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Abstract: The objective of this paper is to study the behaviour of the server breakdown and repair in an
M™)/G(a,b)/1 queueing system with two heterogeneous service, multiple vacation, closedown, balking and

stand-by server. After a first stage of service to a batch of customers the main server serves the second stage of
service to the same batch of customers. The main server may breakdown at any stage of service with exponential

rate 'a', then the main server go for a repair service which follows exponential with rate 'n" and the

interrupted stage of service to a batch of customers is transferred to the stand-by server and he starts a
interrupted stage service to that batch of customers a fresh. After the completion of first stage of service the

stand-by server serves the second stage of service to the same batch of customers. Let '(1—7)" be the

probability that a batch of arriving customers balk during the busy period of the stand-by server. If the system
size becomes zero before main server repair completed then the stand-by server decide to stay in the system and

he starts service to the next batch only when the queue size reaches is at least 'a’. At the instant of repair
completion, if the stand-by server is busy in any stage of service the interrupted stage of service to a batch of
customers is transferred to the main server and he starts a interrupted stage service to that batch of customers a
fresh. Suppose at the instant of repair completion or at the instant of the second stage of service served by the

main server if queue length is less than '@’ then the server perform a closedown work. After that, the server
leaves for multiple vacation of random length. After a completion of vacation, if the queue length is still less

than '@’ he leaves for another vacation and so on until he finds minimum '@’ customers in the queue. After a
vacation, if the server finds at least '@’ customers waiting for service, say ‘&', then he serves a batch of size
min (&,b) customers, where b > a.

Keywords: Bulk service, Two heterogeneous service, Multiple vacation, Stand-by service.

. Introduction
General bulk service rule was first introduced by Neuts [1]. General bulk service rule states that the

server will start to provide service only when atleast '@’ units are present in the queue and maximum service
capacity is 'D". On completion of a batch of service, if less than '@’ customers are present in the queue then
server has to wait upto the queue length reaches the value '@’ . If less than or equal to 'b’ and greater than or
equal to '@’ customers are in the queue, then all the existing customers are taken into service. If greater than or

equal to ‘D’ customers are in the queue, then ‘b’ customers are taken into service. Downton [2] obtained the
waiting time distribution of bulk service queues by considering random arrivals and random service time
distribution. In bulk service queueing problem Jaiswal [3] conformed the result of Downton[2]. He derived
waiting time distribution using embedded Markov-chain technique. He assumed that the batches are either fixed

queue length or whole queue, whatever is lower. That is, if more than '@’ customers are in the queue, then '@’

customers are taken into service. If less than '@’ customers are in the queue, then all the existing customers are
taken into service. Arumuganathan and Jeyakumar [6] analyzed n[X1/G(a,b)/1 queueing model with

multiple vacation and closedown time. In closedown time queueing system, on completion of a service, if the
queue length is less than the minimum service capacity of the server, the server performs closedown work. In
M X1/G(a, b)/1 queueing system with multiple vacation, on completion of a service, if the queue size is at-
most '@ —1', the server leaves for a vacation of random length. After a vacation, if the queue length is still less
than '@’ , then the server leaves for another vacation and so on, this will continue until the queue length reaches
at least '@’ . After a vacation, if the queue size is greater than or equal to 'a’, say &, then the server serves min

(&,b), where b > a. Recently, Madan et al. [4] studied steady state analysis of two n X /M (a, b)/1 queue
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models with random breakdowns. They considered that the repair time is exponential for one model and
deterministic for another one. The most of the studies on vacation queues with server breakdown conclude that
if breakdown occurs the service is immediately allowed to be interrupted. In some cases, it is not possible to
disturb the server immediately before completing a batch of service or it is possible to continue or extend the
service up to some more time even if the breakdown occurs. A Stand-by server which operates only during the
repair period of the Main server is considered in this paper. The Stand-by server model is introduced by
Madan[5]. He considers a system which has, apart from the regular channel, the provision of a stand-by which is
employed only during the repair times of the regular service channel. The stand-by service may not be as
efficient as the main service channel, but still may contribute a lot to avoid the queue becoming out of bounds
during the failure times of the main service channel. Such situations are not uncommon.

This paper is organised as follows. In section 2 the queuing problem is defined. The system equations
have been developed in sections 3. The probability generating function (PGF) of the queue length distribution in
steady state is obtained in section 4. Various performance measures of the queuing system are derived in section
5. A computational study is illustrated in section 6. Conclusions are given in section 7.

I1.  Model Description
This paper deals with arrival follows Compound Poisson with intensity rate A , main server and stand-
by server’s service, vacation and closedown follows general distribution, breakdown and repair follows
exponential distribution, (1— ) be the probability that the arriving batch balks only when the stand-by server
busy. After a first stage of service to a batch of customers the main server serves the second stage of service to
the same batch of customers. The main server may breakdown at any stage of service with exponential rate "',
then the main server go for a repair service which follows exponential with rate '7" and the interrupted stage of

service to a batch of customers is transferred to the stand-by server and he starts a interrupted stage service to
that batch of customers a fresh. After the completion of first stage of service the stand-by server serves the
second stage of service to the same batch of customers. If the system size becomes zero before main server
repair completed then the stand-by server decide to stay in the system and he starts service to the next batch only

when the queue size reaches is at least '@’ . At the instant of repair completion, if the stand-by server is busy in
any stage of service the interrupted stage of service to a batch of customers is transferred to the main server and
he starts a interrupted stage service to that batch of customers a fresh. Suppose at the instant of repair
completion or at the instant of completion of second stage service served by the main server if queue length is

less than '@’ then the server perform a closedown work. After that, the server leaves for multiple vacation of
random length. After a completion of vacation, if the queue length is still less than '@’ he leaves for another
vacation and so on until he finds minimum '@’ customers in the queue. After a vacation, if the server finds at
least '@’ customers waiting for service, say '&’, then he serves a batch of size min (&,b) customers, where

b>a.

