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I. Introduction 
A Fractal, as defined by B. Mandelbrot, “is a shape made of parts similar to the whole in some way” 

[2]. Fractal is a geometric object that possesses the two properties: self-similar and non-integer dimensions. So a 

fractal is an object or quantity which displays self-similarity. The Cantor set is the prototypical fractal [1]. 

Cantor sets were discovered by the German Mathematician George Cantor in the late 19th to early 20th 

centuries (1845-1918). He introduced fractal which has come to be known as the Cantor set, or Cantor dust.  

We studied Cantor set and found generalized Cantor sets and show its dynamical behaviors and fractal 

dimensions [3]. Then we studied generalized Cantor sets in measure space and found that these special types of 

sets are Borel set as well as Borel measurable whose Lebesgue measure is zero [4]. Also we find the iterated 

function systems with probabilities of generalized Cantor sets and show their invariant measures [5].  

If },,,{ 21 Nwww   is a finite family of strict contracting transformations, we may consider the Barnsley-

Hutchinson multiplication [6, 7] given by the formula 
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Fractals are strongly related to Markov operator acting on the space of all Borel measures [8]. If XXwk :  

are continuous transformations and ]1,0[: Xpk  are continuous such that ,1)(
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for  .                               (1.2)  

where denotes the family of all probability Borel measure X into Borel measure on .X   

In this paper, we study the iterated function systems of generalized Cantor sets using Markov operator. 

We define the transition operator wP  for the iterated function systems of generalized Cantor sets, which is a 

Markov operator. We show that the iterated function systems of generalized Cantor sets is asymptotically stable 

if the Markov operator wP  is asymptotically stable and also is non-expansive if the Markov operator wP  is non-

expansive with respect to the metric )).,(( yx  Our proof is based on the result of Lasota and Yorke [9].  

The organization of the paper is as follows. Section 2 contains some definitions and notation from the theory of 

Markov operators acting on the space of measure. In Section 3 we discuss the iterated function systems of 

generalized Cantor sets with probabilities and prove the transition operator wP  is a Markov operator. In Section 

4 we show that the iterated function systems of generalized Cantor sets are non-expansiveness and 

asymptotically stable if the Markov operator wP  has the corresponding property.  
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II. Notation and Preliminaries 

Definition 2.1. A non empty set R  is called a Cantor set if  

(a)   is closed and bounded. (b)   contains no intervals.  

(c) Every point in   is an accumulation point of .   

Definition 2.2. A measure   defined on a  -algebra  of subsets of a set X  is called finite if )(X  is a 

finite real number (rather than ). The measure   is called  -finite if X  is the countable union of 

measurable sets with finite measure. A set in a measure space is said to have  -finite measure if it is a 

countable union of sets with finite measure. 

Definition 2.3. A Borel set is any set in topological space that can be formed from open sets (or, equivalently, 

from closed sets) through the operations of countable union, countable intersection and relative complement. 

Borel sets are named after Emile Borel.   

Definition 2.4. Let X  be a locally compact Hausdorff space, let   be the smallest  -algebra that contains the 

open sets (or, equivalently, the closed sets) of ;X  this is known as the  -algebra of Borel sets. Any measure 

  defined on the  -algebra of Borel sets is called a Borel measure. 

Definition 2.5. Let ),( X  be a metric space. A function XXf :  is a contraction mapping, or 

contraction on ),,( X with the property that there is some nonnegative real number  10    such that for 

all x and y in ,X  

).,())(),(( yxyfxf    

The smallest such value of   is called the Lipschitz constant of .f
 
The Contractive maps are sometimes 

called Lipschitzian maps. If the above condition is instead satisfied for ,1  then the mapping is said to be a 

non-expansive map. 

