let n,m — o we get, G(x;,, X;pX,) = 0. 9

Hence {x,} is a Cauchy sequence in X. Since (X, G) is G-complete, then there exist z € X s.t. {x,} is G-
converges to z. Let on contrary that z # fz. for this let x,, .1 = fx,
G(xn+1,fz,fz) = G(fanfZJfZ)
< kM(x,,z,2) (10)
Where
M(x,,z, z) = maxi{ix,,z,2),G(fz, f*x,, f2),G(z, fx,, [2),G(z, [*x,, f2),
G G, [, [%0), (2, f2,2), G (Xn, f2,£2), G(f X, [ 220, f2),
(2, f 220, £2), (f X, [ 220, f2)}
= maxi?{'(xn,z, Z): G(fZ, Xn+2, fZ), G(Z’ Xn+1» fZ), G(Z: Xn+2, fZ),
G(xn:xn+1'xn+1), (Z' fZ' fZ)' G(xn,fZ, fZ)! G(fxn!xn+2: fZ)!
(Z' xn+2,fz), (xn+1'xn+2' fZ)}

Letting n—oo, since G is continuous, we get

G(z,fz,fz) < kG(z,fz [z)

Or
G(z,fz,fz) <kG(z,z[z)
<klG(zfz fz) + G(fzz f2)]
= k[2G(z [z fz)]
o)

G(z,fz,fz) < 2kG(z,fz fz),Since0 < k< 1.
This is a contradiction. G(z,fz,fz) =0.S0 fz = z.
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Uniqueness - Next we show that uniqueness of z of f. suppose on contrary, there exist another common fixed
point u € X with z # u.
We get G(z,z,u) =G(fz fz fu)
< kM(z, z,u)
We get a contradiction, since 0 < k < 1. Thus z = u is a unique fixed point of f.

Theorem 3.3 - Let (X, G) be a G-metric space .Let f:X — X be a mapping such
G(fx,fy fz) < kM(x,y,z), forallx,y,z € Xand k € [0,%) and

M(x,y,z) = maxi{iG(x,y,2),G(f*x, fy, f2),G(z, fx, f¥), Gy, f*x, fy), G(x, fx, fx)
GO fy.fy),G(z fzf2),G(fx,f*x,fz),G(z, f*x,fz),G(fx, f*x, fy)}
Then there is a unique x € X such that fx = x.
Proof — Proof of the theorem is same as above.

Example:-Let X = [0,),G: X X X X X > R be defined by

0 Vifx=y=z
G(x,y,2) = {max{x vz}, otherwise

Then (X, G) is a complete G-metric space
Let f: X — X be defined by

1, 1
3% lf0<x<—
1

3,lf <x<1

And ¢(t) = % t,for all te [O,oo)

Solution:- First we examine the following cases:
Let0 <x,y <, then

1 1 1
G(Fx, f2x, fy) = max {x,5x 3y}
<z max{ }

Let %s x,y <1,then
G(fx,f2x fy) = maxifEx®, - x°, 2 y*}
< gmax{x,%x3,y}
Let0<x<1<y<1 then

G(fx, fx, fy) = max{ x;x y}

<- 3 max{x, ; x,y}

Let0 <y <2 <x < 1,then

G(fx, f?x, fy) = max {6 x3, gxg,éy}
< %max-.{x, c x3,y}
Above cases hold the condition —
G(fx,f2x,fy) = (G(x, fx,y))
Hence f has a unique fixed point.
Here (0, 0, 0) is a fixed point.