2.1 Notations
The following notations are used in this paper.

A - Arrival rate.
X- Group size random variable.
Customers balk with probability (1—7)

Pr(X =k)=g,.
X (z) - the Probability Generating Function (PGF) of X.

S, S@(), SP(), SP(), V() and C(.) represent the Cumulative Distribution Function (CDF) of
first stage, second stage service time of main server, first stage, second stage service time of stand-by- server,
vacation time and closedown time and their corresponding probability density functions are Sél)(x), Séz)(x),

s (x), sP(x), v(x) and c(X) respectively.
Seol ®), SSZ ®), Stg ®, Sg (t), VO(t) and C°(t) represent the remaining time of first stage, second stage

service given by main server, first stage, second stage service given by stand-by- server, vacation time and
closedown time at time t respectively.
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§e(l)(9), §e(2)(l9), §t(l)(9), §t(2)(t9), \7((9) and C (0) represent the Laplace Stieltjes transform (LST) of
S®,sP s® P V and C respectively.

For the further development of the queueing system, let us define the random variable as:
e(t) =(1),(2),(3),(4)and (5) denotes main server busy, vacation, closedown, stand-by server busy and

stand-by server idle respectively.
Z(t)=j,iftheserverison j"
N, (t) =Number of customers in service station at time t

vacation, j>1

N, (t) = Number of customers in the queue at time t.
Define the probabilities as,
I, (At =Pr{N,(t) =n,&(t) =5},0<n<a-1,
PO (x,)At = Pr{N,(t) =m, N, (t) =n, x < s° (t) < x+At, g(t) =13},

a<m<b, n>0, i=1,2,
BY, (X, t)At = Pr{N,(t) = n, N, (t) =n, x < st? (t) < x+At, g(t) = 4},

a<m<b, n>0, 1=12,
Q(x,)At=Pr{Z(t)=1,N (1) = ], X<VO()<x+At e(t)=2}, 11, j>0,
C,(x,t)At =Pr{N_ (t) =n,x<C°(t) < x+dx, &(t) =3}, n>0.

I11.  Queue Size Distribution

Now, the following equations are obtained for the above queueing system, using supplementary variables
technique:

b
PO (x—At,t+At) = (1- AAL)(1-aAt)RY (x, 1) + D P2 (0,t)s{” (x)At

+3°Q, 0.9 (0t + [ BY(y, Odys® ()AL, a<i<b M
1=1
i
PO (x—At,t+At) = (1- 2At)(1-aAt) R (x,t) + kz_;ef}ik (x,t)Ag, At
+7 jO”Bi{? (y,0)dys® (x)At,a<i<b-1, j>1 @)

b
RY (x—At,t+At) = (1- AAt)(1-aAt) R (x, 1) + D PA . (0,1)s{” (x)At

+2 Qe (0,00 ()AL +7[ B (y, Hdys® (x)At
1=1
i
+> R (x,1)Ag,At, j>1 3)
k=1
PO(x—At,t+At) = (1- 2At)(1- aAt)RD (x,1) + P (0,1)s? () At

+7 jowB;? (y,t)dys@ (x)At,a<i<b @)
P®(x—At,t+At) = (1- 2At)(1- aAt) PP (x,t) + BT (0,t)sP (x) At

i 0
+> P@, (x,)Ag, At +77 jo BO(y,t)dys®(X)At, a<i<b, j>1 )
k=1
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I, (t+At) = (1- AAt)(1-75Ab) I, (t)+ZB(2) (0,1)At (6)

m=a

I, (t+At) = (1- AAt) (1 -nAt) 1 (1) + Zb:Brﬁ)n (0,t)At + il . (DAg, AL,

1<n<a-1 (7

B (x—At, t+At) = (1- AAt)(1— At B (x,1) + iBrf} (0,t)s (x) At
+ S0, 078,50 (08t + | RE(y, Dy (oAt
n_o +A(1-7)B{ (x,)At,a<i<b ®)
B (x— At t+At) = (1- AAt)(1-nAt)BY (x, t)+7rZB,(1]) (X, D) Ag, At

+aj0 PO (y,t)dys® (x)At + A(1-7)BY (x, 1)At,
a<i<b-1, j>1 9)

BY (x— At,t+At) = (1- 2At)(L—- A BE(x, t)+7rZBé1ik(X,t)/19kAt
pe J’O ROy, tdys® (x)At + ZB&L ;(0,1)s (x)At

a-1
+ D 1, (A0, -, sP (At + A(1- 7) B (X, 1AL, j>1 (10)
n=0

B (x—At,t+At) = (1- AAt)(1-nAt) B (x,t) + A(1— 7)BE (x, 1) At
+BR(0,)s? (At +a [ R (y,H)dys® ()At, a<i<b (11)

B®(x—At,t+At) = (1- AAt)(1-nAt)BA (X, t)+;zZB,‘2J’k(x,t)/19kAt

+BY(0,1)s? (XAt + j P@ (y,t)dys® (x)At

+A(1-7)BA(x,t)At,a<i<b, j>1 (12)
C, (X—At,t+At) = (1- AAL)C, (X,1) + ZPnﬁ?g (0,t)c(X)At
+i€n_k(x,t)igkAtJrnln(t)c(x)At, n<a-1 (13)
k=1
C,(x—At,t+At) = (1- 1At)C, (x,t) +Zn:Cn7k (x,t)Ag, At,n>a (14)
k=1
Qo (X—At,t+At) = (1-AA1)Q, , (X, 1) + C, (0, t)v(x) At (15)
Q. (Xx—At,t+At) = (1-2A1)Q, , (X, t) + Zn:Ql‘n_k (x,t)Ag, At+C, (0, t)v(x)At, n>1 (16)
k=1
Q;o(X=Att+At) = (1-2A1)Q; , (X, 1) +Q; 1, (0, )V(X)AL, j>2 1n

