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I. Introduction

A Fractal, as defined by B. Mandelbrot, “is a shape made of parts similar to the whole in some way”
[2]. Fractal is a geometric object that possesses the two properties: self-similar and non-integer dimensions. So a
fractal is an object or quantity which displays self-similarity. The Cantor set is the prototypical fractal [1].
Cantor sets were discovered by the German Mathematician George Cantor in the late 19th to early 20th
centuries (1845-1918). He introduced fractal which has come to be known as the Cantor set, or Cantor dust.
We studied Cantor set and found generalized Cantor sets and show its dynamical behaviors and fractal
dimensions [3]. Then we studied generalized Cantor sets in measure space and found that these special types of
sets are Borel set as well as Borel measurable whose Lebesgue measure is zero [4]. Also we find the iterated
function systems with probabilities of generalized Cantor sets and show their invariant measures [5].

If {Wl,Wz,...,WN} is a finite family of strict contracting transformations, we may consider the Barnsley-
Hutchinson multiplication [6, 7] given by the formula

F(A) =i (A, w1

Fractals are strongly related to Markov operator acting on the space of all Borel measures [8]. If W, : X — X

N

are continuous transformations and p, X —)[O,l] are continuous such that Z pk(X) =1, then we may
k=1

define the Markov operator

PUA = [ P () (@) for e @2

k=L wl(n)
where denotes the family of all probability Borel measure X into Borel measure on X.
In this paper, we study the iterated function systems of generalized Cantor sets using Markov operator.
We define the transition operator P,, for the iterated function systems of generalized Cantor sets, which is a
Markov operator. We show that the iterated function systems of generalized Cantor sets is asymptotically stable
if the Markov operator PW is asymptotically stable and also is non-expansive if the Markov operator PW is non-

expansive with respect to the metric @(,0(X, Y)). Our proof is based on the result of Lasota and Yorke [9].

The organization of the paper is as follows. Section 2 contains some definitions and notation from the theory of
Markov operators acting on the space of measure. In Section 3 we discuss the iterated function systems of

generalized Cantor sets with probabilities and prove the transition operator P,, is a Markov operator. In Section
4 we show that the iterated function systems of generalized Cantor sets are non-expansiveness and
asymptotically stable if the Markov operator P,, has the corresponding property.
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I1. Notation and Preliminaries
Definition 2.1. A non empty set I' R is called a Cantor set if
(@) I is closed and bounded. (b) I" contains no intervals.
(c) Every pointin I" is an accumulation point of I".
Definition 2.2. A measure 4 defined on a o -algebra  of subsets of a set X is called finite if £(X) is a

finite real number (rather thanoo). The measure 4 is called o -finite if X is the countable union of

measurable sets with finite measure. A set in a measure space is said to have o -finite measure if it is a
countable union of sets with finite measure.

Definition 2.3. A Borel set is any set in topological space that can be formed from open sets (or, equivalently,
from closed sets) through the operations of countable union, countable intersection and relative complement.
Borel sets are named after Emile Borel.

Definition 2.4. Let X be a locally compact Hausdorff space, let X be the smallest o -algebra that contains the
open sets (or, equivalently, the closed sets) of X this is known as the o -algebra of Borel sets. Any measure
M defined on the o -algebra of Borel sets is called a Borel measure.

Definition 2.5. Let (X,p) be a metric space. A function f :X — X is a contraction mapping, or
contraction on (X, p), with the property that there is some nonnegative real number 0 < £ <1 such that for
allxandyin X,

pE(X), T(y) < B p(xy).
The smallest such value of [ is called the Lipschitz constant of f. The Contractive maps are sometimes

called Lipschitzian maps. If the above condition is instead satisfied for /<1, then the mapping is said to be a
non-expansive map.
Let (X, 0) be a separable complete metric space. We assume that every closed ball in X

B(r,x)={yeX:p(xy)<r}

is a compact set. We denote by B(X) the o -algebra of Borel subsets of X. By we denote the family of
Borel measure (nonnegative, o -additive) on X such that ,u(B) < oo for every ball B. By ; we denote the
subsets of such that 4(X)=1 for g€ ;. The elements of , will be distributions. Further by C(X) we
denote the space of bounded continuous functions F : X — R with the supremum norm. As usual we denote
by CO(X) the subspace C(X) of which contains functions with compact supports. The indicator function of
aset Ac X will be a denoted by 1,.