Let ),( X  be a separable complete metric space. We assume that every closed ball in X  

}),(:{),( ryxXyxrB    

is a compact set. We denote by )(XB  the  -algebra of Borel subsets of .X  By  we denote the family of 

Borel measure (nonnegative,  -additive) on X  such that )(B  for every ball .B  By 1 we denote the 

subsets of  such that 1)( X  for  1. The elements of 1 will be distributions. Further by )(XC
 
we 

denote the space of bounded continuous functions RXF :  with the supremum norm. As usual we denote 

by )(0 XC  the subspace )(XC  of which contains functions with compact supports. The indicator function of 

a set XA  will be a denoted by .1A  

A linear functional R0:C  is called positive if 0)( f  for .0f  According to the Riesz theorem 

for every linear positive functional R0:C
 
there is a unique measure     such that  

      ,:)( fdff
X

 for .0Cf   

An operator :P     will be called a Markov operator if it satisfies the following two conditions.  

(i) Positive linearity:  22112211 )(  PPP    for  2121 ,;0,   

(ii) Preservation of the norm: )()( XXP     for  .         

A Markov operator P  is called a Feller operator if there is a linear operator )()(: 0 XCXCU   (dual to P ) 

such that 

     PfUf ,,       for ,0Cf   .                              (2.1) 

Observe that the range of the operator U  is contained in )(XC
 
but not necessarily in ).(0 XC

 
We may 

extend U  to all bounded measurable (or nonnegative measurable) function by setting 

    xx PfUfxUf  ,,)(                   (2.2) 

where x 1 is a point (Dirac) measure supported at .x  For 0f
 
the function Uf  is nonnegative but may 

be unbounded or even admit infinite values for unbounded .f   
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Every Markov operator P  can be easily extended to the space of signed measures 

sig  2121 ,:{  } 

Namely for every    sig we define  

21  PPP   where  2121 ,:  . 

It is easy to verify that this definition of P  does not depend on the choice of 21, . In the space sig we 

define the Fortet–Mourier norm  

    ||||  },:|,{|sup Fff
F

                                 (2.3)   

where 
X

dxxff )()(,   and )}({ XCfF   is the set of all f  such that 1|||| cf  and 

),(|)()(| yxyfxf   for ., Xyx   

It is easy to verify that the value (2.3) will not change if F  is replaced by .00 CFF   For  , we have 

).(|||| X   The space 1 with the distance |||| 21    is a complete metric space and the convergence 

   0||||lim 


n
n

    for  ,n 1 

is equivalent to the condition 

   


 ,,lim ff n
n

                   (2.4) 

for all ),(XCf   or equivalently for all ).(0 XCf   

Let P  be a Markov operator. A measure   is called stationary or invariant if . P  A Markov 

operator P  is called asymptotically stable if there exists a stationary distribution   such that  

   0||||lim  


n

n
P  for  1.                   (2.5) 

Clearly a distribution   satisfying (2.5) is unique. However, in general, condition (2.5) does not imply that 

  is stationary. This implication holds for Feller operators.  

A Markov operator P  is called non-expansive if 

   |||||||| 2121   PP  for 21, 1.                              (2.6) 

Lemma 2.1. Let P  be a Feller operator. Assume that there exists a linear positive functional 

R)(: XC such that XX 1)1( 
 
and  

   )())(( hhU      for )(0 XCh           

where U  is dual to .P  Further let    be the unique (Riesz theorem)
 

measure satisfying  

  ,)( hh   for ).(0 XCh  Then   and .  P  

Proof: The proof can be found in [9]. 

Lemma 2.2. A non-expansive Markov operator is a Feller operator. 

Proof: The proof can be found in [9]. 

 

III. Iterated Function Systems of Generalized Cantor Sets with Probabilities 

Let ),( X
 
be a complete separable metric space. An iterated function system is given by a family of 

contracting transformations  

           IiXXSi  ,:   where the index set I  is finite.  