Q; . (X—At,t+At) = (1-2A1)Q; , (X, ) +Q; ;. , (O, )v(X) At
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+Zn:Qj’n_k(x,t)ﬂgkAt, j=2,1<n<a-1 (18)
=
Q. (X At,t+At) = (1-2A1)Q,, (X, t) + in,n,k (x,0)1g,At, j>2,n>a. (19)
From the above equations, the steady state queue :i_zle equations are obtained as follows:
-SRI =2+ )P0 + ;P?R O+ 30, 050
+ 77]0 B (y)dys® (x), a<i<b (20)
- S RY00 =1+ )RY 00+ ZP“)k(x)zgk +n ;B ()Y (x).
a<i<b-1,j>1 (21)
- RY(M =2+ )R (0 + ZPHS?H O+ 3.5 0109
+n[ BE(Y)dys(x)+ gpbf?k (049, j 21 (22)
- SRR =0+ )PP () +RY 0P (0 +7] BE (AP (W, as<isb ()
- RO =2+ @)RY M+ YO (9 +7], B (1)ys? (0
+ZP(Z’k(x)ﬂgk,a<|<b j=1 (24)
A+, = ZB<2> (0) (25)
A+, :ZB;%L(0)+i|n_kigk,1snsa—l (26)
= =
B0 = (B 00+ YBAOSM) + S g, )
+aj PO (y)dys® (x) + A(1- 7)BL (x), a<i<b @7)
-2 B9 =2+ B0 + nZBf“ (02g, +a[ R (»dys ()
+/1(1—;z)|3i{1,.>(x),asusb—1,j21 (28)
- B0 =+ B + 73 8L (0, + [ R ()
+3BA 0500+ 31,0, LSO+ AL-DBIK), (21 @9
—% B9 (X) =—(1+n)B2(x)+ A(1-7)BE (x) + B (0)s? (x)
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+af RP(ydys?(x),a<i<b (20
- B0 =+ B + 53 B, (78, +a R () ()

+ B (0)s? (x) + A(1- ﬂ)B(Z)(X),aSiSb, j>1 (31)
—dicn(x)=—ﬂcn(x)+gpn2?z ©00+ 3, 00dg, +nlc0gn<a-1 @
—dic (X) = —AC (x)+k2;cn ()9, n>a (33)
—£Q10(0 = ~2Q, (9 +C, V(0 o

20,00 10409+ 2Qur (978, +C, Ou(x). n 21 @)
~£ Q100 = ~1Q0 (X +Q, 15 OV(X), 22 ()
-£.Q,.00= 03, 00+Q, 1, OV + 0,0 (08, 22150521 @)
20,00 zQ,n<x)+ZQ,n (04g,, j>2,n>a (@)

Taklng LST on both sides of equations (20) to (38) except (25) and (26), we have
~ ~ b ~ © -~
R (0)-PY0) = (A+a)RPP(0) - Zprfi) 0)57(0)->Q,;(0)S2(0)
1=1

—n[ BY()dySL (), a<i<b (39)

RP(©0)-PPO) = (21+a)PP(0) —ZP(% (0)2g, —n[ B (S (0),
a3|sb—1,121 (40)

RO -RIO = (2 +a)RI©)- Zpﬁﬂ O30 0)-Y Q. 05(0)
1=1
o ~ b~ .
~nf B(HS O~ 2R (00, 21 (@1)

R (0)-PP(0) = (2+a)RP(0)-RP(©0)S(0)—n[ BE (y)dys2(6),
a<i<b (42)
R (6)-PP(0) = (2+a)RP(0)-RY (052 (6) -n| B (y)dys(6)
i~
~->P®, (0)Ag,,a<i<b, j>1 (43)
k=1

BY0) B0 = (1+)B(O)- Y08 O)- 270,500

—af PP (y)dyS? () - A(1-7)BY (9), a<i<b (44)
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- - i Y -
HBi(,l,-) 0) - Bi(,lj) 0)=(A+mn) Bi(,lj) (0)- ﬂZBi(,lj)_k (0)Ag, —a IO Pi,(:jL) (y)dys ()
k=1
~A1-7)BY(9),a<i<b-1, j>1 (45)
- - i . -
a?’b(,lj) (0)- Bé,lf 0)=(1+n) Bb(,lj) (0)- ”ZBb(,lj)—k (0)Ag, —a JO Pb(,lj) (y)dys® ()
k=1
b — a—1 ~ ~
- > B&,,052(0) = 1,19, (0) - 4(1-7)BI(6),
m=a n=0

j>1 (46)
B2 (0)-B2(0) = (A+17)B2(0) - 1(1-7)B? (6) - BY (0)S,? (6)

—af PP (y)dyS P (0), a<i<b @7)
~ - i~ - ~
B.}(0) B0 = (1+mBJ(O) -7 2B (09, ~a [[RO()dy5?(0)

~-BY(0)S2(0) - 1(1-7)B?(9),a<i<b, j>1 (48)

