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Abstract: Testing units one by one for presence or absence of a trait is expensive and time consuming. This
study presents a multi-stage adaptive pool testing estimator "“pn of prevalence of a trait in the presence of test
errors, since errors in experiments are inevitable. Pool testing is more efficient, less expensive and less time
consuming. An increase in the number of stages improves the efficiency of the estimator, hence construction of a
multi-stage model. The study made use of the Maximum Likelihood Estimate (MLE) method and Martingale
method to obtain the adaptive estimator and Cramer-Rao lower bound method to determine the variance of the
constructed estimator. Mat lab and R, statistical softwares were used for Monte-carlo simulation and
verification of the model, then analysis and discussion of properties of the constructed estimator in comparison
with the non-adaptive estimator in the literature of pool testing done alongside provision of the con dence
interval of the estimator. Results have shown that as the number of stages increases, the efficiency of the multi-
stage adaptive estimator in the presence of test errors also increases in comparison with the non-adaptive
estimator in the presence of test errors. This makes the multi-stage adaptive estimator better than the
corresponding non-adaptive estimator in the literature of pool testing.
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I. Introduction

Prevalence of defective units in a large population from accurate diagnostic tests is a
fundamental risk assessment and management factor. Estimation of defective units one-
by-one is inefficient and uneconomical, considering that in a given population only a
few individuals may be defective. It is against this background that pool testing comes
in handy because it is more effective, less time consuming and less expensive [4]. Pool
testing occurs when units from a population are pooled and tested as a group for the
presence or absence of a particular trait. It also reduces the Mean Squared Error (MSE)
of the estimates, hence it is more efficient, as was established by Sobel and Ellashoff, [11].
There are two forms of pool testing namely

(1) Non-adaptive pool testing scheme

(ii) Adaptive pool testing scheme

1.1 Non-adaptive testing scheme

In this testing scheme, a large population is divided in to n groups which are then
subjected to testing [4]. When tested, a group can either test positive or negative and
the outcome of the test aids in constructing the non-adaptive model.

1.2 Adaptive testing scheme

In this scheme a population is divided in to n groups, which are partitioned depending on
the number of stages to be considered. Predetermined parameters are used to partition
the groups and the number of partitioning parameters depends on the number of stages
[8]. Partitioned groups are then tested at various stages for the presence or absence of a
trait and the results used to construct the adaptive model.
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1.3 Introduction of the model

In this study we obtain a multi-stage adaptive estimator p, of prevalence of a trait in
the presence of test errors,using the maximum likelihood estimate (MLE) method and
investigate its properties. The adaptive testing scheme involves testing groups in stages
and updating group sizes from one stage to the next, with the group size at a stage
depending on the outcome of the test(s) at the preceding stage(s). That is testing ny
groups each of size k; at stage one; no groups each of size ko at stage two; ng groups
each of size ks at stage three and so on; where ks depends on both k; and ky while
ks depends on k;. For a general adaptive scheme, at stage i n; groups each of size k;,
where k; depends on k;_1.k;_o, k;_5,.....k; are constructed. The constructed groups are
then subjected to testing, where a group yields either a positive or a negative result. The
number of groups, n; is determined before the experiment is carried out while kis are
sequentially determined as the experiment progresses.