Theorem -3.4 Let (X, G) be a G-metric space and let f and g be self mappings on X satisfying the followings —
(1) gX) < f(X)
(2) f(X) or g(X) is complete subspace of X.
(3)G(gx,9y.92) < ¢(G(fx, [y, [2))
where ¢:[0,1] - [0,1] is continuous functions.t.  ¢@(s) < s, and ¢(0) = 0.
Then, fand g have a point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a
unigue common fixed point.
Proof —Let x, € X, from eq.(1) ,we can construct a sequence {x,}and { y,} in X,
Vo = fXpe1 =9%, ,m=0123...........
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From eg. (3),we have
G(yn' Yn+1 yn+1):G(gxnl IXn+1, gxn+1)) < qD(G(fxn' fxn+1l fxn+1))
= @(G(Yn-1,Yns Yn))
< G(yn—ll Vns yn) (4)
Since ¢ is non-decreasing, therefore we have
G(yn' Yn+1 yn+1) < G(yn—ll Ynr yn)
lets, = Gy, Vns1» Ynsthen0 < s, <s,_;, forall n>0.
it follows that the sequence {s,} is monotonically decreasing and bounded below .So there exist some
r = 0.
Such that limy, 5o G( Vna1, Yo Vo) = liMy 0o Sy =T (5)
From eq.(4) and (5), and letting n — oo, we have that lim,, ., G{(Vn 41, Y, Yn)} = 0 (6)
Now next we show that the {y, } is G-Cauchy sequence, on contrary let {y, } is not G-cauchy sequence then so
there exist e > 0 and subsequence {y,, } and {y,, } of {y,}
withn(k) > m(k) > k.
Such that G(¥,,, Y, ¥m,) = €, forallk € N (7
More over, corresponding to m;, , we can choose n,, such that it is the smallest integer with n, > m,
Satisfying equation (4).
Then that G (Y, _,» Yy Y, ) < € (8)
Then we have ,
€ < GC(Ynpr Ymr Ymy)
< G(Vngr Yngor Yner) + G Oy Y Yy, ) 9
< €+ G Yoy Yus)

Setting k — oo and using equation (6),limy e G(Vy» Yny_1» Ynp_y) = O
Then from (8),kl£r£G(ynk,ymk,ymk) =€ (10)
Moreover we have,
G (Y Ymior Vi) < G O Yy Yie—y) + G Oy Yy Vi) + G Oy Yy Yimy )
G(ynk—l'ymk_l'ymk_l) < G(ynk—1JYnkJYnk)+ G(ynk'ymk' ymk) + G(ymk'ymk—l'ymk—l)

Now letting k — oo in the above inequality and using (6)-(10), we get

limy, o G(ynk—l' ymk_l'ymk_l) =€ (11)
Taking x = X,y = X in (3), We get,

GOy Yo Yne) = G(%n, Gy 9%, ) < @ (G (Fay o, fm,) )
= (p(G(ynk—l’ymk—l'ymk—l)) < G(ynk—l’ymk—l’ymk—l)
letting k — oo in the above inequality (11), we get
€ < ¢(€) < €, which is a contradiction, since € > 0.
Thus {y,, } is a G-cauchy sequence.
Since f(X) is complete subspace of X, so there exist a point u € f(X), such that
limn—mo Yn = limn—mo fxn+1 =u (12)
Now we show that u is a common fixed point of f and g.
Since u € f(X), so there exist a point p € X, such that fp = u.
From eq.(3),
G(fp, gp, gp) = lim G(gxn, gp, gp) < lim @ (G (fxy, gp, gp))
Using (12) and the property of ¢, we have
G(fp, gp. gp) < ¢(0) =0, hence fp =gp =u.
hence u is the coincidence point of f and g.
Since fp = gp and f, g are weakly compatible, we have fu = fgp = gfp = gu.
Now we claim that fu = gu = u.
Let if possible, gu # u, from eq. (3),we get
G(gu,u,u) = G(gu, gp, gp) < 9G(fu, fp, fp) = G (gu,u,u) < G(gu,u,u)
Which is a contradiction, hence gu = u = fu.so u is a common fixed point of f and g
Uniqueness — let v be another common fixed point of f and g.so that fv = gv = v.
We claim that,u = v. let if possible u # v.
From eg. (3),
G(u,v,v) = G(gu, gv, gv) < oG(fu, fv, fv) < G(fu, fv, fv) = G(u,v,v)

Which is a contradiction. we get, u = v
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Hence u is the common fixed point of f and g.
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