6, (6)~C,(0) = iC,(0) - Y PL OC(©) - 3C, ()29, — 1l C@O),n<a-1 @

&, (6)-C,(0) = AC, () —Zn:c’:'n_k (0)Ag,,n>a (50)
6Q,5(6)~Q,(0) :zél,o(e)k jco(O)\'i ©) (51)
&, (6) ~ Qu, (0) = 23,.,(6) - Zé’ (6)2g, ~C,(OV (), n=1 62
63,0(6)~Q;0(0) = 23,0 (6)~Q, 1, OV (8), |2 (53)

0Q,(0)-Q;,0) = 2G,,(0)-Q,1, OV (0)- 3, (O)g,, j221snsa-1 @

;. (0)-Q;,(0)=4Q,,(0)- >Q; . (O)4g,, j>2,n>a (55)
k=1
We define the following probability generating functions:
B0 = YR O)2 PO(20)= YR} (0)2' (asi<b)n=12
j=0 i=0
B (2,6)= SBY(@)2) B (20)= YBO(0)z',(a<i<bh),n=12 (56)
j=0 i=0
Q@0)=>0,0)7 Qz0)=3Q,0)7, 1=1
j=0 j=0

C(z.0)=3C,0)2" C(z0)=3C, 02",

By multiplying the equations (39) to (55) with suitable power of z" and summing over
n=0 tooo,and using equation (56), we have

(O-u(2)PY(z,0) = P (2,00~ SO (OB (2,0) + ieﬁ? ©+3Q,0),

a<i<b-1 (57)
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2O-u@)BP(2.0) = RO (2.0)+ SPO) S [Y P2 )2 + 3Q, 0)2']

50O 2.0)+ YPO(20)+ Q2.0 (8
(0-u(2)P? (2,6) = P (2,0)- SP (OB (2.0)+ PV (2,0)], a<i<h (59)

(0—v(2))B¥(z,6) = B¥(2,0)- S (O)[aP“ (2,0) + iBﬁ% 0) +a2'1lnzgi_n],

a< | <b-1 (60)
2°(0-v(2))B®(z,0) = 2°B¥(2,0)- S2(6) f (2) (61)
(0 -v(2))B2(z,0) = B?(2,0) - S (6)[aP ? (2,0) + BP (2,0)], a<i<b (62)
(0—w(2))C(z,6) = C(z,0)-C ()l (2) + iaz'lpns?z (0)z"] (63)
(0-w(2))Q,(z,6) = Q,(2,0)-V (8)C(z,0) (64)
@ -w(2)Q,(z,6)=Q,(2,0) -V (e)aZQ,-_l,n 0)z", j>2, (65)

where
u(z) = A+ a—AX(2),v(z) = 7(A—AX(2)) +n,W(z) = 1 — AX (2),

- b b-1 b _
and f(z) = 2°aR"(2,0)+ > B?(2,0)-> > B2 (0)Z'

i—am=a

- AX @D -AS 3,02
Substitute 6 = u(z) in (57) to (59), we have o
P (2,0)=S® (u@)[7B" (z,0) + iaﬁ? ©+3Q,0)] a<i<b-1 (66)

2°R%(2,0) = S (u(2))[2° 7B (2,0)+ ipnﬁz)(z,o) + iQ. (z,0)]

-SOUENYIYPY @7+ Q,(0)2'] ©7)
P (20) =52 WENIBP 2.0)+ P (20)), a<i<b )

Substitute & = v(z) in (60) to (62), we have
~ _ b a-1
B®(2,0)=S® (v(2))[eP P (z,0) + ZB,ff} ©)+ ZI A0, ] agi<b-1 (69)
n=0

m=a

2°B(2,0) = SO (v(2)) f (2) (70)

B?(z,0)= S (v(2))[aP.? (z2,0) + BY (z,0)], a<i<b. 71)
Substitute € = w(z) in (63) to (65), we have

C(2.0) = CWI (@) + X3 PAO2'] 2

Qi(z,0) =V (W(2))C(z,0) (73)
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Q2.0 =V(W@)I Q1,002 j>2 &
Substitute (66)to (74) in (57)to (65), we have

. G0 W@) -S5O ONAD 20+ S P0) + 30, 0)
P (z,0) = @0 : (75)

a<i<b-1

ED(0) -5 UM ST PRI +30,,0)2']

j=0 m=a

+(SP(u(2)) - SP(O))[2°nBP (2,0) + iPﬁ’(z,owiQ. (2,0)]

D (1) —
R"(z,0) o0 (76)
5oz o= SOU@)=SPONIBT@O)+RVEO] | iy,
(0—u(2))
(77
(39 W(2) - 52 ON[BD(2.0)+ 3BA©0) + 1, 49, ]
B®(z,60) = m=a = (78)
(0 —v(2))
500 = M) -SDO) () 79)
2’ (0—v(2))
=0 _ SPM(@2)-SP@O)PP(2,0)+BO(z,0)] _ _:
B®(z,0) = O —v(2) ,a<i<b (80)
~ ~ b a-1
_ CW(@)-COEN(2)+D.D> P2(0)z"]
C(z,0) = m=an=0 (81)
(0—w(2))
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V (w(z)) -V (9))C(z,0)
(0 —w(2)) (82)

Q(z,0) =

7 2) VO30, 02"
- w(2)

Q,(z,0) = j>2. (83)

IV. Probability Generating Function Of Queue Size
4.1 PGF of queue size at an arbitrary time epoch
The PGF of the queue size at an arbitrary time epoch is obtained as

P@)=YBO@0)+ Y20 +1(0)+ YEO @0+ Y B (20)
+6(z_,0)+lzi“c§| (z,C_)). _ _ (84)
By substitute 6= 0 on the equations (75) to (83) then the equation (84) becomes
K@D 206 + K@ 22 - 2)4
D) (K, () Ks(_z»]zqnz“
SUCISCREEEIOINOTORNO) 113