Il. Literature Review

Pool testing has been recognized as a sampling scheme that can provide substantial ben-
efits [9]. Early application of pool testing include tests for prevalence of plant virus
transmissions by insects [12] and [11] and this was one of the pioneering applications of
this concept. In [4] statistical and mathematical concepts of pool testing are introduced
and used to estimate the proportion of individuals infected with some disease among the
US conscripts. He also derived optimum group sizes assuming that the population was
large enough for the application of the binomial model and consequently realized signif-
icant savings by reducing the number of tests required. In [11] estimation in the pool
testing procedure is discussed. In the subsequent years this concept has had relevant
applications in various clinical studies including psychopathology, public health and plant
quarantine [1] and [3]. Alternatively, positively pooled samples can be partitioned into
relatively smaller subsets there by reducing on cost and effort, which provides obvious
motive for pooling samples [8]. In [7] an estimation model based on pool testing with
retesting pools that test negative is developed. Pool testing need not only be applied to
population where retesting is needed [10], like in identification of disease infected individ-
uals in a human population, but also on other populations with no intentions of retesting
the individuals contributing to positive pooled samples. For instance if a bunch of food
items is being tested for contamination, there may be no interest in identifying the par-
ticular items which are affected. The aim may instead be on estimating the proportion
of defective items in a population or deciding that the number of positive pooled samples
justifies removing a food product from the market. In another related study, bacterio-
logical testing of egg laying hens of salmonella in Great Britain was carried out using
organ cultures pooled five at a time. Individual samples contributing to positive pooled
samples are not tested again . A population comprised of birds in a hen house. If the
infection was confirmed they were destroyed and compensation paid for the number of
birds estimated to be uninfected [10]. In this procedure maximum likelihood estimation
is applied to estimate the proportion and Cramer-Rao lower bound method is used to
determine the variance of the estimator. In this paper, we present a multi-stage adaptive
pool testing model with imperfect tests, that is applicable to real life situations where
there is a possibility of errors due to test kits.
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I11. Model Description Formulation and Analysis
We describe a multi-stage adaptive scheme with imperfect tests as it is the backbone
of this study and thereafter perform comparison analysis with other existing estimators,
both in the presence and absence of test errors. For a multi-stage adaptive scheme, we
set ny = An, g = Aan, N3 = A3, ..., Ny = (1 — Ay — Agn — ... — Ay_1n); where Ap,
Ag . , An_1 are parameters used to partition the pools; ko depends on the outcome at
stage 1, ks depends on the outcomes at stages 1 and 2 and k, depends on the outcomes
at stages 1,2,3,....... ,n — 1. Bach constructed group at each stage is then subjected to
testing, yielding either a positive or negative result. This is shown in Figure 3.2 below:

@ N, groups each of size k1
2 i Stage 2
( :]‘ 2] (T e (19 s
O @ n; groups cach of size kp

Stage 3
.2+ Magroups each of size Irs
|

@ Stage n
Mhgroups each of size k

Figure 3.2: Multi-stage adaptive pool testing.

To achieve the construction of the multi-stage adaptive model in the presence of test
errors, we consider two stage, three stage and four stage adaptive models in the presence
of test errors and there after generalize to obtain the multi-stage model.

3.1 Two stage adaptive model

In this scheme, the population is divided into two sets of groups n; and ny which are
tested in two stages, with n; groups tested at stage one and n, groups tested at stage
two. We set ny = An and ny = (1 — An), where n is the number of groups constructed
initially. k; which is the group size at stage one is determined by

ki = argmin[Var (p)]|p=p, (1)
Suppose X; groups test positive on the test at stage-one, then
X, ~ Binomial(An, 7(p)|x=k, )- (2)

where A is the parameter used to partition the pools while 7 (p)istheprobabilitythatagroupisde fectivea
n[1 — (1 —p)¥] + (1 — ¢)(1 — p)*(3) Using this model we obtain the prevalence estimator
at stage one as

1
_ X1

nif\n] ' . (4)

L
p T+é—1
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The variance of Equation (4) is similar to the variance of the non-adaptive estimator in
the absence of test errors, p except for K, in place of p. This variance is given by

“ar(p) = m(p)(1 —7(p))
Var(p) = (1= p)%2(n + 6 — 1)
_ (=p ()1 —7(p)) (5)
nk*(n+ o6 —1)?
(1—p)*w(p)(1 —w(p))(1 —p)~2*
nk?(n + ¢ — 1)2

For the estimator at stage two, py, we have An groups each of size k; tested at stage
one and 1 — An groups each of size ky tested at stage two. ks is determined by

ky = argmin[Var(p:)]|p p, (6)

Suppose that out of the (1—A)n groups each of size ks tested at stage two, Xy groups
test positive on the test, then for fixed X; we have

X,/ Xy ~ Binomial (1 — \)n, 7y (p)) 7)
Using this model, the estimator at stage two can be obtained as the solution to

k1 Xig"[(1 = ¢) —m] | ka(X1)Xag"™V[(1 — ¢) — ]

n—m+(1—a))g" n—(n+(1—¢))g=xv
kg (A — Xp)(n+ (1= ¢)) | ko(X1)g2V[(1 — Nn — Xo][n + (1 — ¢)]
L—[n—m+(1-¢))d] 1—[n—(m+(1-¢))g=]
(8)
and using cramer-Rao lower bound, its variance is obtained as
Var(py) = 2™ = m(P)( = m(P)) ()

e

where A is defined in the appendices.

