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Abstract: A mathematical model of HIV/AIDS was developed for a human population of five compartments. 

The dynamical systems theory was used to analyze the model. The steady states (equilibrium points) were 

determined. The stability of the steady states (equilibrium points) was established using Routh Hurtwitz 

criterion. It was shown that the model has two non-negative equilibra which are disease free equilibrium 

)0,0,0,0(0E and endemic equilibrium ),,,,( ***** aIIISE TcE . It was found that the disease free equilibrium 

)0,0,0,0(0E is both locally and globally asymptotically stable if is R0 <1 which means the disease will die out 

from the system after a long time and it is unstable and the infection is maintained in the population if R0>1. 

The endemic equilibrium, ),,,,( ***** aIIISE TcE , is locally asymptotically stable  the disease remains an 

endemic disease. A sensitivity analysis and Simulation of the model were done which enabled us to draw 

conclusion and three parameters proved to be very sensitive in the model which are Programmes run by the 

Government to stop the spread, a1, rate of movement from infective group,  , and rate of recruitment into 

susceptible group,  .  
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I. Introduction 

It is a simplified representative of certain aspects of a real system, created using mathematical concept 

such as functions, graphs, diagrams and equations to solve problems in the real world. Other definitions of 

mathematical modeling have also been given by various authors; ECA (2013). Defines it as art of translating 

physical problems into tractable mathematical formulations whose theoretical and numerical analysis provides 

understanding of the real life phenomenon and solution to the problem. Modeling involves identifying and 

selecting relevant features symbolically, analyzing and reasoning about the model and characteristics of the 

situation and considering the accuracy and limitations of the model: ECA (2013). A mathematical model can be 

formulated either through intuitive reasoning about the phenomenon or from physical law based on evidence 

from the experiment. It is usually constructed in the language of mathematics, logic and computer following the 

algebraic rules of syntax. A mathematical model often takes the form of differential equation or system of 

differential equation. Since our goal is to use the equation to solve specific problems, we are interested in 

specific rather than general solutions. We obtain these specific solutions by boundary conditions; Aris(1994). 

Generally the success of a model depends on how easily it can be used and how accurate are its predictions. 

The use of computers has extended modeling by allowing combination of data, interaction, repetition 

sound graphics and other displays for various types of mathematical modeling. However, model should have a 

limited range of validity and should not be applied outside this range; Guideto (2010). Modeling has been 

applied in virtually every sphere of man’s existence and it is as wide as nature itself, Hartman (1980) the list is 

not exhaustible. Modeling has been used to solve problems of robotics in the area of artificial- intelligence; 

detection of planetary system in Astronomy; population dynamics and spread of infectious disease in biology; 

planning of production units in chemical engineering; stability of electric circuits, micro analysis and power 

supply network optimization in electric engineering; prediction of oil or ore deposits and earthquake in 

geosciences; stability of structures and structural optimization in civil engineering; and so on. There is hardly 

any problem that cannot be modeled mathematically if one is vast in modeling. But our goal/objective here is to 

use mathematical modeling to know the economic impact of HIV/AIDS on transmission from mother to child at 

birth and during the processes involved and to reduce the effect of this transmission. Other useful works here are 

the works of (Cooper, (2004); Chukwu and John, (2014) and UNAIDS, 2015) 
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II. The Model 
2.1 Symbols and parameters  

N = Total population 

S = Susceptible group 

I = Infective group 

IC = Incubation group 

IT = Treatment group  

A = fully developed AIDS group 

𝜆 = Rate of recruitment into susceptible group. 

𝑕𝑖  = Average number of sexual partners per unit time, (𝑖 = 1,2,3,4) 

𝛽 = Sexual contact rate  

𝛾 = Rate of movement from infective group 

𝑘1 = Fraction of babies infected with HIV that die after birth 

𝑘2 = Rate of new babies infected with HIV 

𝜇 = Natural mortality rate 

𝜇𝐴 = Death rate due to AIDS 

𝑓1 = fraction of  𝛾  moving into the incubation period group  

𝜓 = Rate of movement of incubation period group individuals  

Into AIDS group 

𝑓2 = fraction of  𝛾  moving to treatment group 

𝜔 = Rate at which AIDS group get treatment. 

g = Fraction of 𝜓 who get treatment 

𝛼 = Rate at which treatment group becomes full blow AIDS. 