A linear functional @:C, — R is called positive if @(f) =0 for f >0. According to the Riesz theorem

for every linear positive functional qo:CO — R there is a unique measure £ €  such that

(p(f):J.fd,u::< f,u> for f eC,.
X

Anoperator P : T  will be called a Markov operator if it satisfies the following two conditions.
(i) Positive linearity: P (A 24 + A,8,) = 4Py + A,Pp, for A, A, 2 0; 1, 1, €
(ii) Preservation of the norm: Pu(X) = u(X) for u e
A Markov operator P is called a Feller operator if there is a linear operator U :C,(X) — C(X) (dualtoP)
such that

<Uf,u>=<f,Pu> for f eC,, ue . (2.1)
Observe that the range of the operator U is contained in C(X) but not necessarily in CO(X). We may
extend U to all bounded measurable (or nonnegative measurable) function by setting

Uf (x) =<Uf,5, >=<f,Ps, > (2.2)
where O, € 1 is a point (Dirac) measure supported at X. For f >0 the function Uf is nonnegative but may

be unbounded or even admit infinite values for unbounded f.

DOI: 10.9790/5728-1206040113 www.iosrjournals.org 2 | Page



Markov Operator: Applications to Iterated Function Systems of Generalized Cantor Sets

Every Markov operator P can be easily extended to the space of signed measures
sig ={ty =t gy, 11, €}
Namely for every v & g we define
Pv="Pu —Pu, where v =, — i, * iy, 1, €
It is easy to verify that this definition of P v does not depend on the choice of z4, 11, € . Inthe space g4 we
define the Fortet-Mourier norm
|l =Sgp{|< f.v>:feF}, (23)

where < f,y>:.[ f(X)u(dx) and F ={f e C(X)} is the set of all f such that || f ||.<1 and

X
| £0)—F(y)I< p(xy) for X,y € X.
It is easy to verify that the value (2.3) will not change if F isreplaced by F, =F MC,. For 1€ , we have
|| 2 ||= 1(X). The space ;with the distance || £, — 4, || is a complete metric space and the convergence
i |41, —ll=0 for sy pee
is equivalent to the condition
lim < f,p, >=<f,u> (2.4)

nN—o0

forall f e C(X), orequivalently forall f e C,(X).
Let P be a Markov operator. A measure 4 € is called stationary or invariant if Pu = g A Markov
operator P is called asymptotically stable if there exists a stationary distribution £z, such that

lim || P s —p, |=0 for pe .. (2.5)

Clearly a distribution p, satisfying (2.5) is unique. However, in general, condition (2.5) does not imply that
M., is stationary. This implication holds for Feller operators.
A Markov operator P is called non-expansive if

| Py — Puty [l 24y — 5 || for gy, g1, € 1. (2.6)
Lemma 2.1. Let P be a Feller operator. Assume that there exists a linear positive functional
¢@:C(X) —> R suchthat (1, ) =1, and

o (h)) = p(h) for heCy(X)
where U is dual to P. Further let g, € be the unique (Riesz theorem) measure satisfying

p(h) =<h,u, > for heCy(X). Then u, € and Py, = p,.

Proof: The proof can be found in [9].
Lemma 2.2. A non-expansive Markov operator is a Feller operator.
Proof: The proof can be found in [9].