3.2 Three stage adaptive model

Next we consider the estimator at stage three, pq, where we have An groups each of size
kq tested at stage one, Agn groups each of size ks tested at stage two and 1 — A\n — Aan
groups each of size kq tested at stage three. kq is determined by

ks = argming[Var(p2)]|p,=p: » (10)

If out of the (1 — A; — A\9)n groups each of size kg tested at stage three, X3 groups test
positive on the test, then for fixed X, and X, we have

X3\ X1, Xy ~ Binomial((1 — Ay — A2)n, m31.2(p)) (11)

We use this model to obtain the estimator at stage three as the solution to

Xig" (1= ¢) =] | ka(X1)Xog™E[(1 = ¢) — ] | ks(X1, X2) XagB X X2[(1 — ) — 1]

n—n+(1-9))g" =+ (=g = (n+ (- )ghri )
k= X)(+ (1= ¢) | k(X))@ Dan — Xo]ln + (1 - 9)]
L—[n—(n+(1—¢))g"] L= =+ (1 —¢))g=)]

+k3(X1:X2)qk3{Xl=X2)[{1 — )\1 — )\2)?1 — Xj][?}‘ + (1 — C))]
1—[n—(n+(1-¢))ghsXe%)]

0, (12)
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and its variance as

)= (p)ma(p)ma(p)(1 — m1(p))(P)(L — ma(p)) (p)(1 — 73(p))

Var(ps B

(13)

where B is defined in appendices.

3.3 Four stage and multi-stage adaptive models

Extending the notion in the above sub-sections further we have estimators at stages four
and n given by solutions to

BXag* (L= 6) = 1 | k(X)) Xag2*V[(1 = 6) — 1)

=+ (1—d)" n—=(n+(1=9))g=)
| Fy(Xy, Xo) Xag (1 — 6) — ] | Ra(Xy, X, Xo) XugM 1 X2 X[(1 — 6) — ]
n—(n+(1—¢))ghixz) n—(n+ (1 — ¢))gksX1.X2.Xa)
_ kit (un = X)) (n+ (1= 9)) n ka(X1) @Y [Agn — Xo][n + (1 — ¢)]
1= [n—(n+(1—9))g"] 1—[n— (n+ (1 - ¢))g=(1]

ka(X1, X9)g** XX [\gn — Xs][n + (1 — ¢)]
L—[n—(n+ (L —¢))ghXX2)]
ka(X1, Xo, X3)gH X122 X01(1 — Ny — Ay — Ag)n — Xu][n + (1 — @)]

— S =0 14
+ 1 — [}-? _ (n + (1 _ @.-')}}qk_i(ll,ig,lgj] ( )
and
ki X1d" (1 — ¢) — ] | ka(X1) Xog™XV[(1 — @) — 7]

n= O+ (L= oNd™ * n—(n+ (1= 0)g=cD

En( Xy, ... Xm—1 "X’n kn (X1 Xn=107(1 — &) —
i (X1, ™ ).J T M [{1 @) — 1) (15)

n—(n+ (1= ¢))gkXr-Xn=1)

kg (an = X)(n+ (1 = ¢)) ka(X1)@™2 XV Don — Xol[n + (1 — 9)]
1=[n— M+ (1—9¢))g"] L=[n— M+ (1—9))g=V]
(X, Xn = D)X — A — Ag)n — X[ + (1 = ¢)]
T— (1= 1+ (L - 9) g 5X D]
respectively. Using Cramer-Rao lower bound method their variances are obtained as

=0,

mi(p)ma(p)ma(p)ma(p) (1 — mi(p)) () (1 — m2(p)) (P)(1 — m3(p)) (1 — ma(p))
c

Var(py) = (16)
and

Var(p,) = m(p)Ta(p)...Tn(p) (1 = T (p}}g}{l — ma(p))(P)...(1 = Ta(p)) (17)

where C' and D are given in the appendices respectively.

