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Abstract: This paper proposes a semiparametric non-linear (SPNL) model that incorporates the relationship 

between individual independent variable and unobserved heterogeneity variable. Five different estimation 

techniques namely; Least Square (LS), Generalized Method of Moments (GMM), Continuously Updating (CU), 

Empirical Likelihood (EL) and Exponential Tilting (ET) Estimators were employed for estimation, for the 

purpose of modelling the independent variables non-linearly on metrical response variable. The performances 

of these estimators were examined at different levels of multicollinearity, by the use of simulated panel data. 

Further, the performance of the proposed non-linear model was compared with an existing non-linear model. 

The proposed and existing non-linear models were compared, using Absolute Error (MAE) at different sample 

sizes (n) and at different time points (t). For the proposed model, the performance of GMM and LS are 

apparently equal at time point, t = 5 and sample size, n =20 and at different combinations of n and t. For the 

sample size, n = 200 and time point t = 20, ET estimator was relatively better at all levels of collinearity. 

Overall, the ET estimator is more efficient in the proposed model compared to the existing model at all levels of 

multicollinearity.  
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I. Introduction 
Semiparametric modelling is a combination of the parametric and nonparametric approaches to 

construction, fitting, and validation of statistical models. In context, it is useful to review the way  other 

approaches are used to address a generic microeconometric problem like, determination of the relationship of a 

dependent variable, Y to a set of conditioning variables, X given a random sample i = 1 ..... N of observations of 

Y and X. This would be considered as "micro"-econometric problem because the observations are mutually 

independent and the dimension of the conditioning variables X is finite and fixed. In a "macro"-econometric 

application, using time series data, the analysis must also account for possible serial dependence in the 

observations and a growing or infinite number of conditioning variables, e.g. past values of the dependent 

variable Y, which may be more difficult to accommodate. Even for microeconometric analyses of cross-

sectional data, distributional heterogeneity and dependence due to clustering and stratification must often be 

considered; still, while the random sampling assumption may not be typical, it is a useful simplification and 

adaptation of statistical methods to non-random sampling. 

A natural approach to modeling economic time series and panel data with non-linear models is to 

define different states of the world or regimes, and to allow for the possibility that the dynamic behaviour of 

economic variables depends on the regime that occurs at any given point in time. Roughly speaking, two main 

classes of statistical models have been proposed which formalize the idea of existence of different regimes 

(time, T). The popular Markov-switching models (Hamilton, 1989) assume that changes in T(i) are governed by 

the outcome of an unobserved Markov chain. Hamilton applies a 2-regime model to the US GNP growth and 

discovered that contractions are sharper and shorter than expansions. These models have been explored and 

extended in details in a number of research works (Engel and Hamilton, 1990, Hamilton and Susmel, 1994, 

Filardo, 1994). Another estimator applied to estimation of parameters by Rui Li, Alan T. K., Wan and Jinhong 

You (2016) is semiparametric GMM estimator for panel data with fixed effect model. Degui Li Jin Chen and Jiti 

Gao (2011) also worked on time varying variables of panel data and in both cases it was discovered that the 

GMM estimator is more efficient than the Maximum Likelihood (ML) estimator when T(i) is small. A different 

approach is to allow the regime switch to be a function of a past value of the dependent variable. Teräsvirta and 

Anderson (1992), Granger and Teräsvirta (1993),  Teräsvirta (1994) and Akeyede (2015) promote a family of 

univariate business cycle models called smooth transition autoregressive (STAR) models. These models can be 

viewed as a combination of the self-exciting threshold autoregressive (SETAR) and the exponential 

autoregressive (EAR) models. Markov-switching models imply a sharp regime switch. This assumption is too 

restrictive compared to the STAR models. Two interpretations of a STAR model are possible. On the one hand, 

the STAR model can be seen as a regime-switching model that allows for two regimes where the transition from 

one regime to the other is smooth. On the other hand, the STAR model can be said to allow for a continuum of 
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states between the two extremes (Teräsvirta, 1998). Section 2 of this paper focuses on the background of the 

study. Section 3 discusses the proposed model, section 4 presents the simulation scheme, section 5 also presents 

the results of the existing model, while discussion of results and conclusion are presented in section 6.   