+ U WK, (2) + -V (WK () (2) + D ,2")

P)= WK (2) - @

This represents the PGF of number of customers in queue at an arbitrary time epoch,
where

S (P20 +3Q,0) = 3k,

Z(ZBS? (O) + ZI nﬂ“gi—n) = Zdl !
i—a i=a n=0 i=a

b

YPYO =5, Y00 =4,

i—a
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Ky (2) = u@V(2)w(z){z°a[1- S (v(2))S2 (v(2))]
+v(2)(2" - SO (W(2)SP(V(@)(1-SL (u(2))S2 (u(2)))
+a8PU(2)SP (v(2)(1- SO V() (1-SLUu(2)
~2"aSPU@)ISP U(@)(L-SL V(@) + -SSP V(@) SP (V()T}
2P an(a+v(@)W(z)(1-S& U@))(L-SP (u(2)) x
(1-SOWV@))A-SP (),

K,(2)= u@V(@)w(z){z°7[1-S& u(2))S2 u(2)]
+u(2)(z* - SPUE@)NSL U@~ SO V()52 (v(2)))
+75P(v(2))SP (u(2))1- S (@)1~ 52 (v(2)))
-850 W@)ISPM(2)(1- S U(2) + 1~ S (u()SL )T}
~2an(n +u@)W)(1- 5P @)L~ 52 u@)) x
1-SOM@)2-S2 (v(2),

Ki(2)= 2°2°[u(z)v(z) - an(l-S& u@)1-S@ V@)
x[U(2)v(2) - an(1-S2 (U@)(L-52 (v(@))]
+uAV? SO (u(2))S 2 (u(2)S P (v(2))S2 (v(2)
~2°u(2)v(2)S O (u(@)[u(2)v(2)S2 (u(2))
+an(l-S8 (v(2))A- S u(2))S? (v(2))]
~2°u(2)v(2)S® (V(2)[u(z)v(2)S.2 (v(2))
+an(1-SPU@)L-SCV@)SLUE).

REMARK 1.

Equation (85) has @a+2b unknowns C,,C,.;,--,Cy 4,050,050y 15 Pos Proeeos Pags Go» Ghseeer 0oy
and 1y, 1,,..., 1, ;.We develop the following theorems to express (; in terms of P, and I; in such a way that
the numerator has only 2D constants. Now equation (85) gives the PGF of the number of customers involving
only 2b unknowns. By Rouche’s theorem of complex variables it can be proved that K3(Z) in the
denominator of equation (85) has 2b—1 zeros inside and one on the unit circle | z|=1. Since P(z) is

analytic within and on the unit circle, the numerator must vanish at these points, which gives 2D equations in
2b unknowns. We can solve these equations by any suitable numerical technique. Thus, equation (85) gives
the PGF of queue size at arbitrary time.

REMARK 2.
The probability generating function has to satisfy P(1) =1. Applying L’ Hopital’s rule in (85), we get

N"(1) = 2(-AX1)K, (1) Since p;, q; and |, are probabilities, it follows that N"'(1) must be positive.
Thus P(1) =1 ifand only if the 2(—AX1)K,(1) > 0. If
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Xlrat+n) (-SSP @)A-SP(@)A-SPm)A-S2 1) -
(1-SP(@)S2(@)X-SPm)SP 1))
ban(SP()SL(@)(S® () +S2 () ~1)+SL ()]
+SOMISLESL (@) +52(2) -1) + S ()])
then p <1 is the condition to be satisfied for the existence of steady state for the model under consideration.

p:

4.2 RESULT
Theorem:

Z.o (7. +p;),n=01.2,..,a-1, where

hn + Z Vi Kn i Y ﬂ
— i= - — ; = /0o =\
= 1—| r ,n=1.2,..a-1with K, = T h, =D (7 +P)B
7o Yo
where y,’s and f3,’s are the probabilities of the 'I" customers arrive during vacation time and closedown

n

time respectively.

Proof:
Using equations (73) and (74), Zm Q;(z,0) simplifies to

Z 2" =V (A-2X@)C(A- iX(Z))(UZ‘,' z +zpn2 )+an2]
‘Z)’ z [ZBJZ (nZI z +anz )+anz ]

n o n-(a-1) a-1
:Z(Z‘ynl |)Z +Z[ Z 7k2(77| +p)ﬂn| k]Z
+ i i 7kz‘ﬂi(ln—i—k + pn—i—k)Zn +Z(iqi7/n—i)zn +i(az_lqi7/n—i)zn
n=ak=n-(a-2) =0 n=0 i=0 n=a i=0

equating the coefficients of Z" on both sides of the above equation for n =0,1,2,...,a—1, we have

n_n-j

ZZ}/ﬂn.,(nl +p)+D G -

j=0i=0

Onsolving for q,, we have

Zhn ](’7' +P; )+Dn idi
(1-7)

The co—efficient of (nl,+p,)ing,Iis {(’i =K, and

=720

O =

[h, + ,.co—efficiento f (71, + p,,)in q, 1]
(1-70)

the co—efficient of (nl, ,+p,,)inq, =

h1+71 - K.
(1- 70) '
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Similarly, we get

hn + Zn‘)/i Kn—i
— i=1

K, = ,n=12..a-1

1=,

4.3 Particular Case
Case 1:
When there are no balking, breakdown, repair , Stand-by service, second stage service and closedown then

equation (85) reduces to

EOU@)-DI@ 20+ (2 D WD) -DS 2"
P = i=a — n=0
) W)@ 5P (@)

which coincide with Arumuganathan and Jeyakumar [7], if the setup time is zero, N =& and no closedown.