I1. Iterated Function Systems of Generalized Cantor Sets with Probabilities
Let (X ,p) be a complete separable metric space. An iterated function system is given by a family of
contracting transformations
S,: X —> X,iel wheretheindexset | isfinite.
If, in addition, there is given a family of continuous functions

p,: X —>[01],iel

N

satisfying Z p; (X) =1 for every X e X, then the family {(S,;, p;) : 1 € |} is called an iterated function
i)

system with probabilities.
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1
3.1. Iterated Function Systems (IFS) of Cantor middle 5 set with probabilities are

1
W1(X)=%, PL=7%,
X 2 1
Wz(x):§+§’ pz:i’ (3.1)

where P, and P, are probabilities which control the evolution distribution of W, (X) and W, (X). According
to the theory of density evolution [10], the density for f (X) mapping satisfying the density evolution equation
f..(X)=Pf (x),n=012,...

1 -1
with Pf(Xx) = pld“d—wl(x) f (W' (X)) + p, dﬂd—wz(x) f (W;" (X)), which is called Markov
u u

operator [11]. That is, Pf(X) = g f (W' (X)) +§ f (W;"(X)). Now we assume the probability density over

1, xe]0,1],
0, otherwise,
then what will happen for fo(x) under the Markov operator? According to Barnsley-Hutchinson operator (1.1),

the initial interval [0, 1] is fo(x) = {

the attractor of equation (3.1) is the unit interval. i.e., A, = [0, 1].

Now for a subset A — [0, %} we have W 1(A) < [0, 1], wY(A) = [-2, 1], then (w3 (A)) =0. In

the same way, for a subset A [% 1}, there is Wi *(A) = [2, 3], WX(A) = [0,1] and f(w{*(A)) = 0.

§, XE[O,E}
2 3
3 2
f(x)=2=, xe|=,1
W=13, xe|2
0

., otherwise

Thus after the first step fp(X) becomes

under the Markov operator. Similarly, Markov operator acting on fl(X), and so on. This is shown in Figure 3.1.

£y (%)

Figure 3.1. Transform from p; and P over unit interval.

1
Thus the IFS of Cantor middle 3 set with probabilities is {(W,, p, ) : K =1,2}.

1
3.2. Iterated Function Systems (IFS) of Cantor middle g set with probabilities are

X 1
w(x)=z, PL=3,
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+

Wy(X) = v P2 =

+ (3.2)

gl x ol x
g~ 0N
Wik Wl

WS(X) = ) P3 =
where p;, P, and p3 are probabilities which control the evolution distribution of wy(X), Wy(X) and

W3(X). Now we assume the probability density over the initial interval [0, 1] is
1, xe[0,1],
fo(x) = :
0, otherwise,
then what will happen for fo(x) under the Markov operator? According to Barnsley-Hutchinson operator (1.1),
the attractor of equation (3.2) is the unit interval. i.e., A, = [0, 1].
Now for a subset A — [O, %}, we have Wi 1(A) < [0, 1], w3L(A) = [—2, —1], W;l(A)C [—4, —3], then

3

f(Wz_l(A)):O and f(ng(A)):O.In the same way, for a subset Ac[%,g] we have

wii(A) < [2, 3], waX(A) = [0,1], wzl(A) = [-2, -1], then f(w{1(A)=0 and f(wzl(A)) =0.
For a subset A c [% 1}, we have Wl_l(A) c [4, 5], W2_1(A) < [2, 3] and W§1(A) < [0, 1], then

f (Wi L(A)) = 0 and f(wzL(A)) = 0. Thus after the first step, f,(X) becomes

fl(X) =

£y (%]

4
3

Figure 3.2. Transform from pq, Po and Pg over unit interval.

