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Abstract: In this paper, we investigate some geometric properties of the Hurwitz set which corresponds to the 

set of stable monic polynomials in a parameter space. We firstly consider the segment stability. After we study 

properties of rays in the Hurwitz sets, which corresponds with inclusion or non-inclusion of certain rays in the 

Hurwitz sets. 
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I. Introduction 
The celebrated theorem Kharitonov [1] on the stability of prisms of polynomials gave an impetus to the 

research in this old and ever-important field and in the last decades many new results concerning stability of 

diamonds, edges, segments, polygones, polytopes etc. have been obtained (see [2-15]). A remarkable new 

approach has been towards understanding the geometry (and topology) of (all or part of) stable polynomials. 

First of  all, we identify a non-monic polynomial 𝑝 𝑠 = 𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  with the 

point (or vector) (𝑎0, 𝑎1 , … , 𝑎𝑛) ∈ ℝ𝑛+1. A stable (or Hurwitz) polynomial is a polynomial with roots lying in 

the open left half of  the complex plane. (A necessary but not sufficient condition for stability is that all of 

𝑎0 , 𝑎1, … , 𝑎𝑛  have the same sign. There are well-known necessary and sufficient conditions for stability such as 

the Routh-Hurwitz and Hermite-Biehler criterions and the separation property [16-17]) We will denote the set of 

such vectors by ℋ𝑛 ⊂ ℝ𝑛+1 and the subset of ℋ𝑛  with positive leading coefficients (𝑎0 > 0) with ℋ+
𝑛 . The 

important special case of monic polynomials (𝑎0 = 1), which for the consideration of stability are equivalent to 

the general case, are thus identified with vectors of the form  1, 𝑎1 , … , 𝑎𝑛 . On the other hand, they are often 

identified with the vector (𝑎1 , 𝑎2 , … , 𝑎𝑛) ∈ ℝ𝑛  and this causes a minor nuisance of notation. To prevent 

ambiguity, we will denote the set of stable monic polynomials by ℋ1
𝑛  if they are taken as elements 

(1, 𝑎1, … , 𝑎𝑛) of ℝ𝑛+1, and by ℋ 1
𝑛  if they are taken as elements (𝑎1 , 𝑎2 , … , 𝑎𝑛) of ℝ𝑛 . Unless explicitly stated 

otherwise, we will represent the 𝑛th order monic polynomials 𝑝 𝑠 = 𝑠𝑛 + 𝑎1𝑠
𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  with 

 𝑎1, 𝑎2 , … , 𝑎𝑛 ∈ ℝ𝑛 .  

Thus, the open sets ℋ+
𝑛 ⊂ ℝ𝑛+1 and ℋ 1

𝑛 ⊂ ℝ𝑛  are defined as follows: 

  𝑎0, 𝑎1 , … , 𝑎𝑛 ∈ ℋ+
𝑛  ⇔  𝑎0 > 0 and the polynomial 𝑝 𝑠 = 𝑎0𝑠

𝑛 + 𝑎1𝑠
𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  is stable,  

  𝑎1, 𝑎2 , … , 𝑎𝑛 ∈ ℋ 1
𝑛  ⇔ the polynomial 𝑝 𝑠 = 𝑠𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  is stable. 

It is obvious that for 𝑘 > 0 and 𝑝 =  𝑎1, 𝑎2 , … , 𝑎𝑛 ∈ ℋ 1
𝑛  

 𝑘𝑝 ∈ ℋ 1
𝑛  ⇔ the polynomial 𝑝𝑘 𝑠 = 𝑠𝑛 + 𝑘𝑎1𝑠

𝑛−1 + 𝑘𝑎2𝑠
𝑛−2 ⋯ + 𝑘𝑎𝑛  is stable. 