Case 2:
When there are no balking, breakdown, stand-by service and second stage service then equation (85) reduces

to
(OM@)-DY ~2) + (@ -DV (W) -DLp,7
+CW@WV (WD) -1 -1 3 p,2"
P(z) = —— 10
(W@)(Z -SSP (@)

which coincide with Senthilnathan. B et.al [8], if ho server breakdown.

Case 3:
When there are no balking, breakdown, stand-by service, closedown and a=b=N, then the equation (85)

reduces to

(z-1)(1-V (A—AX(z)))fcnz“
P X =3P =X ()32 =X (D)

which coincide with Senthil Kumar. M et.al [9], if no retrial.

V. Some Important Performance Measures

5.1 Expected Queue Length
The mean queue length E(Q) at an arbitrary time epoch is obtained by differentiating P(z) at z =1 and is

given by
N'D'-N'D"
E = - v,
Q) 3D (86)

where

D" = 2(=AX1)K}(1),
D" = 3[(=AX 2)K} (1) + (-AX1)KL(D)]
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N = 2Kl’(1)§(b—i)ci ; 2K;(1)_b_21(b— iyd +B"(1)1(1)+ 2B'(L)1'(L)
~KIW p, ~2KIW e, +RCLAW « AW D+ p,)
2 K@D+ 3 1p,) +2VLKID - K D)3

N = 33 (- )(K{(1)c, + Ky(1)d,) + (b(b—1) —ili ~)[K}(W)e, + K} (D)dh 1]

i—a

F3(KID) - KI W2V g, V25 4,1+ 3VL(Ki() - Ksa) S,
+3I2CLAW) + AW’ + 3 p, 1+ AWEA"W) + S n-1)p, 1]
+3[B"()1'(1) + B WI"(W]-3[K{W I b, +KIW 3 (n-1)p,]

+[A"(1) +3.(C2.A'(1) + CLA" ()] (71 (1) + aZ_lllon) +B"(1)1(1) - K{'(l)aZ_l:pn

Ki(1) = anAX1(a +n)(1-S& (@)~ SP ()L~ SP )L~ S2 (7))
~[1- S ()SL (@)1~ 5P m)SL m)])
Ky'(1) = 20[K{ (1) + anAX1(aS P (2)S,2 ()1 - SO ()1 - S.2 ()
~(a+n50 S ML~ S ()SL ()]
+2anX e+ A~ S (@)1~ SL (@)1~ S (1))Sepy + 1~ 5P (1))Sy,)
~[1-SO(@)SL@NS® () + S (M -[1- S () SL IS (@) + S ()]
+(1-SP - SPM)(A-SP(a))S. + 152 ())S)]
+2(ma+ ) (AX1) (@ +m)[1- S () SP ()-S5 ()SP ()]
K@)
AX1L(a+7)

(e +1)AX 2= 27(AX1)?)

K, (U =3((a+n2(ra+n)(AXL)? —aniX 2]+ 2zaifAX1)?) x
([S:1:52 (@) + 5.5, S & (@)1~ S (1)S2 ()
+[S0, 52 (1) + S S (MIA-S ()52 ()))
+3an(a+n)AX2-21(AX1)*]x
(1-S2(@)A-SL NSy~ SO ) + Sy (1- SO (@))]
+(1-S0(@)A-SPM)[Ser X~ S 1)) + S, (1- S (@))])
+3an(a+1)AXL(2S ;S u[(1- S (@)1~ S (7)) - S () S P ()]
+25,[(1- SP(@))(Sen (1~ S (1) + Ss (1-S 2 ()))
=58P (@)S 2 (1) - S, (1- S () S P ()]
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+28,,[(1- S (@))(Su, (1- 52 (1)) + S, (1- S (1))
+ 8, [A- SO M)A-SP M) - 1-SLm)SL )]
~SP(@)(SuSP (1) + S S ())]
+(1-S2 (@)1= S ()8 (1- S (1) + S, (1- S (@)))
+ (1= S (@)1= SO ())(Sero (1= S (1)) + 81, (1- S2 ()
—(1-SOmMSP )88 (@) +8,2,58 ()
—(1-S2@)SP())(S,8.2 (1) + 82,5 ()
+20(1- S (@)1 S M[Sex(1- SO () + S0 (1- S ()]
+2b(1- S (@)1~ 5P M8 (1~ S (1) + S, (1~ S (@))])
—6banAX1x (7S, S2 (@) + 5., S P ()]
+a(1- S M)(SuS? (@) + 8,58 (@) + 84,82 ()(1- 5.2 (@)
+ (1= SO M)(SiSP (1) + 828 (@)) + S5, (S (1) - S (@) S ())])
+an(1-S2(@)1-S2@)A-SPm)A-S2 (1) x
(3b(b—1)AXL(cx +17) —[6rRXLX 2 — (e +77) AX 3]
—30[27(AX1)? = (a + 1) AX 2]) + 6ba(AX1)?(1- S (a)S 2 (ar))
+30[2(ra+1)(AXL)? —anAX 2—(b—1)aniX1]x
[(er +m)(A- SO ()52 (@) + 52 (IS (S (er) 1) + SO (@)(S P () - D)]]
+(1-SP()SP(a)A- SO () SP () 67X L [anX 2 - (ra+n)(AX1)’]
+(a+n)[6(ra+n)FXIX2—x(AX1)* —aniX3])

K;(1) = aniX1(a+n)(A-SP (@)1 S (a)@- S (1)A-SP ()