1
Thus the IFS of Cantor middle c set with probabilities is {(w, , p, ) : k =1,2,3}.

set with probabilities are

3.3. Iterated Function Systems (IFS) of Cantor middle

2N —

X 1

1( )_ZN—l’ p1 W
(=X 42 p=t
2 2N-1 2N-1" " N
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w,(X)= =+ 4 p:i
s 2N-1 2N-1" ° N

x  2(N-1) 1
Wy (X)= + , =— for 2< N < oo, 3.3
v (%) N1 Ny PN s (3.3)

where P, P,, ..., Py are probabilities which control the evolution distribution of Wl(X), WZ(X), ey Wy (X)
Now we assume the probability density over the initial interval [0, 1] is

fo(x) = {2 xelod]

otherwise,
then what will happen for fo(x) under the Markov operator? According to Barnsley-Hutchinson operator (1.1),
the attractor of equation (3.3) is the unit interval, i.e., A, = [0, 1].

Now for a subset Ac {O ﬁ] we have WA <[01, wHA) <[-2 1],
w; (A)c [-4, -3]...., W' (A) c [-(2N - 2), <(2N —3)], then f (w3*(A)) = 0,

f(w;*(A))=0,..., f(w;"(A))=0. In the same way, for a subset AC[ZNZ—l’ ZNB—J’ we have
wii(A) < [2, 3, wal(A) = [0, 1], w;'(A)c[-2, 1] ..., wit(A)c [<(2N - 4), = (2N =5)],  then
f(wy LAy =o f(W31(A)) 0,. f(Wﬁl(A)) =0. For a subset AcC [ZZEI :i , 1}, we have

W (A)<=[(2N -2), 2N -1)] w;*(A)c[(2N —4), (2N =3)], ..., wi*,(A) = [2, 3], and
W (A) < [0, 1], then f (Wl’l(A)) =0, f (Wz’l(A)): 0,..f (W@l_l(A)): 0. Thus after the first step,
f,(X) becomes

M' Xe[o_]

N 2N -1
P

N 2N -1 2N -1

f,(x)=1: (3.4)

2N -1 2(N -1
—=, Xe [( ) A

N 2N -1

0, otherwise

under the Markov operator. Similarly, Markov operator acting on fl(X), and so on. This is shown in Figure 3.3.

L, (%)

EN-1 @2N-1 2N-1

Figure 3.3. Similar transform from pq, P2, ..., PN OVer unit interval.
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1
Thus the IFS of Cantor middle PN 1 set with probabilities is {(W,, p,): k=12,...,N}.

We may summarize the above functions in the following statement:
Iterated Function Systems of Generalized Cantor Sets with Probabilities: Let X =[0,1]. Let (X, ) bea

complete separable metric space. If W, : X — X is defined by

x  2(k-1) 1
w, (X) = =—,
k()2N12N1p N

where P, (X) are probabilities such that z P (X) =1 for every Xe X, which control the evolution
k1

distribution of W, (X) with contracting factor or Lipschitz constant L, = for 2< N <o and

1<k <N. Then the family (w, p)y ={(W,,p,):k=212,...,N} is called iterated function systems of
generalized Cantor sets with probabilities.

For the iterated function systems of generalized Cantor sets (W, p),, , we define the transition operator
P . T bythe formula

N
Pw,u(A):Z kad,u for AeB(X) and e . (3.5)
k=L wit(a)
Theorem 3.1. If P satisfies the following two conditions
(i) Positive linearity: P, (44 +A,18,) = 4P, 1, + L,P 1, for A, A, 20; 1y, 11, €
(ii) Preservation of the norm: P, z(A) = p(A) for e
then P,, is a Markov operator for IFSGCS (W, p)y -

Proof: Let X =[0,1]. Let (X, ) be a complete separable metric space. The iterated function systems

X 2(k 1) Py :%, for 2< N <o and 1<Kk <N. Let

W, : X — X is defined by W, (X) =

2N 1 2N -1
2N 1 2N ~1'2N-1 2N -1

(i) By (3.5) we have

JOPRCNRTES S EXCLTRER TS

k=L wih(a)

N 1 N 1
P (i + 2,01,) = 3" [ pAden + 3" [ pAdps, = 4y + 4,

k=1 o k=1 o

k=1

O Ly

N N
and 4P, 14 + ,P 1, = ﬁ‘lz j P ey +/122 _[ P, Az,

k=1 wl(A) k=L wt(a)