 

The first geometric property of interest is the convexity and it is well-known that ℋ 1
𝑛  (and thus ℋ+

𝑛 ) is 

non-convex. The next question of interest is the following: Given two elements from ℋ+
𝑛  (or ℋ 1

𝑛 ), under which 

conditions it can be stated that the segment in ℝ𝑛+1 (or in ℝ𝑛 ) with these end points belong to ℋ+
𝑛  (or ℋ 1

𝑛 )? 

Several authors gave results and discussions in this direction (see [4,6]), but the most important result is due to 

Rantzer [3] and implies the others. In Section 2, we give a simple new case (Remark 1) and some important 

consequence (Corollary 1 and Corollary 2) not obtainable by Rantzer’s theorem. 

Section 3 contains the main results where we investigate some other geometric properties of rays, but 

before stating them we want to introduce some additional terminology. Given a vector 𝑝 ∈ ℝ𝑛  (which 

corresponds to a monic polynomial of degree n), we call the set  𝑘𝑝 ∶ 𝑘 > 0 ⊂ ℝ𝑛  the radial ray through 𝑝. 

Likewise, we will call the set  𝑘𝑝 ∶ 𝑘 ≥ 1 ⊂ ℝ𝑛  the radial ray starting at 𝑝 and the set  𝑘𝑝 ∶ 0 < 𝑘 ≤ 1 ⊂ ℝ𝑛  

the radial ray till 𝑝. Now we state the properties proven in Section 3. Given any vector 𝑝 ∈ ℋ 1
𝑛  (𝑛 ≥ 3), there 

exists 𝑘0 ∈ (0,1) such that the part  𝑘𝑝 ∶ 0 < 𝑘 ≤ 𝑘0  of the radial ray till 𝑝 lies outside ℋ 1
𝑛  and the part 

 𝑘𝑝 ∶ 𝑘0 < 𝑘 ≤ 1  lies inside ℋ 1
𝑛  (Theorem 1). 

On the other hand, for every 𝑛 ≥ 2 there is a vector 𝑝 ∈ ℋ 1
𝑛  (actually infinitely many) such that the 

radial ray starting at p lies completely inside ℋ 1
𝑛  (Theorem 2). For 𝑛 = 2, 3 and 4 all radial rays starting at any 

𝑝 ∈ ℋ 1
𝑛  lie completely in ℋ 1

𝑛 . 
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For 𝑛 ≥ 5 there exists a vector 𝑝 ∈ ℋ 1
𝑛  (actually infinitely many) such that for a certain 𝑘0 > 1 the part 

 𝑘𝑝 ∶ 1 < 𝑘 ≤ 𝑘0  of the radial ray starting at 𝑝 lies in ℋ 1
𝑛 , but the part  𝑘𝑝 ∶ 𝑘 ≥ 𝑘0  lies outside ℋ 1

𝑛  

(Corollary 3). 

 

II. Segment-Stability And Properties Concerning Rays 
 The following result comes from [6]: Given two stable polynomials 𝑝 𝑠 = 𝑎0𝑠

𝑛 + 𝑎1𝑠
𝑛−1 + ⋯ +

𝑎𝑛−1𝑠 + 𝑎𝑛   (𝑎0 > 0) and 𝑞 𝑠 = 𝑏0𝑠
𝑛 + 𝑏1𝑠

𝑛−1 + ⋯ + 𝑏𝑛−1𝑠 + 𝑏𝑛  (𝑏0 > 0) then the segment [𝑝, 𝑞] is stable 

if 𝑎𝑖 = 𝑏𝑖  either for even entries or odd entries (consult also [8,9,13]). 

Proposition 1 Let 𝑝 𝑠 = 𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  (𝑎0 > 0) and 𝑞 𝑠 = 𝑏0𝑠
𝑛 + 𝑏1𝑠

𝑛−1 + ⋯ +
𝑏𝑛−1𝑠 + 𝑏𝑛  (𝑏0 > 0) be stable polynomials. If even (or odd) part of 𝑞 𝑠  is a positive scalar multiple of the even 

(or odd) part of  𝑝 𝑠  then the segment [𝑝, 𝑞] of their convex combinations is also stable. 