" a+n)AX2-2(AX1)?. ,

K50 = [2o+ D EED i )
+2(za+n)(AX1) (e +mI1-SP (@) S (@)[1- 52 ()S.2 ()]
+2banX1(mS " (7)S P (@)(1-S& (@)(A- S (1))
~ a5 (a)SP ()-S5 m)SP ()]
— (@ +n)[A-SP(@)SP (@) SP (1) + S5 (7))
+(1-SP2m)SP (M)(S1:SL (@) + 8,58 (@))]
+[(er+7) - AX1](A- S (@))(A-52 ()
[Ses (1= S () + S,y (1-S L (@))]
+(1-SP(@)1-S2 ()
[ (1= SO () + S (1= S (@))])

k@) =T 22 50(6)[50 ()-89 () - 52 M) + 52 )]
(a+n)

+SOMISP (n)A-SP (@) - S (@) + S (@)])
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K, @O =3a+m2(rat+n)(AX1)? — aniX 2]+ 2an(AX1)?) x
([Su:S2 (@) + 5., S P ()1 — S ()S.P (7))
+[S0:S@ () + 528 P (MA - S & ()S 2 (a)))
+3an(a+n)AX2— 2(/1X1)2] X
(A-S2@)A-SL S (XSO (1)) + Sy (1— S (a))]
+(1-SP @)@~ SE NSe2s (1~ S P (1)) + S 2y (1~ S ()]
+3an(a +7)AX1[2S S [1 - S (@)1 - S (7)) — S& (a)S & ()]
+25,,[(1— SP(a))(Sepr (1~ S P (7)) + S, (1- S 2 ()
~ 5.5 P ()S P (1) — S, (1- SO (@)S P ()]
+25,,[(1-S2(a))(S, = S (1)) + S, (1— S (7))
+ S, [(1= SO (MA-SP () — A~ SO )SP ()]
- Se(Z) (a)(stllst(z) () + Stlet(l) ]
+(1-S2 (@)@~ SPN)(Se(1-S P (7)) + S, (1- S L (@)))
+(1-SP @)@~ S®))(Se2. (A= S (1)) + S, (1— S ()
—(A-SO ISP (1))(S2S& (@) +S.,,5 P ()
—(1-SP(@)SLP (@))(S1:S2 () + S5 (1))
+(1-SP @)@~ S@ MNA—-SL (17))(2bS,,; + Sepp) + (A1— SO (@))(2bSyy; + Syy2))
+(1-SP(@)@-SE A -SSP (17))(2bS,,, + S.z,) + (1— S P (@))(2bS,y; + Si5,))
—(1-SP(a)S2 (@)[S,5? (7) + S5 ()]
~@-SO S MN[Se12SE (@) +S.2,5 P ()]
—6bar X 1x (@S ;S (17) + S35 P (1] + 15, S P ()
+ 7l - SP (@))(S1,S @ (17) + S S (1)) + - S (@))(S1,S P (@) + S, S P (7))
+5,,52 ()1~ S P (7)) =SSP (1)SP ()] + Bba(AX1)? (1- S (171)S,2 (1))
+anl-SP(@)@-S2(@)@-SLm)A—-S2 (1))
Bb(b -1)AX1(x +77) — [6/12 X1.X2 - (a+n)AX3]—3b[(2X 1)2 —(ax+1)AX2])
+3b[2(rax + 77)(ﬂLX1)2 —anAX2—-(b-1)aniX1]x
[(a +m)A-SO )SP () + a5 2 (S (a)(S (1) =1) + S & (7)(S 2 (17) = D]]
+(1-SP(@)SP (@)@ - S P (1)SP (M)6AX L[ nAX 2 — (ma+17)(AX1)?]
+(ax+n)[6(ra+ 77)/12 X1X2 —67x(AX 1)3 —aniAX3])

Ky (1) = 2067 (S (5 (1) ~1) + Sy 2 (@) ~D)EP (@) + 5.2 (7))
+(S,21(SP (1) ~1) + s (8P (@) ~1)(SL (@) + S ()
+(Sey + Su)(SP (@S (7)) + (Sezs + 1) (S (@)S ()
+(2banX1(ra+n)+b(-1)a’n®) x
SL(@)IS2(@)+S2m)A-SP )15 ()]
SOMISL ) +SP(e)(1- S (@)A-SP ()]
+2[(1-S® (@)1~ S () -1~ S2 ()1~ 5P (7)) -1])
+2anX1(za+n)bA-SP(@)(1-SP (@)1~ SO ()L~ SP())
+b(SP(@)S P (e) ~1) +b(S2 ()52 (17) 1)
+ (1= SO IMIA-SL(@))(Surs + Sior) — $:11S P (1) — 8.1 S ()]
+(1-SPMNIA-SP(@))(Sezs + Suur) — SensSP (@) = 8,25 ()]
+(8(ar) ~1)(8,S? (@) + 5,5 (1))
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+(82(@)~1)(8,,S2 () + 525 ()

+ 20X )2 2rarfl+ S m)S2 ()5S ()52 ()]

+(7*a? +17*)(1- S () S (@) (1-SP1m)SL (1))

+an[2m(AX1)? - AX 2(za+m)](A+SL (@)SP(@)(S ) + 52 (n))
+(S () +S2(@)(1-SL ) (L-SP (1))
~[1-SP(@)SP()L-SPm)SL ),

AQ)=K((@1), A"(1)=2V1I(K/(1)-K;1)+K((2)

A"(1) =3[V 2.(K{(1) - K;(1)) +V1.(K{(21) - KL)] + K/(2)