N 1 N 1
:AZJ‘ P dey +2~22I P, =4 + 4,

k=1 o k=10

16, P,(A4uy + ut,) = 4Py + Pty for 24,4, 205y, 4, €
(ii) By (3.5) we have

Pwﬂ(A)Zi [ podu= prkdﬂ 1

klwl( k=1 o
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1 2 3 2(N -1)
d u(A) = 0, + , +oty—>=1
and (A) = pf0 o — 1+l o] T
2N-1 2N-1 1
j J' Ny j ZN—ldy 1 [Using function (3.4)]
0 2 2(N-1) N
2N-1 2N-1
e, Pu(A)=pu(A) for ue .
Thus P, is a Markov operator for IFSGCS (W, p),,. O

By the second condition of theorem 3.1 we can easily show that P, u,, = g, for 1, € . Thatis, P, hasa

stationary or invariant measure £z,,. Thus we say that £, € 1 is a invariant measure for (W, p),,.

Following Lasota and Yorke [9] we have a sequence of transformations
w, X —>X, k=12,...,N

N
and a probabilities vector {p, (X), P, (X),-.., Py (X)}, P, (X) 20, Z P (X)=1for xe X,

k=1
k=12,...,N. If an initial point X, is chosen, then we randomly select from the set {1,2,3,...,N} an
integer such a way that probability of choosing K is P, (X,), K=12,...,N. When a number K is drawn
we define X, =W, (X,). Having X, we select K, according to the distribution p, (%), k=12,...,N and
we define X, =W, (X) and so on Denoting by 4,,n=01... the distribution of X
1.e., 1, (A)=prob(x, € A) for every non-negative integer N. We define P, as transition operator such
that 4, =P,

Wi, where £ is the sequence of measures.

The above procedure can be easily formalized. Let 1, = 5X be the Dirac measure supported at a point X € X.
According to the definition of the dual vector U we have

Uf (x) =<Uf,o, >=<f,P,0, >=< T, 1y >
This means that Uf (X) is mathematical expectation of f(X,) if X, =X is fixed. On the other hand,

according to our description, the expectation of f(X,) is equal to

N
D PO f (W (¥)).
k=1
Since X was arbitrary this gives
N
Uf (x) =2 pi (X) f (w, (). (3.6)
k=1

We admits this formula as the precise formal definition of our process and we define P, as the Markov

operator corresponding to U given by (3.6). Therefore PW is the unique operator satisfying

N
< f,Pu>=<Uf, u>=3"[p (f ow,)du 3.7)
k=1 x
and it must be of the form
N
P.u(P)=> [pdu (38)
k=L wic(a)

For such P,,, equation (3.7) holds for every bounded Borel measurable fand € . Equation (3.8) is the
desired formal definition of Markov operator P,,. Since the transformations W, : X — X, and the functions

P : X >R for k=12,...,N are continuous, P, given by (3.8) is a Feller operator.
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Now we will study asymptotic behavior of P, under some additional assumptions concerning p, and W, . We

will say that the iterated function systems of generalized Cantor sets (W, p) ={(W,, p,):k=12,...,N}

is non-expansive, has an invariant density or is asymptotically stable if the Markov operator (3.8) has the
corresponding property.

We say that the iterated function systems of generalized Cantor sets (W, p),, is asymptotically stable if P, is
asymptotically stable. Now we will formulate assumptions that ensure the non-expansiveness and asymptotic
stability of iterated function systems of generalized Cantor sets (W, p),, ={(W,, p,):k=12,...,N}.

IV. Non-expansiveness and Asymptotic Stability of Iterated Function Systems of GCS

4.1 Non-expansiveness of Iterated Function Systems of Generalized Cantor Sets
X N 2(k -1
2N-1 2N-1

is uniform continuous for

Lemma 4.1.1. The IFSGCS (W, p), 1€, W, (X)=

X,yeX, (2<N <o) and 1<k <N.