It is enough to see this for the case of even parts, the case of odd parts being similar. One can re-arrange 𝑝 𝑠  

and 𝑞 𝑠  as 𝑝 𝑠 = ℎ 𝑠2 + 𝑠𝑔1(𝑠2), 𝑞 𝑠 = 𝑘ℎ 𝑠2 + 𝑠𝑔2(𝑠2) where 𝑘 > 0 is a fixed scalar. Denote 𝑞∗(𝑠) =
𝑞(𝑠)

𝑘
, then the convex combination of 𝑝 𝑠  and 𝑞∗(𝑠) is stable by [6]. Hence for every 𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝜆1 + 𝜆2 >

0 the polynomial 𝜆1𝑝 𝑠 + 𝜆2𝑞∗ 𝑠  is stable, since 

𝜆1𝑝 𝑠 + 𝜆2𝑞∗ 𝑠 =  𝜆1 + 𝜆2  
𝜆1

𝜆1 + 𝜆2

𝑝 𝑠 +
𝜆2

𝜆1 + 𝜆2

𝑞∗ 𝑠  . 

Therefore, assigning 𝜆1 = (1 − 𝜆) and 𝜆2 = 𝑘𝜆 the polynomial 𝜆1𝑝 𝑠 + 𝜆2𝑞∗(𝑠) = (1 − 𝜆)𝑝(𝑠) + 𝜆𝑞(𝑠) is 

stable for all 𝜆 ∈ [0,1]. 
Corollary 1 Let 𝑝 𝑠 = 𝑠𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  and 𝑞 𝑠 = 𝑠𝑛 + 𝑏1𝑠
𝑛−1 + ⋯ + 𝑏𝑛−1𝑠 + 𝑏𝑛  be two 

stable polynomials. Identify 𝑝 𝑠  with  𝑎1 , 𝑎2, … , 𝑎𝑛  and 𝑞 𝑠  with  𝑏1 , 𝑏2 , … , 𝑏𝑛  and assume that 
 𝑏1, 𝑏2 , … , 𝑏𝑛 = 𝑘 𝑎1 , 𝑎2 , … , 𝑎𝑛  for a positive scalar 𝑘. Then the segment [𝑝, 𝑞] in ℝ𝑛  is stable. In other 

words, segments on radial rays with stable end points are stable. 

Proof. Either the even or odd parts of 𝑝 and 𝑞 are proportional according to 𝑛 being odd or even. The result 

follows from Proposition 1. ☐ 

Corollary 2 If the radial ray emanating from the origin enters the ℋ 1
𝑛  and then leaves it, it cannot re-enter it. In 

other words, for 𝑝 ∈ ℋ 1
𝑛  if 𝑘0𝑝 ∉ ℋ 1

𝑛  for 𝑘0 < 1 then 𝑘𝑝 ∉ ℋ 1
𝑛  for any 𝑘 < 𝑘0 and similarly if  𝑘1𝑝 ∉ ℋ 1

𝑛  for 

𝑘1 > 1, then 𝑘𝑝 ∉ ℋ 1
𝑛   for any 𝑘 > 𝑘1. 

 We now prove the theorems stated in the introduction. 

Theorem 1 For any vector 𝑝 ∈ ℋ 1
𝑛 , (𝑛 ≥  3), there exists 𝑘0 ∈  0,1  such that 

 𝑘𝑝 ∉ ℋ 1
𝑛  for all 𝑘 with 0 < 𝑘 ≤ 𝑘0 

 𝑘𝑝 ∈ ℋ 1
𝑛  for all 𝑘 with 𝑘0 < 𝑘 ≤ 1 

Proof. By the separation property of stable polynomials, a necessary and sufficient condition for 𝑝 𝑠 = 𝑠𝑛 +
𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  to be stable is that the curve 𝑝(𝑗𝜔), where 0 ≤ 𝜔 < ∞, cuts the real and imaginary 

axes alternatively 𝑛 times precisely. 