If, in addition, there is given a family of continuous functions  

       
IiXpi  ],1,0[:

 
                                           

satisfying 1)(
1




N

i

i xp  for every ,Xx
 
then the family }:),{( IipS ii 

 
is called an iterated function 

system with probabilities.  
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3.1. Iterated Function Systems (IFS) of Cantor middle
3

1
 set with probabilities are 
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2
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,
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x
xw                                (3.1) 

where 1p  and 2p  are probabilities which control the evolution distribution of )(1 xw  and ).(2 xw
 
According 

to the theory of density evolution [10], the density for
 

)(xf  mapping satisfying the density evolution equation  
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operator [11]. That is, )).((
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Now we assume the probability density over 

the initial interval  1,0  is  
 



 


,otherwise,0

,1,0,1
0

x
xf  

then what will happen for  xf0  under the Markov operator? According to Barnsley-Hutchinson operator (1.1), 

the attractor of equation (3.1) is the unit interval. i.e.,  .1,0A  

Now for a subset ,
3

1
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
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1  Aw     Aw 1

2   ,1,2   then    .01
2  Awf  In 

the same way, for a subset ,1,
3

2
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
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under the Markov operator. Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 3.1. 

 
Figure 3.1. Transform from 1p  and 2p  over unit interval. 

Thus the IFS of Cantor middle
3

1
set with probabilities is }.2,1:),{( kpw kk  

3.2. Iterated Function Systems (IFS) of Cantor middle
5
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 set with probabilities are 
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  ,
3

1
,

5

2
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x

xw  
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1
,

5
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where ,1p  2p  and 3p  are probabilities which control the evolution distribution of  ,1 xw   xw2  and 

 .3 xw  Now we assume the probability density over the initial interval  1,0  is 

 
 



 


,otherwise,0

,1,0,1
0

x
xf  

then what will happen for  xf0  under the Markov operator? According to Barnsley-Hutchinson operator (1.1), 

the attractor of equation (3.2) is the unit interval. i.e.,  .1,0A  

Now for a subset ,
5

1
,0
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


A  we have    ,1,01
1  Aw     Aw 1

2   ,1,2      ,3,41

3  Aw  then 

   01
2  Awf  and    .01

3  Awf In the same way, for a subset ,
5
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1  Aw     ,1,01

2  Aw     ,1,21
3  Aw  then    01
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3


 .0  
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3  Aw  then 
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1  Awf  and    .01

2  Awf  Thus after the first step,
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under the Markov operator. Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 3.2.
 

 
Figure 3.2. Transform from 21, pp  and 3p  over unit interval. 

Thus the IFS of Cantor middle
5

1
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3.3. Iterated Function Systems (IFS) of Cantor middle
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  for .2  N                                (3.3) 

where Nppp ...,,, 21  are probabilities which control the evolution distribution of      ....,,, 21 xwxwxw N  

Now we assume the probability density over the initial interval  1,0  is 

 
 



 


,otherwise,0

,1,0,1
0

x
xf  

then what will happen for  xf0  under the Markov operator? According to Barnsley-Hutchinson operator (1.1), 

the attractor of equation (3.3) is the unit interval, i.e.,  .1,0A  

Now for a subset ,
12
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under the Markov operator. Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 3.3. 

 
Figure 3.3. Similar transform from Nppp ...,,, 21  over unit interval. 
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Thus the IFS of Cantor middle
12

1

N
set with probabilities is }.,,2,1:),{( Nkpw kk   

We may summarize the above functions in the following statement:  

Iterated Function Systems of Generalized Cantor Sets with Probabilities: Let ].1,0[X
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complete separable metric space. If XXwk :  is defined by           
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where )(xpk  are probabilities such that 1)(
1




N

k

k xp  for every ,Xx  which control the evolution 

distribution of )(xwk  
with contracting factor or Lipschitz constant 
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for  N2  and 

.1 Nk 
 
Then the family },,2,1:),{(),( Nkpwpw kkN   is called iterated function systems of 

generalized Cantor sets with probabilities.   

 

For the iterated function systems of generalized Cantor sets ,),( Npw  we define the transition operator  

:wP      by the formula  

     dpAP
N

k Aw

kw

k

 
 


1 )(1

)(   for )(XA B  and  .                (3.5) 

Theorem 3.1. If wP  satisfies the following two conditions  

(i) Positive linearity:  22112211 )(  www PPP    for  2121 ,;0,   

(ii) Preservation of the norm: )()( AAPw     for  ,  

then wP  is a Markov operator for IFSGCS .),( Npw    

Proof: Let ].1,0[X
 
Let ),( X  be a complete separable metric space. The iterated function systems  

XXwk :  is defined by ,
1

,
12

)1(2

12
)(

N
p

N

k

N

x
xw kk 







  for  N2  and .1 Nk 

 
 Let 

.]1,
12

)1(2
[]