      

=       Rate of movement from the susceptible class to the  

                       incubation class. 

          =        Rate of movement from the susceptible class to the  

Treatment class. 

a1 =       Programs run by government to stop the spread 

a2 =        Government total budget to stop the spread 

a3 =       Rate of movement of treatment group with AIDS Sponsored 

         by government from infected group to full blown AIDS 

 

2.2 Flow Diagram of the Model 

 

 
Fig 2.1 Flow Diagram of the Model 
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From the flowchart, the arrows points to the direction of contact with each compartment as shown in 

the diagram. Population moving in and going out of the compartments after contact were also shown. Arrows 

moving out from the compartments completely are death rate due to mortality. 

 

2.3 Assumptions 

1. There is no recovered group  

2. AIDS individuals compartment were not sexually active and leave the population by AIDS related 

mortality. 

3. The proportion of new recruits allocated to each compartment is held constant over the time period. ( To 

maintain the system) 

4. h2  and h4 are negligible, hence we ignore them 

5. (1 – k1)k2 (Ι𝐶  + A)  =  0 [Basavarajaiah, et al 2012] 

6. It is assumed that people in the incubation period group and those in the full developed AIDS group are 

exposed and capable of bearing children. 

7. The populations (compartments) were closed to migration 

 

2.4 The Model Formulation 

Applying the flow diagram, symbols and parameters and the assumptions, we develop the model as follows: 
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We normalize the model by substituting (2.2) and (2.3) into (2.1) 

                )2.2(
,,,,

,,,,














AaNINiINiIiNSsN

N

A
a

N

I
i

N

I
i

N

I
i

N

S
s

TTCC

T
T

C
C

 

             )3.2(

)(
1

)(
1

)(
1

)(
1

)(
1

































dt

dN
a

dt

dA

Ndt

da

dt

dA

dt

dN
a

dt

da
N

dt

dN
i

dt

dI

Ndt

di

dt

dI

dt

dN
i

dt

di
N

dt

dN
i

dt

dI

Ndt

di

dt

dI

dt

dN
i

dt

di
N

dt

dN
i

dt

dI

Ndt

di

dt

dI

dt

dN
i

dt

di
N

dt

dN
s

dt

dS

Ndt

ds

dt

dS

dt

dN
s

dt

ds
N

T
TTT

T
T

C
CCC

C
C

 

The normalization results in the following 
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We state two theorems that will aid us in the analysis as follows: 

Theorem 2.1(Beltrami, 1983) 

The steady state (equilibrium) of UA
dt

Ud
 is globally asymptotically stable if and only if the real parts of the 

eigen-values of A are negative and unstable otherwise.  

Theorem 2.2 (Routh Hurwitz Criteria) 
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Proof: See Gantmacher, (1964) 

 

Lemma 2.1 (Invariant Region) 

The following biologically-feasible region of the HIV/AIDS model (2.4)  
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 is positively –invariant and attracting. 
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Proof: From model (2.3), 
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Integrating both sides we get, 
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Applying the initial boundary condition 
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Thus   is positively invariant. Hence, it is sufficient to consider the dynamics of the model (2.4) in . In this 

region, the model can be considered as been epidemiologically and mathematically well-posed, [8]    

 

III. Positivity of Solution 
Theorem 3.1 

 Let the initial data be  𝑠 𝑜 > 0, 𝑖 𝑜 > 0, 𝑖𝑐 𝑜 > 0, 𝑖𝑇 𝑜 > 0, 𝑎 𝑜 ≥ 𝑜 є𝜙, then the solution set 

{𝑠(𝑡), 𝑖(𝑡), 𝑖𝑐(𝑡), 𝑖𝑡(𝑡), 𝑎(𝑡)} of the system (2.4) is positive for all𝑡 > 0. 
Proof 

From the first equation of the model system (1.3) we have 
𝑑𝑠

𝑑𝑡
= 𝜆𝑁 −

𝑕1 𝛽1 − 𝑎1 𝐼𝑆

𝑁
−
𝑕3 𝛽3 − 𝑎2 𝐼𝑐𝑆

𝑁
−  𝜇 + 𝜉 + 𝜃 𝑆 ≥ − 𝜇 + 𝜉 + 𝜃 𝑆. 