 If 𝑛 = 4𝑚 then for 

𝑘∗ = −
𝜔∗

𝑛

𝑎𝑛 − 𝑎𝑛−2𝜔∗
2 + ⋯− 𝑎2𝜔∗

𝑛−2
 

we have 0 < 𝑘∗ < 1 and 𝑝𝑘∗
 𝑗𝜔∗ = 0, where 𝑝𝑘 𝑠 = 𝑠𝑛 + 𝑘𝑎1𝑠

𝑛−1 + 𝑘𝑎2𝑠
𝑛−2 ⋯ + 𝑘𝑎𝑛  and 𝜔∗ 

corresponds with the point of intersection with the real axis. If 𝑛 = 4𝑚 + 1 then for 

𝑘∗ = −
𝜔∗

𝑛

𝑎𝑛−1𝜔∗ − 𝑎𝑛−3𝜔∗
3 + ⋯− 𝑎2𝜔∗

𝑛−2
 

we have 0 < 𝑘∗ < 1 and 𝑝𝑘∗
 𝑗𝜔∗ = 0, where 𝜔∗ corresponds with the point of intersection with the 

imaginary axis. Similar procedure can be applied to the cases 𝑛 = 4𝑚 + 2 and 𝑛 = 4𝑚 + 3. Thus for any 𝑛 ≥ 3 

and any 𝑝 ∈ ℋ 1
𝑛  there exists 𝑘∗ ∈  0,1  such that 𝑘∗ 𝑎1 , 𝑎2 , … , 𝑎𝑛 ∉ ℋ 1

𝑛 . From Corollary 2 the desired result 

follows. ☐ 

Theorem 1 shows that if we move radially towards the origin starting from an arbitrary polynomial 𝑝 ∈ ℋ 1
𝑛 , 

then we certainly leave ℋ 1
𝑛 . 

The following properties are about what can happen when we move in reverse direction. 

Theorem 2 For 𝑛 ≥ 2 there exists infinitely many 𝑝 ∈ ℋ 1
𝑛  such that 𝑘𝑝 ∈ ℋ 1

𝑛  for all 𝑘 ≥ 1. 

To prove this theorem we first prove the following proposition. 

Proposition 2 Let 𝑞 𝑠 = 𝑎1𝑠
𝑛−1 + 𝑎2𝑠

𝑛−2 + ⋯ + 𝑎𝑛 , (𝑎1 > 0) be a stable polynomial. Then there exists 

𝜀0 > 0 such that for all 𝜀 with 0 < 𝜀 ≤ 𝜀0 the polynomial 𝑝𝜀(𝑠) = 𝜀𝑠𝑛 + 𝑎1𝑠
𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  is stable. 

Proof. Let 𝑛 be an even number. Then we can write 𝑞 𝑠 = 𝑞1(𝑠2) + 𝑠𝑞2(𝑠2), where 𝑞1(𝑢) and 𝑞2(𝑢) are 

polynomials of order 𝑚 =
𝑛−2

2
. Let 𝑢1, 𝑢2, … , 𝑢𝑚  and 𝑣1 , 𝑣2, … , 𝑣𝑚  denote the roots of 𝑞1(𝑢) and 𝑞2(𝑢) 

respectively. Then by the Hermite-Biehler theorem 
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𝑣1 < 𝑢1 < 𝑣2 < 𝑢2 < ⋯ < 𝑣𝑚 < 𝑢𝑚 < 0. 
The polynomial 𝑝𝜀(𝑠) can be written as 𝑝𝜀(𝑠) = [𝜀(𝑠2)𝑚+1 + 𝑞1(𝑠2)] + 𝑠𝑞2(𝑠2). If we look into graphs of 

functions 𝑦 = 𝑞1(𝑢) and 𝑦 = −𝜀𝑢𝑚+1, we see that these graphs, for small 𝜀 > 0, intersect each other in 𝑚 + 1 

points and when 𝜀 → 0, 𝑚 of these intersection points approaches to 𝑢1 , 𝑢2, … , 𝑢𝑚 , whereas the other root to 