Proof. Choose ¢€>0. Let d=(2N—-1)&. Choose X,,Xe€ X. Assume that |X—X,|<S. Then
X Xo 1

W (X)) =W, (X;) [= — = X=X, K

1,00 =W, 04) [ 5 =2 =L x|

e, | w, (X) —w, (X,) < &.

Thus the IFSGCS (W, p),, is uniform continuous. O

o=¢

1
2N -1

Lemma 4.1.2. The IFSGCS (W, p),, satisfies the Dini function if there is a function @:[0,00] —[0,0] isa
modulus of continuity for W, i.e.,| W, (X) =W, (Y) | @(| X—Y]) for X,y € X.
Proof. Assume that @ :[0,00] — [0, 0] is defined by @(t) = Kt, where K is a Lipschitz constant.
X, 2k-1)  x  2(k-1) |
2N-1 2N-1 2N-1 2N-1

1
=g XY ELdx =y =l x=y D, where L ==

constant for (2< N <o) and 1<k <N.
e, |w, (X)—w, (V) Ko x—-y]) for X,y € X.
Thus @ is a Dini function of the IFSGCS (W, P) - O
Lemma 4.1.3. If the IFSGCS (W, p),, satisfies the inequality

Now | W, (X) —w, (Y) =]

is a Lipschitz

N
Z P (X) o(W, (X), W, (Y)) <r(po(X,y)) for X,y e X, where I <1 is a non-negative constant, then
k1

for

(w, p), is contraction transformation with contracting factor or Lipschitz constant L, = N_1

(2<N <) and 1<k <N.

X +2(k_1) P, :i,for X,y € X, where p,(X) are

Proof. The IFSGCS (W, p),, is W, (X) = ,
roof. The W, p)y is W (X)=— o —+= 7 N

N
probabilities such that z Py (X) =1 for every X e X.
k=l

Now ", (X1, (., (1) = 3 B, (| w, (9w, ()

s X 2k-D, , y 2(k-1)
_kz:l:pk(x)l|(2N—1+ N _1) (2N—1+ >N _1)||
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S Pl =X Y =Y )t X yll= Ly (k)
s 2N-1 2N-1" & 2N -1

X 1
That is, Z P (X) o(W, (X), W, (Y)) <r(o(X,y)) for X,ye X,say r=1_L, = N1
k=1 —
Thus (W, p), is contraction transformation with contracting factor or Lipschitz constant L, = N _1 for
(|

(2<N <o) and 1<k <N.
Since there exists a Dini function of the IFSGCS (W, p),, there exists a continuous non-decreasing and
concave function ¢:[0,00] —[0,00] such that @(0) =0,¢(0) =co and the Markov operator P,
corresponding to (W, p), is non-expansive with respect to the metric @(o(X, Y)) = p, (X, y) for X,y € X,
that is, we will calculate the value of || B, (4 — £4,) || for operator (3.8).

| P,y (et — 1) 1Al Pty — Pty ||=Sgp < Pty =Py, >= sup l<Uf, 14 —p1, >

N N
=sup |< > P (Fow), 1 — 1, S=sup |< D" p, F (W), 14 — 11, >|

Fo k=1 Fo k=1
=Sll;|p <1, 1 — 1 >:Sl:p [<fmb =1, >= i, — 11, ||

L8 || B, (ea — 1) IH] 14 = 14, ||
Thus P, is non-expansive with respect to the metric @ o p.

Since the IFSGCS (W, p),, satisfies the Lemma 4.1.3 and the Markov operator P,, corresponding to (W, p),,
is non-expansive with respect to the metric @o p, the iterated function systems of generalized Cantor sets

(w, p), is non-expansive with respect to the metric @ o p.
Theorem 4.1.1. Let P, be a non-expansive Markov operator. Assume that for every & > O there is a Borel set
A with diam A< &, areal number > 0 and an integer N such that

Liirl inf P'u(A)>a for e . (4.1)

Then P, is asymptotically stable.