12

3
,

12

2
[]

12

1
,0[ X

N

N

NNN
A 










   

 (i) By (3.5) we have 

 
 


N

k Aw

kw

k

ddpAP
1 )(

22112211
1

)())((   

   



N

k

k

N

k

k

N

k

k dpdpddp
1

1

0

22

1

1

0

11

1

1

0

2211 )(  21    

 and   
 


N

k Aw

k

N

k Aw

kww

kk

dpdpPP
1 )(

22

1 )(

112211
11

  

             21

1

1

0

22

1

1

0

11   


N

k

k

N

k

k dpdp   

22112211 )(.,.  www PPPei    for  2121 ,;0,  . 

 (ii) By (3.5) we have 

   1)(
1

1

01 )(1

  
 

N

k

k

N

k Aw

kw dpdpAP

k

   
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  and ]1,
12

)1(2
[]

12

3
,

12

2
[]

12

1
,0[)(












N

N

NNN
A    

     1
121212

1

12

)1(2

12

3

12

2

12

1

0










 










 d
N

N
d

N

N
d

N

N

N

N

N

N

N



 

[Using function (3.4)]
 

)()(.,. AAPei w     for  . 

Thus wP  is a Markov operator for IFSGCS .),( Npw
 

By the second condition of theorem 3.1 we can easily show that wwwP  
 
for w 1. That is, wP

 
has a 

stationary or invariant measure .w  Thus we say that w 1 is a invariant measure for .),( Npw  

Following Lasota and Yorke [9] we have a sequence of transformations 

,: XXwk 
 

Nk ,,2,1 
 

and a probabilities vector )},(,),(),({ 21 xpxpxp N ,0)( xpk  1)(
1




N

k

k xp  for ,Xx   

.,,2,1 Nk   If an initial point 0x  is chosen, then we randomly select from the set },,3,2,1{ N  an 

integer such a way that probability of choosing k  is ),( 0xpk  .,,2,1 Nk   When a number 0k  is drawn 

we define ).( 01 0.
xwx k  Having 1x  we select 1k  according to the distribution ),( 1xpk  Nk ,,2,1   and 

we define )( 12 1.
xwx k  and so on. Denoting by ,1,0, nn  the distribution of .nx  

A)prob()(i.e., n  nxA  for every non-negative integer .n  We define wP  as transition operator such 

that ,1 nwn P    where n  is the sequence of measures. 

The above procedure can be easily formalized. Let x 0  be the Dirac measure supported at a point .Xx  

According to the definition of the dual vector U  we have  

   1,,,)(  fPfUfxUf xwx  

This means that )(xUf
 

is mathematical expectation of )( 1xf  if xx 0  is fixed. On the other hand, 

according to our description, the expectation of )( 1xf  is equal to  

.))(()(
1




N

k

kk xwfxp   

Since x  was arbitrary this gives 

     

.))(()()(
1





N

k

kk xwfxpxUf                       (3.6) 

We admits this formula as the precise formal definition of our process and we define wP  as the Markov 

operator corresponding to U  given by (3.6). Therefore wP  is the unique operator satisfying  

    dwfpUfPf
N

k X

kkw 



1

)(,,                                                   (3.7)  

 and it must be of the form  

                  dpAP
N

k Aw

kw

k

 
 


1 )(1

)(                                                                         (3.8) 

For such ,wP equation (3.7) holds for every bounded Borel measurable f and  .  Equation (3.8) is the 

desired formal definition of Markov operator .wP
 
Since the transformations ,: XXwk  and the functions 

RXpk :  for Nk ,,2,1   are continuous, wP given by (3.8) is a Feller operator.   
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Now we will study asymptotic behavior of wP  under some additional assumptions concerning kp  and .kw  We 

will say that the iterated function systems of generalized Cantor sets },,2,1:),{(),( Nkpwpw kkN   

is non-expansive, has an invariant density or is asymptotically stable if the Markov operator (3.8) has the 

corresponding property.  