𝑑𝑠

𝑑𝑡
≥ − 𝜇 + 𝜉 + 𝜃 𝑆. 

Integrating by separation of variables give 

 
𝑑𝑠

𝑠
≥  −  𝜇 + 𝜉 + 𝜃 𝑑𝑡 

∴  𝑠(t) ≥ 𝑠 𝑜 𝑒− 𝜇+𝜉+𝜃 𝑡 ≥ 0. 
From the second equation of (2.4) we have 

𝑑𝐼

𝑑𝑡
=

𝑕1 𝛽1 − 𝑎1 𝐼𝑆

𝑁
−
𝑕3 𝛽3 − 𝑎2 𝐼𝑐𝑆

𝑁
−  𝛾 + 𝜇 𝐼 +  1 − 𝑘1 𝑘2𝐼 ≥ − 𝛾 + 𝜇 𝐼. 

∴  
𝑑𝐼

𝑑𝑡
≥ − 𝛾 + 𝜇 𝐼. 

Integrating by separation of variables give 

 
𝑑𝐼

𝐼
≥ −  𝛾 + 𝜇 𝑑𝑡 

∴ 𝐼 𝑡 ≥  𝐼 𝑜 𝑒− 𝛾+𝜇 𝑡 ≥ 0. 
From the third equation of (2.4) we have 



Mathematical Model of HIV/Aids on Varying Population 

DOI: 10.9790/5728-1206044454                                            www.iosrjournals.org                                  49 | Page 

𝑑𝐼𝑐
𝑑𝑡

= 𝑓1𝛾 + 𝜉𝑆𝐼𝑐 ≥ −  𝛹 + 𝜇 𝐼𝑐 ≥ − 𝛹 + 𝜇 𝐼𝑐. 

∴
𝑑𝐼𝑐
𝑑𝑡

≥ − 𝛹 + 𝜇 𝐼𝑐 . 

Integrating by separation of variables give 

 
𝑑𝐼𝑐
𝐼𝑐

≥ −  𝛹 + 𝜇 𝑑𝑡 

∴  𝐼𝑐 𝑡 ≥ 𝐼𝑐 𝑜  𝑒− 𝛹+𝜇 𝑡 ≥ 0. 
From the fourth equation of (2.4) we have 
𝑑𝐼𝑡
𝑑𝑡

= 𝑓2𝛾 + 𝜃𝑆𝐼𝑡 + 𝑔𝛹𝐼𝑐 + 𝜔𝐴 −  𝛼 + 𝜇 𝐼𝑡 +  1 − 𝑎3 𝐴 ≥ − 𝛼 + 𝜇 𝐼𝑡. 

𝑑𝐼𝑡
𝑑𝑡

≥ − 𝛼 + 𝜇 𝐼𝑡 . 

Integrating by separation of variables gives 

 
𝑑𝐼𝑡
𝐼𝑡

≥ −  𝛼 + 𝜇 𝑑𝑡 

∴  𝐼𝑡(𝑡) ≥ 𝐼𝑡(𝑜)  𝑒− 𝛼+𝜇 𝑡 ≥ 0. 
And lastly the fifth equation of (2.4) gives 
𝑑𝐴

𝑑𝑡
=  1 − 𝑓1 − 𝑓2 𝛾 +  1 − 𝑔 𝛹𝐼𝑐 + 𝛼𝐼𝑡 −  𝜔 − 𝜇𝐴 + 𝜇 𝐴 − 𝑎3𝐴 ≥ − 𝜔 − 𝜇𝐴 + 𝜇 + 𝑎3 𝐴. 

𝑑𝐴

𝑑𝑡
≥ − 𝜔 − 𝜇𝐴 + 𝜇 + 𝑎3 𝐴. 