3.4 Confidence Interval(CI) of p,

Next we provide the confidence interval for our multi-stage estimator, p,, . This confidence

interval is given by
. T —
P Zg/var(pn). (18)

where Zg ~ Normal(0,1). and p, and var(p,) are provided by the solution to 15 and
Equation 17 respectively. It follows from Equation 18 that

pe [f]n - 'Z% 'Ua"r{ﬁn):ﬁn + Zfz‘ V Uar{ﬁn)]
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and by the law of Central Limit Theorem (CLT) we have

V(P — p) = Normal(0, \/var(p,))

or D
V”HM L+ Normal(0,1).

Vvar(pn))

IV. Discussion of Results, Conclusion and Recommendations
In this section we discuss the results as provided by Tables 4.1, 4.2 and 4.3 and Figures
4.1, 4.2 and 4.3. The highlights of the results will enable us make a detailed conclusion
to this study.

4.1 Discussion

Here we highlight our findings in this study. We estimated prevalence, p of a trait using
the Multi-stage adaptive pool testing scheme. We accomplished this by employing the
Maximum Likelihood Estimate (MLE) procedure. For us to recommend the suitability
of the Multi-stage adaptive estimator, it would be in order to first compare with the
non-adaptive estimator in the presence of test errors, as advanced by [7]; and then do
an inter-stage comparison. Our measure of comparison herein is the computation of
Asymptotic Relative Efficiency (ARE) values for different values of  and ¢ at various
stages. For simplicity of comparison and understanding, ARE values were computed for
stages two to four. Upon careful analysis of the estimators at these stages, we had a good
basis to make a generalization about the multi-stage estimator in the presence of test
errors.
4.1.1 Comparing the adaptive estimators with the non-adaptive estimator in
the presence of test errors

The ARE values for stages two, three and four were obtained by dividing Equations (5)
by (9), (13) and (16) respectively. Upon simplification we obtained

H
T (P)ma(p) (1 = m(p))(1 = ma(p)) (1 — p)**”

where H is defined in the appendices. Similarly, the Asymptotic Relative efficiencies of
pg and py are given as

ARE;, =

(19)

J
m1(p)ma(p)ms(1 — m1(p)) (1 — ma(p)) (1 — ms(p)) (1 — p)**’

ARE;, = (20)

and
L

T1(p)ma(p) (1 — T (p)) (1 — mo(p)) (1 — p)2*~

respectively, where J and L are defined in the appendices. respectively. Using these
Equations and R-Gui software Tables 4.1, 4.2 and 4.3 were generated.

ARE;, = (21)
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p [ n=¢6=099|np=0¢6=098|n=0=097T | n=0=006 |n=0=0.90
0.1 11.7739 11.8024 11.8304 11.8577 12.0095
0.2 6.1184 6.4223 6.7152 6.9974 8.4904
0.3 3.6109 4.2835 4.8918 5.4448 7.9386
0.4 3.0823 4.3658 5.3725 6.1880 9.0662
0.5 4.4239 6.3134 7.4865 8.3030 10.5715
0.6 7.3875 9.0611 9.9042 10.4289 11.6667
0.7 10.2335 11.1440 11.5420 11.7672 12.2284
0.8 11.9115 12.1858 12.2856 12.3372 12.4329
0.9 12.4422 12.4616 12.4681 12.4713 12.47T:

Table 4.1: ARE wvalues of ps; relative to p for specified p,n and ¢

p |n=0=099 |n=¢=098 | n=¢6=097[n=0=096 |n=0¢=0.90
0.1 22,7824 22.8485 22,9133 22.9766 23.3267
0.2 15.3291 15.8547 16.3494 16.8157 19.1305
0.3 11.6186 13.0352 14.2083 15.2006 19.0300
0.4 11.6141 14.2989 16.0410 17.2808 20.9478
0.5 15.4718 18.2260 19.6402 20.5355 22.7513
0.6 200354 21.6224 22.3539 22.7912 23.7781
0.7 22.7669 23.4427 23.7314 23.8933 24.2221
0.8 24.0129 24.0000 24.2679 24.3030 24.3680
0.9 24.3747 24.3878 24.3920 24.3942 24.3981