We say that the iterated function systems of generalized Cantor sets
 Npw ),(

 
is asymptotically stable if wP

 
is 

asymptotically stable. Now we will formulate assumptions that ensure the non-expansiveness and asymptotic 

stability of iterated function systems of generalized Cantor sets }.,,2,1:),{(),( Nkpwpw kkN    

 

IV. Non-expansiveness and Asymptotic Stability of Iterated Function Systems of GCS 
 

4.1 Non-expansiveness of Iterated Function Systems of Generalized Cantor Sets 

Lemma 4.1.1. The IFSGCS Npw ),(  
12

)1(2

12
)(.,.









N

k

N

x
xwei k  is uniform continuous for 

,, Xyx   )2(  N  and .1 Nk 
 

Proof. Choose .0  Let .)12(   N
 

Choose .,0 Xxx   Assume that .|| 0  xx  Then 

 











 .
12

1
||

12

1
|

1212
||)()(| 0

0
0

N
xx

NN

x

N

x
xwxw kk

.|)()(|.,. 0  xwxwei kk  

Thus the IFSGCS Npw ),(  is uniform continuous. 

Lemma 4.1.2. The IFSGCS Npw ),(
 
satisfies the Dini function if there is a function ],0[],0[:   is a 

modulus of continuity for kw |)(||)()(|.,. yxywxwei kk    for ., Xyx   

Proof. Assume that ],0[],0[:   is defined by ,)( ktt 
 
where k  is a Lipschitz constant. 

Now |
12

)1(2

1212

)1(2

12
||)()(|

















N

k

N

x

N

k

N

x
ywxw kk  

|),(|||||
12

1
yxyxLyx

N
k 


  where 

12

1




N
Lk

 

is a Lipschitz 

constant for )2(  N  and .1 Nk 
 

 |)(||)()(|.,. yxywxwei kk    for ., Xyx   

Thus   is a Dini function of the IFSGCS .),( Npw
                                                        

 

Lemma 4.1.3. If the IFSGCS Npw ),(  satisfies the inequality 

 )),(())(),(()(
1

yxrywxwxp
N

k

kkk  
  

for ,, Xyx   where 1r  is a non-negative constant, then 

Npw ),(  is contraction transformation with contracting factor or Lipschitz constant 
12

1




N
Lk

 

for 

)2(  N  and .1 Nk 
 

Proof. The IFSGCS Npw ),(
 
is ,

1
,

12

)1(2

12
)(

N
p

N

k

N

x
xw kk 







 for ,, Xyx 

 
where )(xpk  are 

probabilities such that 1)(
1




N

k

k xp  for every .Xx  

 

Now 



N

k

kkk

N

k

kkk ywxwxpywxwxp
11

||)()(||)())(),(()(    


 















N

k

k
N

k

N

y

N

k

N

x
xp

1

||)
12

)1(2

12
()

12

)1(2

12
(||)(  
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),(||||
12

1
)(||

1212
||)(

11

yxLyx
N

xp
N

y

N

x
xp k

N

k

k

N

k

k 








 
            

That is, )),(())(),(()(
1

yxrywxwxp
N

k

kkk  


 for ,, Xyx   say .
12

1




N
Lr k  

Thus Npw ),(
 
is contraction transformation with contracting factor or Lipschitz constant 

12

1




N
Lk

 

for 

)2(  N  and .1 Nk 
 

Since there exists a Dini function of the IFSGCS ,),( Npw
 
there exists a continuous non-decreasing and 

concave function ],0[],0[:   such that  )(,0)0( 
 

and the Markov operator wP
 

corresponding to Npw ),(
 
is non-expansive with respect to the metric ),()),(( yxyx    for ,, Xyx   

that is, we will calculate the value of ||)(|| 21  wP  for operator (3.8).    

 21212121 ,|sup|,|sup||||||)(|| 


UfPPfPPP
F

ww
F

www  

                      

||||,|sup,1|sup

|,)(|sup|,)(|sup

212121

21

1

21

1











 


f

wfpwfp

FF

N

k

kk
F

N

k

kk
F


   

||||||)(||.,. 2121  wPei  

Thus wP  is non-expansive with respect to the metric .    