Integrating both by separation of variables give 

 
𝑑𝐴

𝐴
≥ −  𝜔 − 𝜇𝐴 + 𝜇 + 𝑎3 𝑑𝑡 

𝐴 𝑡 ≥ 𝐴 𝑜 𝑒− 𝜔−𝜇𝐴+𝜇+𝑎3 𝑡 ≥ 0. 
Hence the solution set  

 )(,),(),(),( taititits Tc  of the system (2.4) is positive for all 0t . ∎                          

Remark 1: 𝑒𝑘 > 0 for all real values of k. 

 

IV. Stability Analysis 
4.1 Disease-free Steady State 

The disease-free steady state occurs at the point where 0 aiii Tc which is at 
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From system (2.4) we define 𝐹𝑖and 𝑉𝑖  as  

 

𝐹𝑖 =  

𝑕1 𝛽1 − 𝑎1 𝑖𝑠  𝑕3 𝛽3 − 𝑎2 𝑖𝑐𝑠
0
0
0

  

 

and  

 
 

Evaluating the partial derivative of Fi with respect to (𝑖, 𝑖𝑐 , 𝑖𝑡 , 𝑎) at the disease free point 

 )0,0,0,0,( *
0 sE  
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𝐹 =  

𝑕1 (𝛽1 − 𝑎1) 𝑕3 (𝛽3 − 𝑎2) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  

 

Similarly, partial differentiation of Vi with respect to (𝑖, 𝑖𝑐 , 𝑖𝑡 , 𝑎) at the disease free equilibrium gives 
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where  )(  w  

 

The eigen values of FV
-1

 for the equation  𝐹𝑉−1 − 𝐼𝑒 = 0 are given by 𝑒3 = 0 and 𝑒 =
𝑝

𝑎
  where  

𝑝 = 𝑕1 𝛽1 − 𝑎1  and 𝑎 =  𝜃 − 𝛾 − 𝜆 + 𝑘2 − 𝑘1𝑘2.The value of 𝑒  is equal to R0. This is gotten from the inverse 

 of V when pre-multiplied by F and 𝐼𝑒 subtracted from the result. But,  
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where  S = 𝑕3(𝛽3 − 𝑎2) and b = 𝜉 −  𝛹 + µ −  𝜆 − µ − 𝜃 −  Y a, P = 𝑕1(𝛽1 − 𝑎1) and 

 𝑎 ∗∗=  𝜃 − 𝛾 − 𝜆 + 𝑘2 − 𝑘1𝑘2. 
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𝑅0 =  
h1 𝛽1 − a1 

θ − γ − λ + k2 − k1k2

 

Hence, the Lemma below: 

Lemma 4.1 

The disease free steady state )0,0,0,0,( *
0 sE  is locally asymptotically stable if 00 R and unstable if 

00 R
 

4.2 Endemic steady state 

Lemma 4.2: The modified model (2.4) has a unique positive endemic steady state of the form  

),,,,( ***** aiiisE TCE  whenever 1ER   

The endemic steady states are ),,,,( ***** aiiisE TCE and we establish its stability. At the steady states, the 

Jacobian of the system with respect to 𝑠, 𝑖, 𝑖𝑐 , 𝑖𝑡 , 𝑎 is given by  

𝐽𝐸 =

 
 
 
 
 
 
(𝜉 + 𝜆) −𝑕1(𝛽1 − 𝑎1) − 𝑧 −𝑕3 𝛽3 − 𝑎2 − 𝜆 + µ −(𝜆 + 𝜃𝑆 − 𝜇) −𝑦

0 𝑕1 𝛽1 − 𝑎1 + 𝜃2 𝑕3(𝛽3 − 𝑎2) 0 0

0 0 𝜉 −  𝛹 + 𝜇 − (𝜆 − 𝜇 − 𝜃) 0 0
𝜃 𝑍 (𝑔𝛹 − λ + µ) −𝛼 − 𝜃 − 𝜃𝑆 + µ 𝜔 + 𝑌

0 0 (1 − 𝑔)𝛹 𝛼 −(ω + µ
𝐴

+ µ − 𝑎3) 
 