 

II. Background of the Study 
This paper considered previous researches by a number of Authors. For example, Doug Walker (2008) in his 

Ph.D programme dissertation proposed that 
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where αi is a parameter for the constant effect of brand i, Xyi is the value of the y
th

 variable Xy for brand i, βy is a 

parameter corresponding to variable Xy, and εi is an error term. 

Expanding the equation produces an initial brand share model, 
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where i = brand, j = physician, t = period, D = detailing, A = ads read in journal and αij = the constant effect of 

brand i with respect to physician j in a category with K brands. The parameters δ and φ represent the effects of 

detailing and promotional activities, respectively. The parameters δ and φ can vary by brand, physician, or both, 

addressing heterogeneity in physician response.  He later transformed the non-linear model logarithmically to 

linear model as   . 
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Another Author, Chandra R. Bhat (2000), stated that in the presence of unobserved heterogeneity, the 

appropriate linearized model interpretation of the PH model takes the form 

          
 ,w +  + x’  = )u(  iiii0 ln ,                                                                        (2)   

where 
i

w  is the unobserved heterogeneity component and 
i

  is the error term . 

Also, Damodar N. Gujarati and Down C. Porter 2009 used an exponential model of the form 

𝑌 I = 𝛽1𝑥𝑖
𝛽2  𝑒𝑢                                                                                                                             (3) 

for measure of elasticity of demand and linearized it as 

ln Yi = ln𝛽1 + ln𝛽2𝑥𝑖  + ui   ,                                                                                                       (3a)            

 the resulting equation was called a log-linear model. 

 

3.0 The Proposed Model 

The proposed model in this paper is stated bellow:  

𝑦𝑖𝑡 = 𝛽0𝑒
𝛽1𝜌1𝑖𝑡𝑋1𝑖𝑡 +𝛽2𝜌2𝑖𝑡𝑋2𝑖𝑡 +𝛼𝑖+𝑈𝑖𝑡   ; i = 1,...,n ; t = 1,...,T;                                    (4)   

 Therefore, 

𝑙𝑜𝑔(𝑦𝑖𝑡 ) = 𝑙𝑜𝑔𝛽0 + 𝛽1𝜌1𝑖𝑡𝑋1𝑖𝑡 + 𝛽2𝜌2𝑖𝑡𝑋2𝑖𝑡 + 𝛼𝑖 + 𝑈𝑖𝑡                                                    (4a) 

Yit* = 𝛽0* + β1*X1it + β2*X2it  + αi + Uit ; i = 1, 2,  ... , n ; t = 1, 2, ... , T                         (4b) 

ρ1it =    
𝑐𝑜𝑣 (𝑋1𝑖𝑡 ,𝛼𝑖)

 𝑣 𝑋1𝑖𝑡  .  𝛼𝑖)
   ,                                                                            (4c) 

ρ2it =    
𝑐𝑜𝑣 (𝑋2𝑖𝑡 ,𝛼𝑖)

 𝑣 𝑋2𝑖𝑡  .  𝛼𝑖)
  ,             (4d) 

 is the response vaeiable, 

 and   are the predictors, 

𝛽0  is the intercept,  

 is the unobserved heterogeneity variable and 

   is the  idiosyncratic error term. 

Simulation Scheme 
To simulate data for the study, the following schemes were designed for the generation of the panel data used 

for parameter estimation from the proposed model.   
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1
i

 , if there exists the unobserved variable 

0
i

 , if the unobserved variable is not present 

The following values were used for the Monte Carlo Simulation  

µ = 1, ζ = 2,   β0 =  5, β1 = 5 , β2 = 4 ,  β3 = 3 . 

The Sample sizes and time points investigated are; 

n = 20, n = 50, n = 100, n = 200 and n = 300; T = 5, T = 15, T = 30 with the following values of collinearities; 

ρ = 0.1        and         ρ = 0.8.    

Parameter estimations were replicated at 1000. 