−∞. Therefore for the roots 𝑢0
𝜀 , 𝑢1

𝜀 , 𝑢2
𝜀 , . . . , 𝑢𝑚

𝜀  of 𝜀𝑢𝑚+1 + 𝑞1(𝑢), there exists 𝜀0 > 0 satisfying 

𝑢0
𝜀 < 𝑣1 < 𝑢1

𝜀 < 𝑣2 < ⋯ < 𝑣𝑚 < 𝑢𝑚
𝜀 < 0 

for all 0 < 𝜀 ≤ 𝜀0. Then by the Hermite-Biehler theorem the stability of 𝑝𝜀(𝑠) follows. The case of odd 𝑛 can be 

carried out similarly. ☐ 

Proof of Theorem 2. Let 𝑞 𝑠 = 𝑎1𝑠
𝑛−1 + 𝑎2𝑠

𝑛−2 + ⋯ + 𝑎𝑛  be a stable polynomial. From Proposition 2 it 

follows that there exists 𝑡0 > 0 such that for all 𝑡 ≥ 𝑡0 the polynomial 

𝑝𝑡 𝑠 =
1

𝑡
𝑠𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛 =
1

𝑡
 𝑠𝑛 + 𝑡𝑎1𝑠

𝑛−1 + ⋯ + 𝑡𝑎𝑛  

is stable. If we choose 𝑝 = (𝑡0𝑎1, 𝑡0𝑎2 , . . . , 𝑡0𝑎𝑛), then 𝑝 ∈ ℋ 1
𝑛  and for all 𝑘 ≥ 1 we have 𝑘𝑝 ∈ ℋ 1

𝑛 . ☐ 

Proposition 3 For 𝑛 = 2, 3 and 4 the property stated in Theorem 2 is true for all 𝑝 ∈ ℋ 1
𝑛 . 

The proof is ommited. 

Remark 1 It might seem that the Proposition 2 could plausibly be expected to be "naturally" true but the 

situation is more intricate than it seems, because there comes a surprise when we add two small terms: Let 

𝑠𝑛 + 2𝑠𝑛−1 + ⋯ be stable polynomial, then for no 𝜀 > 0 the polynomial 𝜀𝑠𝑛+2 + 𝜀𝑠𝑛+1 + 𝑠𝑛 + 2𝑠𝑛−1 + ⋯ is 

stable. 

Theorem 3 Let 𝑛 ≥ 5. Then for all 𝑘 > 0, 𝑘 ≠ 1, there exists 𝑝 =  𝑎1, 𝑎2 , … , 𝑎𝑛 ∈ ℋ 1
𝑛  such that 𝑘𝑝 =

 𝑘𝑎1, 𝑘𝑎2 , … , 𝑘𝑎𝑛 ∉ ℋ 1
𝑛 . That is to say the polynomial 𝑝 𝑠 = 𝑠𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  is stable but 

𝑝𝑘 𝑠 = 𝑠𝑛 + 𝑘𝑎1𝑠
𝑛−1 + ⋯ + 𝑘𝑎𝑛−1𝑠 + 𝑘𝑎𝑛  is not stable. 

Proof. The proof is based on the Hermite-Biehler theorem. Suppose that 𝑛 is an odd integer and 𝑚 =
𝑛−1

2
. 

Choose arbitrary numbers 𝑣1 , 𝑣2 , … , 𝑣𝑚  satisfying 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑚 < 0 and define the polynomial 𝑔 𝑢 =
 𝑢 − 𝑣1  𝑢 − 𝑣2 ⋯  𝑢 − 𝑣𝑚  = 𝑢𝑚 + 𝑏1𝑢

𝑚−1 + ⋯ + 𝑏𝑚 . 