 
 
 
 

 

where 𝜃2 = − 𝛾 + µ +  1 − 𝑘 𝑘2 −  𝜆 − 𝑢  
Applying Theorem 2.1 on JE, we have 

 

 IeJ E  
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where   𝜃2 = − 𝛾 + µ +  1 − 𝑘 𝑘2 −  𝜆 − 𝑢    

The eigen-values of 0IeEJ  are 

                              54
2

3
3

2
4

1
5 bebebebebe   

where   

𝑎1 = (𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒 +  𝜉 + 𝜆 − 𝑒

+ 𝑕1 𝛽1 − 𝑎1) + 𝜃2 − 𝑒 − 𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒 −  𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒  , 

𝑎2 =   𝜉 + 𝜆 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒 + 𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 −

𝑒) + (𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒) + (𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(− 𝜔 +
𝜇𝐴+𝜇−𝑎3)−𝑒)+(𝜉+𝜆−𝑒)(𝑕1(𝛽1−𝑎1)+𝜃2−𝑒))+(𝜉+𝜆−𝑒)(−𝛼−𝜃−𝜃𝑠+𝜇−𝑒)+(𝜉+𝜆−𝑒)(−𝜔+𝜇𝐴+𝜇−𝑎3)−𝑒
)+(𝑕1(𝛽1−𝑎1)+𝜃2−𝑒)(−𝛼−𝜃−𝜃𝑠+𝜇−𝑒)+(𝑕1(𝛽1−𝑎1)+𝜃2−𝑒)(−𝜔+𝜇𝐴+𝜇−𝑎3)−𝑒)+(−𝛼−𝜃−𝜃𝑠+𝜇−𝑒)(−
 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ) + (𝛼)(𝜔 + 𝑌)),  

a𝑎3 = (( 𝜉 + 𝜆 − 𝑒)(𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒) + ( 𝜉 + 𝜆 − 𝑒)(𝜉 −
 𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒) + ( 𝜉 + 𝜆 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 −
𝑒)(− 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ) + (𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 +
𝜇 − 𝑒) + (𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(− 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ) + (𝜉 −
 𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒)(− 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ) + (𝜉 −  𝛹 + 𝜇 −
 𝜆 − 𝜇 − 𝜃 − 𝑒)(𝛼)(𝜔 + 𝑌) + ( 𝜉 + 𝜆 − 𝑒)(𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒) + ( 𝜉 + 𝜆 −
𝑒)(𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(− 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ) + ( 𝜉 + 𝜆 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒)(− 𝜔 + 𝜇𝐴 +
𝜇−𝑎3)−𝑒)−(𝜉+𝜆−𝑒)(𝛼)(𝜔+𝑌)−(𝑕1(𝛽1−𝑎1)+𝜃2−𝑒)(−𝛼−𝜃−𝜃𝑠+𝜇−𝑒)(−𝜔+𝜇𝐴+𝜇−𝑎3)−𝑒)−(𝑕1(𝛽1−𝑎1)
+𝜃2 − 𝑒)(𝛼)(𝜔 + 𝑌)), 

𝑎4 =    𝜉 + 𝜆 − 𝑒  𝑕1 𝛽1 − 𝑎1 + 𝜃2 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒  −𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒 

+   𝜉 + 𝜆 − 𝑒  𝑕1 𝛽1 − 𝑎1 + 𝜃2 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 

− 𝑒  − 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒  +  𝜉 + 𝜆 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒  −𝛼 − 𝜃

− 𝜃𝑠 + 𝜇 − 𝑒  − 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒  

−   𝜉 + 𝜆 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒  𝛼  𝜔 + 𝑌 

+  𝑕1 𝛽1 − 𝑎1 + 𝜃2 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒  −𝛼 − 𝜃 − 𝜃𝑠 + 𝜇

− 𝑒  − 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒  

−  𝑕1 𝛽1 − 𝑎1 + 𝜃2 − 𝑒  𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒  𝛼  𝜔 + 𝑌 