 

III. Results of the Existing Model 
A corresponding existing model (see for example, Doug Walker, 2008 and Chandra R. Bhat, 2000 and Damodar 

N. Gujarati and Down C. Porter, 2009) to the proposed one is of the form  

𝑙𝑜𝑔𝑦𝑖𝑡 = 𝑙𝑜𝑔𝛽0 +  𝛽1X1it  + 𝛽2X2it + 𝛽3  𝛼𝑖 +  𝑈𝑖𝑡  ; 𝑖=1,…,𝑛 ;𝑡=1,…,𝑇 , 

where, 𝑦𝑖𝑡   denotes the response variable; X1it  and X2it   are the predictors; 𝛽0  denotes the intercept; 𝛼𝑖  denotes 

the unobserved heterogeneity variable; and 𝑈𝑖𝑡   denotes the  idiosyncratic error term. The models (Proposed and 

the one related to the existing models) were used for the analyses of  β0,  β1 , β2, and  β3  for the purpose of 

comparison with the following results; 

 

Table 1.2A: MAE for β0 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 
  20 50 100 200 300 

LSE 1.079003 0.998006 0.899288 0.791199 0.519924 

GMM 1.079113 0.998106 0.879288 0.771199 0.518924 

CUE 1.078005 1.079105 1.08904 0.98143 0.908903 

EL 1.07902 0.998007 0.899359 0.790904 0.500883 

ET 1.079013 0.998006 0.889818 0.890796 0.500719 

 

 
Figure 1.2A : Line graph of  MAE for β0 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 

 

Table 1.2B: MAE for β1 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 
  20 50 100 200 300 

LSE 0.166586 0.154282 0.068742 0.037618 0.017618 

GMM 0.156586 0.154282 0.098742 0.039618 0.034218 

CUE 0.968472 0.956773 0.971482 0.924704 0.923604 

EL 0.466614 0.154322 0.068788 0.037514 0.034414 

ET 0.166622 0.194303 0.038973 0.037585 0.036685 

 

 

MAE for β0 at different sample sizes, T = 5 (Model Ex.)
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Figure 1.2B : Line graph of  MAE for β1 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 

 

Table 1.2C: MAE for β2 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 
  20 50 100 200 300 

LSE 0.137912 0.118337 0.059153 0.033365 0.037165 

GMM 0.137912 0.118337 0.059153 0.033365 0.036465 

CUE 0.841574 0.930439 0.862094 0.759998 0.755998 

EL 0.139937 0.118336 0.059211 0.039319 0.023319 

ET 0.138926 0.118287 0.059178 0.032424 0.027124 

 

 
Figure 1.2C: Line graph of MAE for β2 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 

 

Table 1.2D: MAE for β3 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) 
  20 50 100 200 300 

LSE 0.144882 0.125438 0.062945 0.052398 0.032398 

GMM 0.144882 0.125438 0.062945 0.052398 0.041998 

CUE 0.563828 0.426753 0.469853 0.374001 0.272801 

EL 0.14589 0.125439 0.062917 0.052382 0.041582 

ET 0.145873 0.125363 0.063002 0.052392 0.041792 

MAE for β1 at different sample sizes, T = 5 (Model Ex.)
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Figure 1.2D: Line graph of MAE for β3 at different sample sizes, T = 5, ρ = 0.1 (Model Ex.) The corresponding 

results for the proposed model are presented bellow; 

 

Table 7.2A: MAE for β0 at different sample sizes, T = 5, ρ = 0.1 (Prop.Model) 
  20 50 100 200 300 

LSE 0.986343 0.982852 0.980412 0.978105 0.958105 

GMM 0.986343 0.982852 0.980412 0.978105 0.976105 

CUE 0.990042 0.999109 0.98658 0.982693 0.962693 

EL 0.986437 0.982844 0.980413 0.978149 0.976149 

ET 0.986449 0.982929 0.980399 0.977864 0.975264 

 

 
Figure 7.2A: Line graph of MAE for β0 at different sample sizes, T =5, ρ = 0.1 (Prop.Model) 

 

Table 7.2B: MAE for β1 at different sample sizes, T = 5, ρ = 0.1 (Prop.Model) 
  20 50 100 200 300 

LSE 0.166586 0.154282 0.068742 0.037618 0.017618 

GMM 0.166586 0.154282 0.068742 0.037618 0.034218 

CUE 0.168472 0.156773 0.071482 0.124704 0.123604 

EL 0.166614 0.154322 0.068788 0.037514 0.034414 

ET 0.166622 0.154303 0.068973 0.037585 0.036685 
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Figure 7.2B: Line graph of MAE for β1 at different sample sizes, T =5, ρ = 0.1 (Prop.Model) 

 