B'(1) =—n.Ki(1), B"(1)=2.AX1.(K,1)-KiQ)-7.KIQ)

B"'(1) = 3[A.X 2.(K} (1) — K4 (1)) + A.X1.(KJ(1) - KYAN] - n.K (1)

X1=E(X), X2=E(X?), C1=A.X1.E(C), V1=AX1LE(V)

C2=AX2.E(C)+(AX1)%E(C?), V2=AX2EV)+(AX12EN?)
Sy = (AXDSH (@), Sy = (AXDSY (1) Sy = (AXD)SP (@), Sy = (AXD)SD (1),
S.is (/1X1) S(l) (a) —(-AX 2)5(1) (@), Sy, = —(ﬁXl) S‘” () —(=AX 2)8(1) (7)
S,y = —(1X1)?S @ () — (=X 2)s<2) (@), Sy, = —(AX1)? s<2> (1) — (=X 2)s<2) (n)

5.2 Expected Length of Idle Period
Let | be the idle period random variable, then the expected length of idle period is given by

E(1)=E(C)+E(l,), where E(l,) is the idle period due to multiple vacation process, E(C) is the expected
closedown time.
Define a random variable Y as

_ [0 if the server finds atleast 'a’ customers after the first vacation
1 if the server finds less than 'a’ customers after the first vacation.

Now,
E(1,)=E(1,/Y =0)P(Y =0)+ E(l, /Y =1)P(Y =1)

= E(V)P(Y =0)+(E(V) +E(1))P(Y =1).

Solving for E(l,), we, have
ey EV)_ E(V)

(1—P(Y =1) _{1 S L i J]}(nl P )]

n=0 i=

where y,'S and f3,'S are the probabilities that I customers arrive during vacation and closedown time
respectively.

5.3 Expected Length of Idle Period When The Main Server Under Repair
Let M be the random variable for idle period. Let 7,, N = 0,1,2,...,a—1, is the probability that the system

state (number of customers in the system) visits ‘N’ during an idle period.
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Let
M = {1 if the state n is visited during an idle period

0 otherwise .
Conditioning on the first arrival size, we have

n-1
Pr(M, =1)=g,+ > g,Pr(M, =1),
k=1

where, Pr(M, =1) =z, and 7, =1, we have

k
g 3enos 11 ekt gl nSea
T, =(—— 104000 )(—)" -n) B .
n ﬂ-i—?] ;mZ—a m,l ; kH g|1 g|2 g|3 g'k ﬂ-i—?] r;i m,O( )]
ihjh:P
h=1
Thus the expected length of the idle period is obtained as

1 a-1
E(M)= ZZTH
n=0

5.4 Expected Waiting Time
The expected waiting time is obtained by using the Little’s formula as;

_ E@Q
EW) = JE(X)

where E(Q) is given in equation (86) .

VI. Numerical Example
A numerical example of our model is analysed for a particular model with the following assumptions:
Batch size distribution of the arrival is geometric with mean 2 .
Service time distribution is 2 -Erlang (Both main server and stand-by server).
Vacation time and Closedown time are exponential with parameters ¥ =10 and =7 respectively.
Balking probability 7 = 0.2

Let m1, m2 be the service rate for first, second stage service by the main server respectively.
Let n1, n2 be the service rate for first, second stage service by the stand-by server respectively.

ool WN P

The unknown probabilities of the queue size distribution are computed using numerical techniques. Using
Matlab, the zeros of the function K,(Z) are obtained and simultaneous equations are solved.

The expected queue length E(Q) and the expected waiting time E(W') are calculated for various arrival rate
and service rate and the results are tabulated.

From the Tables 1 to 3 the following observations are made.

(1) As arrival rate A increases, the expected queue size and expected waiting time are increases.

(2) When the main server service rate increases, the expected queue size and expected waiting time are
decreases.

(3) When the stand-by server service rate increases, the expected queue size and expected waiting time are
decreases.

TABLE 1: Arrival rate vs expected queue length and expected waiting time
a=2,b=5ml=m2=7,nNl=n2=4,x=3,7=1and 7 =0.2

A P E(Q) EW)
3 0.2180 0.002675 0.0004459
4 0.2906 0.02402 0.003002
5 0.3633 0.0506 0.00506
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TABLE 2: Main server service rate vs expected queue length and expected waiting time
a=2,b=51=4nM=n2=4,a=3,n=1,7=0.2and ml=m2 = m(say)

m P E(Q) EW)
5 0.3273 0.02296 0.00287
6 0.3079 0.02164 0.002705
7 0.2906 0.01928 0.00241
8 0.2751 0.01821 0.002276
9 0.2612 0.01762 0.002202
10 0.2486 0.01625 0.002044

TABLE 3: Stand-by server service rate vs expected queue length and expected waiting time
a=2,b=51=4ml=m2=7,a=3,7=1,7=0.2and n1=n2 = n(say)

n P E(Q) EW)
6 0.2169 0.7149 0.08936
7 0.1925 0.5565 0.06956
8 0.1730 0.3342 0.04177
9 0.1571 0.2155 0.02693
10 0.1439 0.1345 0.01681

VII.  Conclusion
In this paper, the behaviour of the main server’s breakdown and repair in an N [Xl/G(a,b)/1

queueing system with multiple vacation, closedown, balking and a stand-by is analysed. Probability generating
function of queue size distribution at an arbitrary time is obtained. Some important performance measures are
obtained. Particular case of the model is also presented. From the numerical results, it is observed that due to
server breakdown, the arrival rate increase then the expected queue length and waiting time of the customers are
increases. It is also observed that if the service rate increase, then the expected queue length and expected
waiting time decreases.
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