+   𝜉 + 𝜆 − 𝑒  𝑕1 𝛽1 − 𝑎1 + 𝜃2 − 𝑒  −𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 − 𝑒 − ( 𝜉 + 𝜆 − 𝑒)(𝑕1(𝛽1

− 𝑎1) + 𝜃2 − 𝑒)(𝛼)(𝜔 + 𝑌)), 𝑎𝑛𝑑 

𝑎5 = ( 𝜉 + 𝜆 − 𝑒)(𝑕1(𝛽1 − 𝑎1) + 𝜃2 − 𝑒)(𝜉 −  𝛹 + 𝜇 −  𝜆 − 𝜇 − 𝜃 − 𝑒)(−𝛼 − 𝜃 − 𝜃𝑠 + 𝜇 −
𝑒)(− 𝜔 + 𝜇𝐴 + 𝜇 − 𝑎3) − 𝑒 ). 

Applying Theorem 2.2 (Routh-Hurwitz criterion) for a 5x 5 system, the conditions for stability are:   

0,,,,)( 54321 aaaaai  and (ii) 4
2
1

2
3321 aaaaaa 

 

andaaaaaaiaiii i 4
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2
3321;5,4.3,2,1,0)(             

2
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2
32154

2
1

2
3321541 )())(( aaaaaaaaaaaaaaa  . From the analysis above (i), (ii) and (iii) are 

satisfied, hence the endemic steady state is globally asymptotic stable. 

Theorem 4.2: The unique positive endemic steady state of the model (2.4), given by ),,,,( ***** aiiisE TCE  

is GAS in 1\ r  if 1ER . 

Proof:  
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V. Numeric Simulation Explanation 
 Numeric simulation is a very important aspect of dynamical system analysis in the study of non-linear 

differential equations whose exact solutions are very difficult to determine.  As a result of this, we resort to 

numerical simulation in order to get an idea of the behavior of the model as time moves or progresses. 

In this section we perform a numerical simulation of the model using the MATLAB, and the RUNGE-KUTTA 

method (algorithm) which aided in the running of the program. 

 

The Table 1.1 contains the initial values set for the numerical simulations. These values were chosen to achieve 

numeric stability and the values of the b1, b2, b3, b4, b5 calculated guided us in the selection. 

 

Table 5.1       Parameter values for the simulation 
Parameter Value References Parameter Value References 

X (1) 0.0 Lakshmikantham(1989 f1 0.2 Obasi (2013) 

Y(1) 0.10 Basavarajaiah, et al 2012 f2 0.01 Assumed 

Z(1) 0.05 Basavarajaiah, et al 2012 K 0.08 Obasi (2013) 

P(1) 0.52 Assumed Qq 0.9 Assumed 

hh(1) 0.07 Assumed C1 0.03 Basavarajaiah, et al 2012 

a(1) 0.01 Assumed C2 2 Lakshmikantham(1989 

H 0.1 Assumed M 0.4 Assumed 

Q 0.3 Basavarajaiah, et al 2012 Pi 0.0 Lakshmikantham(1989 

E 0.20 Assumed Sm 0.6 Obasi (2013) 

V 0.1 Assumed Af 2 Lakshmikantham(1989 

b1 0.4 Basavarajaiah, et al 2012 a1 0.3 Assumed 

a2 2.0 Lakshmikantham(1989 Zy V-C2+C1 * C2 Equation (4.2) 

a3 0.5 Obasi (2013) Yy 1-W-Va-u-2* a3 Equation (4.2) 

d1 0.7 Obasi (2013)    

d3 1.0 Lakshmikantham(1989    

Va 0.005 Assumed    

W 0.7 Assumed    

U 0 Lakshmikantham(1989    

b3 0.005 Assumed    

 

 
Fig 5.1: Behavior of the proportion of the populations over time. 

 

 
Fig 5.2:   The plot of susceptible proportion against time 
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Fig 5.3: The plot of treated proportion against susceptible proportion 

 

 
Fig. 5.4: The plot of incubation proportion against time 

 

VI. Summary, Conclusion/Results and Recommendations 
6.1 Summary 

We were able to formulate the Mathematical Model of HIV/AIDS on a varying population and this 

resulted in five Compartments: Susceptible, Infective, Infected but in Incubation, Treated and Fully developed 

AIDS.  The model was analyzed using dynamical systems theory. It was found that the model has two steady 

states- the disease- free and endemic steady states. We also determined their stability. The positivity of the 

solution of the model as investigated. 