Table 7.2C: MAE for β2 at different sample sizes, T = 5, ρ = 0.1 (Prop.Model) 
  20 50 100 200 300 

LSE 0.132912 0.118337 0.059153 0.039365 0.037265 

GMM 0.132912 0.118337 0.059153 0.039365 0.036465 

CUE 0.141574 0.130439 0.062094 0.059998 0.055998 

EL 0.132937 0.118336 0.059211 0.039319 0.023319 

ET 0.132926 0.118287 0.059178 0.039424 0.027424 

 

 
Figure 7.2C: Line graph of MAE for β2 at different sample sizes, T =5, ρ = 0.1 (Prop.Model) 

 

Table 7.2D: MAE for β3 at different sample sizes, T = 5, ρ = 0.1 (Prop.Model) 
  20 50 100 200 300 

LSE 0.144862 0.125438 0.062945 0.042398 0.032398 

GMM 0.144862 0.125438 0.062945 0.042398 0.041998 

CUE 0.163828 0.126753 0.069853 0.074001 0.072801 

EL 0.14489 0.125439 0.062917 0.042382 0.041582 

ET 0.144873 0.125363 0.063002 0.042392 0.041792 
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Figure 7.2D: Line graph of MAE for β3 at different sample sizes, T =5, ρ = 0.1 (Prop.Model) 

 

IV. Conclusion 

We proposed a semiparametric non-linear (SPNL) model that considers the relationship between 

individual conditioning (predictor) variable and the unobserved heterogeneity variable before the estimation of 

the parameters and the main analysis. Monte Carlo Simulation was used to generate and analyse different sets of 

panel data with different combinations of sample sizes (n) and time point (t) together with different levels of 

multicollinearity using R Package. We applied different estimators like: Least Square (LS), Generalized Method 

of Moments (GMM), Continuously Updating (CU), Empirical Likelihood (EL) and Exponential Tilting (ET) to 

estimating the parameters from the simulated data.When the time point is very low, that is, T = 5 and ρ = 0.1 for 

different sample sizes, using MAE as criterion for comparison among the estimators for estimation of β0 , CU is 

the best estimators when n = 20, LS and ET are the best when n = 50, GMM is the best when n = 100 and when 

n = 200, while ET is the best when n = 300 for the existing model. For the proposed model, LS and GMM are 

the best estimators when n = 20, EL is the best estimator when n = 50, ET is the best when n = 100, LS and 

GMM are the best when n = 200, and LS is the best when n = 300 for estimation of β0.  

When the time point is very low, that is, T = 5 and ρ = 0.1 for different sample sizes, using MAE as 

criterion for comparison among the estimators for estimation of β1 , GMM is the best estimator when n = 20, LS 

and GMM are the best when n = 50, ET is the best when n = 100, EL is the best when n = 200 and LS is the best 

when n = 300 for the existing model. Considering the results of the proposed model, LS and GMM are the best 

estimators when n = 20, when n = 50 and when n = 100, EL is the best when n = 200 while LS is the best when 

n = 300. The best estimators for the estimation of β2 when T = 5 and ρ = 0.1 are LS and GMM using MAE as 

criterion for comparison when n = 20, ET is the best estimator when n = 50,  LS and GMM are the best 

estimators when n = 100, ET is the best estimator when n = 200 and EL is the best estimator when n = 300, for 

the existing model. LS and GMM are the best estimators when n = 20 for the proposed model, ET is the best 

estimator when n = 50, LS and GMM are the best estimators when n = 100, EL is the best estimator when n = 

200 and when n = 300. 

For the estimation of  β3 , LS and GMM are the best estimators when n = 20, T = 5 and ρ = 0.1, using 

MAE as criterion for comparison for the existing model, ET is the best estimator when n = 50, EL is the best 

estimator when n = 100 and when n = 200, while LS is the best estimator when n = 300. LS and GMM are the 

best estimators when n = 20, T = 5 and ρ = 0.1, using MAE as criterion for comparison for the proposed model, 

ET is the best estimator when n = 50, EL is the best estimator when n = 100 and when n = 200, while LS is the 

best estimator when n = 300. In summary, the proposed model performs better than the existing model using 

MAE as criterion for comparison when  T = 5 and ρ = 0.1 for different sample sizes because MAE of the 

proposed model is less than the MAE of the existing model at all stages of parameter estimations. 
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