Proof: Since a non-expansive Markov operator is a Feller operator, PW is a Feller operator. Then PW has an

invariant distribution £¢,. To complete the proof of asymptotic stability it remains to verify condition
lim < f,u, >=<f,u> foral feC(X).

N—o0
When an invariant distribution exists the above condition is equivalent to a more symmetric relation
H n
im || Py (4 = 12,) [I=0 for s, 14 € 4. (42)

Let 4,4, € ;and &€>0.Choose Ac X and &,0<a <1. Following Lasota and Yorke [7] we will
define by an induction argument a sequences of integers N, and four sequences of distributions

(), (V). k=012,...,i=12. 1f k=0 we define ;=0 and v =g = 44,.1f k >1 is fixed and

k-1

N1 4 ,Vik’l are given we choose according (4.1) a number N, such that

P 1 (A 2o fori=12.

and we define
Pwnk ,Uik_l(B NA)
P, 4 (A)

v (B) = (43)
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1 e
# (B)=——{P, 17 (B)—av{*(B)}.
l-a
since P, 12 (A) > &, we have
P, 47 (B)=R, (BN A) =R, (A} (B) 2 21f (B).
Observe that /(X \ A) = 0 and consequently
lvi =vi ll=sup | [ f vy = [ fdvi|=sup|[ fdvi—[fdvj|<diamA<e. (4.4)
feF X X feF A A
Using equation (4.3) it is easy to verify by an induction argument that
Pl = oPM Mt L o(l-o)Prt 2 4+ o(l-0) VS + (- o) i for k> 1.
Since P,, is non-expansive this implies
IR (i = ) IS o llvy =v; | +o@=a) [lvi —v; |
vy =y 1+ Q=0) Ml =5 |l
From this, condition (4.4) and the obvious inequality || z4° — 2z ||< 2 it follows
IR (= 1) I £+ 2(1~ 0)"

Again, using the non-expansiveness of Pvc we obtain

+...40(l-0)

Ry (e — 1) IS € +2(1-0)" for n>n, +...+n,.
Since ¢ > 0 is arbitrary and K does not depend on 4, £, we have

| Py, — Py 1, IS & for n>n, and every two measures 14, 14 € 1.
So, we are given

| Pyse—PJul|<e for nym>n, andevery e ..
Really, if N>mM we have

Pon =R (R 1)
and because M 2 N,
1Py (=P ") <.
Since is a complete metric space, the sequence (Pvc,u ‘ne N) convergences to some gk, € ;. Obviously
P, u, = u, and
lim || Pya — g 1= lim || Py (= 1) =0 forevery e .
n—o0 n—o0
This completes the proof. O

4.2 Asymptotic Stability of Iterated Function Systems of Generalized Cantor Sets
Theorem 4.2.1. Let (W, p)y ={(W,, p,):k=12,...,N} be iterated function systems of generalized

Cantor set. If (W, p),, satisfies the following conditions
(i) there is a Dini function of (W, p),,
(ii) im; P, (X) >0 forevery ke{l,2,...,N}

Xe

(iii) the transformations W, : X — Xare Lipschitzian for every ke{l,2,...,N} and there exists a non-

N
negative integer A,, such that Z p, (X)L, <4, <1for xe X,
k=1

then the IFSGCS (W, p),, is asymptotically stable.
Proof: (i) By Lemma 4.1.2, we say that the IFSGCS (W, p),, has a Dini function.
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(i) Since P, (X) :% for 2<N <o and 1<k<N, clearly in1>“( P (X)>0 for every

ke{l,2,... N}
(i) Since W, (X) = — 2k=D) p L i & Lipschitzian with Lipschitz’s constant L 1
= ' = ——, 1S a Lipschnitzian wi 1psSchitz’sS constan =
CYTONCT 2N-1 TN P P “TON-1
for X,y e X, 2< N <o and 1<k <N, then