Since the IFSGCS Npw ),(
 
satisfies the Lemma 4.1.3 and the Markov operator wP  corresponding to Npw ),(

 
is non-expansive with respect to the metric ,   the iterated function systems of generalized Cantor sets 

Npw ),(
 
is non-expansive with respect to the metric .   

Theorem 4.1.1. Let wP
 
be a non-expansive Markov operator. Assume that for every 0  there is a Borel set 

A  with diam ,A  a real number 0  and an integer n  such that  

 


)(inflim APn

w
n

 for   1.                  (4.1) 

Then wP  is asymptotically stable.   

Proof: Since a non-expansive Markov operator is a Feller operator, wP
 
is a Feller operator. Then wP

 
has an 

invariant distribution .  To complete the proof of asymptotic stability it remains to verify condition  




 ,,lim ff n
n

    for all ).(XCf   

When an invariant distribution exists the above condition is equivalent to a more symmetric relation  

0||)(||lim 21 


n

w
n

P    for 11, 1.                 (4.2) 

Let  21, 1 and .0 Choose XA and .10,   Following Lasota and Yorke [7] we will 

define by an induction argument a sequences of integers kn  and four sequences of distributions 

.2,1,,2,1,0),(),(  ikk

i

k

i   If 0k  we define 00 n  and .00

iii   If 1k  is fixed and 

11

1 ,, 



k

i

k

ikn 
 
are given we choose according (4.1) a number kn such that   

  )(1 AP k

iw

kn

     for .2,1i  

and we define  

    
)(

)(
)(

1

1

AP

ABP
B

k

iw

k

iwk

i kn

kn



 





                                 (4.3) 
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   )}.()({
1

1
)( 11 BBPB k

i

k

iw

k

i

kn
 


 


  

Since ,)(1   AP k

iw

kn

 we have  

  ).()()()()( 111 BBAPABPBP k

i

k

i

k

iw

k

iw

k

iw

knknkn

  
      

Observe that 0)\( AXk

i  and consequently 

       ||sup|||| 2121

k

X

k

X
Ff

kk dfdf   


.||sup 21   


Adiamdfdf k

A

k

A
Ff

                 (4.4) 

Using equation (4.3) it is easy to verify by an induction argument that  
k

i

kk

i

k

i

nn

wi

nn

wi

nn

w
kkk PPP  )1()1()1( 121 221   

 for .1k  

Since wP
 
is non-expansive this implies  

||||)1(||||||)(|| 2

2

2

1

1

2

1

121
1  

 knn

wP


 

          .||||)1(||||)1( 2121

1 kkkkkk     

From this, condition (4.4) and the obvious inequality 2|||| 21  kk   it follows  

  
knn

w
kP )1(2||)(|| 21

1  


 

Again, using the non-expansiveness of 
n

wP  we obtain  

  
nn

wP )1(2||)(|| 21    for .1 knnn    

Since 0  is arbitrary and k  does not depend on 21,  we have   

    |||| 21

n

w

n

w PP   for 0nn   and every two measures  11, 1. 

So, we are given  

    |||| m

w

n

w PP   for 0, nmn   and every   1. 

Really, if  mn  we have  

  )(  mn

w

m

w

n

w PPP   

and because 0nm   

  .||)(||   mn

w

m

w PP  

Since 1 is a complete metric space, the sequence ):( NnPn

w   
convergences to some    1. Obviously 

  wP
 
and  

                      0||)(||lim||||lim  





 n

w
n

n

w
n

PP   for every  1.  

This completes the proof.                                                                                                

 

4.2 Asymptotic Stability of Iterated Function Systems of Generalized Cantor Sets 

Theorem 4.2.1. Let },,2,1:),{(),( Nkpwpw kkN   be iterated function systems of generalized 

Cantor set. If Npw ),(  satisfies the following conditions  

(i) there is a Dini function of Npw ),(    

(ii) 0)(inf 


xpk
Xx

 for every },,2,1{ Nk    

(iii) the transformations XXwk : are Lipschitzian for every },,2,1{ Nk   and there exists a non-

negative integer w  such that 



N

k

wkk Lxp
1

1)(  for ,Xx  

then the IFSGCS Npw ),(  is asymptotically stable.  