The solution set  )(,),(),(),( taititits Tc  of the system (2.4) is positive for all 0t . We also 

proved that 
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 is positively-invariant and 

attracting. A simulation (numerical solution) was carried out using MATLAB. This resulted in plotting four 

graphs. The graphs plotted were behavior of the proportion of the populations over time (Fig. 5.1), the plot of 

susceptible proportion against time (Fig. 5.2), the plot of treated proportion against susceptible proportion (Fig. 

5.3) and the plot of incubation proportion against time (Fig. 5.4). 

 

6.2 Conclusion/Results 

From the dynamical systems theory analysis carried out, the model has two nonnegative equilibra 

which are disease-free equilibrium, )0,0,0,( *
0 sE , and endemic equilibrium ),,,,( ***** aiiisE TcE . It was 

found that the disease-free equilibrium, )0,0,0,( *
0 sE , is locally asymptotically  stable if 10 R  but it is 
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unstable if 10 R  and the infection is maintained in the population. The Endemic equilibrium,

),,,,( ***** aiiisE TcE , is locally asymptotically  stable. 

The plot of proportion of the populations of ***** ,,,, aiiis Tc  over time (Fig. 5.1) shows the behaviour 

of the five compartments over time. The graphs reveal that while other populations are increasing at different 

rates, the infected group is decreasing. The plot of susceptible proportion against time (Fig. 5.2) shows that the 

susceptible population increases over time. The plot of treated group against the susceptible group (Fig. 5.3) 

shows a decrease for a little time, it got to its minimum and started increasing again. The plot of incubation 

group against time (Fig. 5.4) shows an increase over time, in-fact, it looks like a parabola in the positive first 

quadrant. 

 

6.3 Recommendations 

AIDS has the potential to cause severe deterioration in the economic conditions on many countries.  

However, this is not inevitable.  There is much that can be done now to keep the epidemic from getting worse 

and to mitigate the negative effects.  Among the responses that are necessary are: 

1. Prevent new infections:  The most effective response will be to support programs to reduce the number of 

new infections in the future.  After more than decade of research and pilot programs, we now know how to 

prevent most new infections.  An effective national response should include information, education and 

availability, expended and improved services to prevent and treat sexually transmitted diseases; and efforts 

to protect human rights and reduce stigma and discrimination.  Governments, NGOs and the commercial 

sector, working together in a multi-sectoral effort can make a difference.  Workplace-based programs can 

prevent new infections among experienced workers. 

2. Design major development project appropriately:  Some major development activities may inadvertently 

facilitate the spread of HIV.  Major construction projects often require large numbers of male workers to 

live apart from their families for extended periods of time, leading to increased opportunities for 

commercial sex.  A World Bank funded pipeline construction project in Cameroon was redesigned to avoid 

this problem by creating special villages where workers could live with their families.  Special prevention 

programs can be put in place from the very beginning in projects such as mines or new ports where 

commercial sex might be expected to flourish. 

3. Programs to address specific problems.  (Centre for Development and Population Activities)(CEDPA) 

Special programs can mitigate the impact of AIDS by addressing some of the most severe problems. 

Reduced school fees or free education can help children from poor families and AIDS, orphans stay in 

school longer and avoid deterioration in the education level of the workforce.  Tax benefits or other 

incentives for training can encourage firms to maintain worker productivity in spite of the loss of 

experienced workers. 

4. Mitigate the effect of AIDS on poverty:  The impacts of AIDS on households can be reduced to some extent 

by publicly funded programs to address the most severe problems.  Such programs have included home care 

for people with HIV/AIDS support for the basic needs of the household coping with AIDS, foster care for 

AIDS orphans, food programs for children and support for educational expenses.  Such programs can help 

families and particularly children survive some of the consequences of an adult AIDS death that occur when 

families are poor or become poor as a result of the cost of AIDS. 
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