35 (0L, = PO + By (I, 4+ By (L,

1 1 1 1 1 1
=—. +—. ot —, = for 2< N < oo,
N 2N-1 N 2N-1 N 2N-1 2N-1
N N
and A, :SUprk(X)Lk :% for N =2. Thus Z P (X)L, <4, <lfor xe X,
xeX k=1 k=1

Since the IFSGCS (W, p),, satisfies the above three conditions, the iterated function systems of generalized

Cantor sets (W, p),, is asymptotically stable.
This completes the proof. O
We say that a Markov operator PW . T satisfies the Prokhorov condition if there exists a compact set and a

number S such that

rI]iLT!Oinf P'u(Y)=p for ue .. (4.5)
This condition is clearly satisfied if X is a compact space or if P,, is an asymptotically stable operator.
Proposition 4.2.2. Let (W, p)y ={(W,, p,):k=12,...,N} be an iterated function systems of generalized
Cantor sets such that W, is bounded and inf p, >0. Then (W, p) ={(W,,p,):k=L2,...,N} has a
stationary distribution and satisfies the Prokhorov condition LILT}O inf P"u(Y)> 3 for e , where Y isa

compact set and a number /3.

N
Proof. We know P, z2(A) =Z kadﬂ corresponding to (W, ),
k=

Lwl(A)

LetY = [O,%] u[%,l] D W, (X) be acompact set. For every £ € ;we have
N
Pu(Y)=> [pdu=1
kKL wl(v)
N N

Thatis, PJa(Y) =D+ [P, W, oo (). Py (du =1

k=l k=l lellq . .OWE;l Y)

and zo(w; (Y))inf{ p,} = p([0.1])inf{ p,}= % =/ (say).

Thus liminf P,"(Y)> S for e , where Y isacompact set and a number /3. O
nN—o

Theorem 4.2.2. Suppose iterated function systems of generalized Cantor sets
(w, p)y ={(W,, p,): k=212,...,N} are essentially non-expansive and satisfies the Prokhorov condition.

Also suppose that W, satisfies the inequality

Z P (X) o (W, (X), W, (¥)) <Tp(X, ) for X,y € X, (4.6)
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where I <1 is a non-negative constant, and has an attracting fixed point X, , then

lim p(w(x),x,)=0  for X,e X
If in addition INf{ p,} >0, then (W, p), ={(W,, p,): k=12,...,N} is asymptotically stable.

1
Proof. Following Lasota and Yorke [7] consider the dynamical system (WI’E) given by only one
. 1 . I 1, . .
transformation W, and the probability E Condition (4.6) implies that (Wl, E) is non-expansive. The Markov

1
operator P, corresponding to (Wl,E) is given by formula

PaM=Y [ pdi=p(* (W) for A=[0 1012, X,

kKL w(A) 3
and has the property that a point measure 4 =9, is transformed into the point measure P, .= 5W1(X). For
every X, € X the sequence X, = Wln (XO) converges to attracting fixed point X, and consequently for every
X, € X the sequence of measures P,/J, =3, converges weakly to 5, =P, 5, . Since the family of Dirac

measures is linearly dense in 4 (in the Fortet Mourier metric) and the operators {F’\,;1 } are uniformly continuous,
we have

im | P u—6, |=0 for ue ..

n—o0 *

1
Thus the system (W,,—) is asymptotically stable. This completes the proof. O
Y2

V. Conclusion
We discuss iterated function systems with probabilities of generalized Cantor sets (IFSGCS) and show
that these functions are non-expansiveness and asymptotically stable if the Markov operator has the
corresponding property. We would like to study the iterated function systems of two dimensional fractals such
as the Sierpinski triangle or gasket, carpet and the Box fractal and also three dimensional fractals such as the
Tetrahedron, the Menger sponge and the Octahedron in Markov operator.
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