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. Introduction
A nonempty collection | of subsets on a topological space (X, t) is called a topological ideal [3] if it satisfies the
following two conditions:

(i) If AZ 1 and BC A implies Be | (heredity)
(i) If A € I and BEI, then AU BEI (finite additivity)

Local function in topological spaces using ideals was introduced by Kuratowski [3]. Donchev [2]
introduced the concept of I-locally closed sets. After that Navaneetha Krishnan and Sivaraj [4] introduced | -
locally *- closed sets and I4-locally *-closed sets.

Il. Preliminaries
Definition 2.1.: A subset A of a topological space (X, t, 1) is called
(i) I-locally *-closed [4] if there exist an open set U and a *-closed set F such that A=U N F,
(i) Ig-locally *-closed [4] if there exist an I,-open set U and a *-closed set F such that A= U N F.
Definition 2.2: For a subset A of a topological space (X, 7) is said to be
(i) A € GLC™(X, 7)[1] if there exist a g-open set U and a closed set F of (X, 7) such that A=U N F,
(i) A € GLC™(X, 7)[1] if there exist a open set U and a g-closed set F of (X, 7) such that A=U N F.
Definition 2.3: A subset A of an ideal topological space (X, t, 1) is called a
(i) rpsllc-set [5] if there exists a rpsl-open set U and a rpsl-closed set F of (X, 7, I) such that A=U N F,
(ii) rpslic”-set [5] if there exists a rpsl-open set U and a closed set F of (X, t, ) such that A= U N F,
(iii) rpsllc™-set [5] if there exists a open set U and a rpsl-closed set F of (X, 7, I) such that A=U N F.

. 1,,,LC SETS AND IngLC* SETS
In this section, regular weakly generalized locally closed sets are and introduced.
Definition 3.1: A subset A of an ideal topological spaces (X, t, 1) is said to be a regular weakly generalized
locally closed (Inyglc) setif A=U n F where U is Iy4-0pen and F is Iyq-closed in X.
Definition 3.2: A subset A of an ideal topological space (X, 7, I) is said to be Irwglc* if there exist an I,q-0pen
set U and a closed set F of X suchthat A=UNF.
Definition 3.3: A subset A of an ideal topological spaces (X, , I) is said to be Irwglc** if there exist a open set U
and a l,yg-closed set F of X such that A=U N F.
The collection of all Iylc- sets ( resp. luglc” and Iyglc”™ ) of (X, 7, 1) is denoted by 1y, LC in (X ,7) (resp.
lwg LC™ (X,7) and lo,gLC™ (X 7).
Theorem 3.4: For a ideal topological space (X, t, I) the following implications hold.
(i) ILC (X ,7) € IRWGLC'(X ,7) S IRWGLC (X ,7)
(i) ILC (X ,7) S IRWGLC™ (X ,7) S IRWGLC (X ,7)
The reverse implications need not be true as seen from the following example.
Example 3.5: Let X = { a,b,c}, T = { @, {a}.{b}{a,b}, X}, I = { @, {a}}, then Ijlc closed sets are {@ , {a}, {b},
{c}, {ab}, {b,c}, X} and the Ilc sets are {@, {a}, {b}, {c}, {a,b}.{b,c}.{a,c}, X} Hence {a,c}isan ly4lc
sets but not llc set.
Example 3.6: Let X = { a, b, ¢, d}, = { @, {a},{b}{a b}, X}, | = {®, {a}}, then I lc closed sets are { @,
{a},{b}{c}.{d}{a b}{b, c}{c, d}.{a b, c}{b, c, d}, X} and the l,lc" sets are {@, {a}.{b}.{c}.{d}.{a, b}.{b,
ch{a, c}{a d}{b, c}, {b, d}{c, d}{a, b, c},{b, ¢, d}, X}. Hence {a, d} are Iyglc sets but not Ilc set.
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Irwg CI(A) is the smallest I,,-Closed set containing A.

Theorem 3.7: Let A be any subset of X, then

(i) Ais Iyg-closed in X if and only if A = I CI(A)

(i) lrwg=CI(A) is l,wg-closed in X

(iii) X € lyg CI(A) if and only if A n U = @ for every I,q-0pen set U containing x.

Proof: (i) and (ii) are trivially true.

(i) Suppose that there exists an Ing-0pen set U containing x such that A n U = @. Since X — U is lng-Closed
and A € X — U, lwCl(A) € X — U. Therefore x & lwgcl (A). Conversely suppose that X & lwgCI(A). Then U
= X — lwgCI(A) is l,wg -open set containing x and An U = @.

Theorem 3.8: For a subset A of (X, 7, 1), the following statements are equivalent.

(i) A €l LC(X 1)

(if) A =U N Iy cI(A) for some I4-0pen set U.

(i) lwgCl(A) — Ais I yg-Closed.

(IV)A U (X = lryg CI(A)) is lrwg-Open.