Proof: (i) By Lemma 4.1.2, we say that the IFSGCS Npw ),(
 
has a Dini function.  
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(ii) Since 
N

xpk

1
)(   for  N2  and ,1 Nk    clearly 0)(inf 


xpk

Xx
 for every 

}.,,2,1{ Nk 
 
 

(iii) Since ,
1

,
12

)1(2

12
)(

N
p

N

k

N

x
xw kk 









 

is a Lipschitzian with Lipschitz’s constant 
12

1




N
Lk  

for ,, Xyx 
 

 N2  and ,1 Nk  then  

NN

N

k

kk LxpLxpLxpLxp )()()()( 2211

1




  

                       
12

1
.

1

12

1
.

1

12

1
.

1










NNNNNN


12

1




N
 for .2  N  

and 
3

1
)(sup

1

 


N

k

kk
Xx

w Lxp    for .2N  Thus 



N

k

wkk Lxp
1

1)(  for ,Xx  

Since the IFSGCS Npw ),(  satisfies the above three conditions, the iterated function systems of generalized 

Cantor sets Npw ),(  is asymptotically stable.  

This completes the proof.   

We say that a Markov operator :wP    satisfies the Prokhorov condition if there exists a compact set and a 

number   such that  
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 for  1.                  (4.5) 

This condition is clearly satisfied if X  is a compact space or if wP
 
is an asymptotically stable operator.  

Proposition 4.2.2. Let },,2,1:),{(),( Nkpwpw kkN 
 
be an iterated function systems of generalized 

Cantor sets such that 1w  is bounded and .0inf 1 p  Then },,2,1:),{(),( Nkpwpw kkN   has a 

stationary distribution and satisfies the Prokhorov condition  
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w
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 for  1, where Y  is a 
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1 ppYw  (say). 

Thus  
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)(inflim YP
n

w
n

 for  1, where Y  is a compact set and a number .   

Theorem 4.2.2. Suppose iterated function systems of generalized Cantor sets  

},,2,1:),{(),( Nkpwpw kkN 
 
are essentially non-expansive and satisfies the Prokhorov condition. 

Also suppose that 1w  satisfies the inequality   
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for ,, Xyx      (4.6) 
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where 1r  is a non-negative constant, and has an attracting fixed point ,x  then             

 0)),((lim 1 


xxwn

n
        for Xx ,                                   

If in addition ,0}inf{ 1 p  then },,2,1:),{(),( Nkpwpw kkN 
 
is asymptotically stable.   

Proof. Following Lasota and Yorke [7] consider the dynamical system )
2

1
,( 1w

 
given by only one 

transformation 1w and the probability .
2

1
 Condition (4.6) implies that )

2

1
,( 1w  is non-expansive. The Markov 

operator wP  corresponding to )
2

1
,( 1w  is given by formula  
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and has the property that a point measure x  is transformed into the point measure .)(1 xwwP    For 

every Xx 0  the sequence )( 01 xwx n

n   
converges to attracting fixed point x  and consequently for every 

Xx 0  the sequence of measures 
nxx

n

wP  
0

converges weakly to .


 xwx P   Since the family of Dirac 

measures is linearly dense in 1 (in the Fortet Mourier metric) and the operators }{ n

wP  are uniformly continuous, 

we have   

0||||lim 


x

n

w
n

P    for  1.  

Thus the system )
2

1
,( 1w

 
is asymptotically stable.  This completes the proof. 

V. Conclusion 
We discuss iterated function systems with probabilities of generalized Cantor sets (IFSGCS) and show 

that these functions are non-expansiveness and asymptotically stable if the Markov operator has the 

corresponding property. We would like to study the iterated function systems of two dimensional fractals such 

as the Sierpiński triangle or gasket, carpet and the Box fractal and also three dimensional fractals such as the 

Tetrahedron, the Menger sponge and the Octahedron in Markov operator.  
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