Let 𝑘 > 0, 𝑘 ≠ 1 is given. Consider the polynomials 𝑔𝑘 𝑢 = 𝑢𝑚 + 𝑘𝑏1𝑢
𝑚−1 + ⋯ + 𝑘𝑏𝑚 . Firstly suppose that 

the roots of 𝑔𝑘 𝑢  satisfies the condition 𝑣 ′
1 < 𝑣′

2 < ⋯ < 𝑣 ′
𝑚 < 0. It is not difficult to see that 𝑔(𝑢) and 

𝑔𝑘 𝑢  have no common root. Then we can find 𝑢1, 𝑢2, … , 𝑢𝑚  satisfying 𝑣1 < 𝑢1 < 𝑣2 < 𝑢2 < ⋯ < 𝑣𝑚 < 𝑢𝑚 <
0 and not satisfying at least one of the following inequalities 𝑣′

1 < 𝑢1 < 𝑣′
2 < 𝑢2 < ⋯ < 𝑣 ′

𝑚 < 𝑢𝑚 < 0 (here 

we use 𝑚 ≥ 2). The Hermite-Biehler theorem ensures that 𝑝 𝑠 = ℎ 𝑠2 + 𝑠𝑔 𝑠2  is stable, where ℎ 𝑢 =
 𝑢 − 𝑢1  𝑢 − 𝑢2 ⋯  𝑢 − 𝑢𝑚  . If we write down 𝑝(𝑠) as 𝑝(𝑠) = 𝑠𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛  then 𝑝𝑘 𝑠 =
𝑠𝑛 + 𝑘𝑎1𝑠

𝑛−1 + ⋯ + 𝑘𝑎𝑛−1𝑠 + 𝑘𝑎𝑛 = 𝑘ℎ 𝑠2 + 𝑠𝑔𝑘 𝑠
2  and the Hermite-Biehler theorem also guarantees the 

unstability of 𝑝𝑘 𝑠 . 

If the roots of 𝑔𝑘 𝑢  does not satisfy 𝑣′
1 < 𝑣′

2 < ⋯ < 𝑣′
𝑚 < 0 then 𝑝𝑘 𝑠  is also unstable. By a similiar 

scheme one may prove the theorem for even 𝑛. ☐ 

Remark 2 As it is seen from the proof of Theorem 3, the point 𝑝 depends on 𝑣1 , 𝑣2 , … , 𝑣𝑚 . By changing these 

numbers we can obtain infinitely many 𝑝 satisfying Theorem 3. 

Corollary 3 There exists a point 𝑝 ∈ ℋ 1
𝑛 , (𝑛 ≥ 5) with the following property: There exists a number 𝑘0 > 1 

such that 

 𝑘𝑝 ∈ ℋ 1
𝑛  for all 1 ≤ 𝑘 < 𝑘0, 

 𝑘𝑝 ∉ ℋ 1
𝑛  for all 𝑘 ≥ 𝑘0. 

Proof. Choose 𝑘 = 2. Then by Theorem 3 there exists 𝑝 ∈ ℋ 1
𝑛  such that 2𝑝 ∉ ℋ 1

𝑛 . Then the claim follows from 

Corollary 2. ☐ 

Remark 3 There exists a radial ray in the positive quadrant of ℝ𝑛  which lies completely outside ℋ 1
𝑛  (𝑛 ≥ 4). 

The polynomial 𝑝𝑘 𝑠 = 𝑠𝑛 + 𝑘𝑠𝑛−1 + 𝑘𝑠𝑛−2 + ⋯ + 𝑘𝑠 + 𝑘 is unstable for all 𝑘 > 0. But for 𝑛 = 3 there is no 

such ray. 

 

III. Conclusion 
In this paper it is established that in a parameter space of polynomials segments on radial rays with 

stable end points are stable. We show that there is a stable svector such that the radial ray starting at this point 

lies completely inside the stability region. We also show that for any positive scalar differing one, there exists a 

stable vector such that the multiplication of this vector by this scalar is not stable.  
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