Proof: (i) = (ii) Suppose A € IwLC(X, 7). Then there exists an l..g-open subset U and I, closed subset F
such that A=UnNF. Since ASU and A S l,gCl(A), ASU N lygCl(A). Also by Theorem 3.7, lnyCl(A) is
Iwg-closed in X. Hence Iy Cl(A) € Fand U N I,,cl(A) €U N F=A. Therefore A=U N lCl(A).

(if)= (i) By Theorem 3.7, lnyqCI(A) is l,yg-closed and hence A = U N Iy CI(A) € 1, LC(X, 7).

(iii) = (iv) Let S = l,y,4CI(A) —A. Then, by assumption S is Ig-closed which implies X — S is I4-0pen and
X=S=XN(X-5)=XnN((X-(lwgCl(A) = A)) = AU ( X= lyCl(A)). Thus A U ( X — lugCI(A)) is Ig-open.

(iv) = (iii) Let W = AU ( X — IwCl(A)). Then W is Ing-open. This implies that X —W is I,,g-closed and X
=W =X = (AU (X—= luwgCl(A)) = lngCl(A) N X = A = 1,Cl(A) —A. Thus lwCI(A) — A is closed.

(iv) = (ii) Let U = AU ( X = IwCl(A)). Then U is Iyg-open. U N lyCl(A) = (AU (X = lwCl(A)) N
IwgCl(A) = (lwgCI(A) N A) U (IngCl(A) N X— ICl(A)) = AU @ = A, Therefore, A = U N I,,Cl(A) for some
Irwg -Open set U.

(i) = (iv) Let A = U N Iy cl(A), for some lg-0open set U. AU ( X = lygCl(A)) = (U N Iycl(A) U ( X =
IwgCl(A)) = U N (Iwg CI(A) U (X = lygCl(A))) = U N X = U, is lyg-0pen.

Theorem 3.9: For a subset A of (X ,7, I), the following statements are equivalent.

(i) A € 1, LC (X, 7)

(if) A= U n cl(A) for some I4-0pen set U.

(iii) cI"(int(A)) — Ais Irwg—closed

(iv) AU (X — cl'(int(A))) is lrwg-open.

Proof: The proof is similar to that of above theorem

Theorem 3.10: Let A be a subset of (X, 7, 1). If A € 1, LC™ (X, ) then ln,,cI(A) —A is l,4-Closed and A U (X
— lrwg CI(A)) is Irwg-open

Proof: Let A€ IngLC (X, 7). Then there exists an open set U such that A = U N 1,CI(A). AU (X — g
Cl(A)) = (U N lwg CI(A)) U (X = lrwg CI(A)) = U N (lwg CI(A) U ( X = IyCl(A))) = U N X = U, is open. Since
every open set is Iyg-open, A U (X — g CI(A)) is lwg-open. Let W = AU ( X — lwCI(A)). Then W is Iy
open implies X =W is Ipyg-closed and X =W = X — (A U (X = lygCl(A))) = lgCl(A) N X — A = Iy Cl(A) —
A. Thus lnyCl(A) — Ais Ing-closed.

Theorem 3.11: Let A and B be subsets of (X, 7, I). If A€ lyLC (X, 7) and B is Iygo0pen, then ANBE
lwgLC(X ,7).

Proof: Let A € I, LC(X, 7). Then A =U n F where U is l,g-open and F is lyg-Closed. SOANB=UNFNB
=UnBnF. Thisimplies that AN B € I,,LC(X, 7).

Theorem 3.12: Let A and B be subsets of (X, 7, 1). If A € 1, LC (X ,7) and B € I,,LC™ (X, 7) then ANB €
lwgLC™ (X, T).

Proof: Let Aand B eIngLC (X, 7). Then there exists Ing-0pen sets P and Q such that A=P n cl(A) and B =Q
ncl(B). Therefore AN B =P ncl(A) nQncl(B) =P nQn cl(A) ncl(B) where P n Q is lwg-open and cl(A)
and cl(B) is closed. This shows that ANB € I,WgLC (X, 1).

Theorem 3.13: If A € I,WgLC “(X, 7)and Bis Iwg-open, then AN B € Im,gLC " (X, 7).

Proof: Let A€ IngLC (X, ). Then there exists an open set U and an Iwg-closed set F such that A= U NF.
SOANB=UNFnNnB=UnBNF. Thisprovesthat ANB € IngLC " (X, 7).

Theorem 3.14: Let A and Z be subsets of (X, , 1) and let A € Z. If Z is lyg-0pen in (X, 7, 1) and A € Iy, LC"

(Z,%/5), then A € I, gL C (X, r)

Proof: Suppose that A is Inglc , then there exist an I,,-open set U of (Z, T/Z) such that A = U n cl,(A). But
clz(A) =Z n cl(A). Therefore, A =UnZncl(A) where U N Zis lyg-open. Thus A € IngLC*(X, 7).
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