Table 4.2: ARE values of p; relative to p for specified p,n and o

p | n=0=099 | n=¢66=0098 | n=0=097|n=¢=096 | n=0¢=0.90

0.1 43.4486 43.5040 43.5580 43.6109 43.9034
0.2 37.5497 37.9749 38.3745 38.7509 40.6123
0.3 345777 35.7352 36.6908 37.4967 40.5800
0.4 34.6078 36.8073 38.2250 39.2350 42.1479
0.5 37.8059 40.0398 41.1693 41.8752 43.5804
0.6 41.53586 42,7721 43.3239 43.6477 44.3618
0.7 43.6724 44,1484 44.3474 44.4580 44.6805
0.8 44.5490 44.6706 44.7145 44.7373 44.7793
0.9 44.7841 44,7922 44.7950 44.7967 44. 7088

Table 4.3: ARE values of p, relative to p for specified p,n and ¢

Tables 4.1, 4.2 and 4.3 provide generated ARE wvalues for given p, n and o.

It

is evident from the tables that ARE wvalues are high across all stages. That is all the
ARE walues are greater than one, meaning all the adaptive estimators analysed in this
study, s, Pz and py are more efficient than the non-adaptive estimator in the presence
of test errors. A closer look at ARE wvalues reveals that ARE is high when p is small
and decreases as p inereases, attaining the minimum at p = 0.3 across the board, except
for n = ¢ = 0.99 where the minimum is attained at p = 0.4. The ARE again improves
as p moves away from 0.3 for n,¢ < 0.99. A similar scenario is observed for the case
of n = ¢ = 0.99 where ARE improves as p moves away from 0.4. It is also clear from
the tables that ARE values increase with increase in the number of stages; the adaptive
estimator at stage two having the lowest ARE wvalues while the estimator at stage four
has the highest ARE wvalues. This is an important pointer to the fact that the adaptive
testing scheme gets better as the number of stages increases. To depict these observations
graphically, see Figures 4.1, 4.2 and 4.3
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Figure 4.3: ARE of py vs probability, p

Figures 4.1, 4.2 and 4.3 represent ARE values plotted against prevalence p values at stages
two, three and four respectively. Clearly, as noted in Tables 4.1, 4.2 and 4.3, the ARE drops
as p increases up to the value p = 0.3, then it improves as p moves away from 0.3. From

Figures 4.1, 4.2 and 4.3, it is evident that the adaptive estimators outperform the non-adaptive
estimator in the presence of test errors as the sensitivity and specificity of the test kit decreases.
Hence in cases where the test kits have low sensitivity and specificity, the multi-stage adaptive
testing scheme is preferred for more efficient results.
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4.1.2 Comparing the adaptive estimators at various stages

Next we compared Asymptotic Relative Efficiencies among the constructed estimators in this
study. Here we compared py with py, ps with ps and py with p3. This analysis would enable
us to make important generalizations about the efficiency of the multi-stage adaptive estimator,
prn. ARE values for adaptive estimators at stages two, three and four relative to adaptive
estimators at stages one, two and three respectively were obtained by dividing Equation (5),
where p = p1 and k = k; by Equation (9), Equation (9) by Equation (13) and Equation (13)

by Equation (16) respectively.

Var(p1)

Var(ps)

o Var(ps)

Var(pz)’

Upon simplification we obtain

—a
Var(ps)

n -
Var(ps)

m1(1 = 71)(1 = Nko?(1 — p)2*2

ARE;, = Mei? + : : 22
= ! (1 —p)?himy(1 — ma) (22)
M
ARE;, = _ 23
B ma(1 — ma) Mk (1 — p)2R1i—2 4y (1 — mp) (1 — A)ka?(1 — p)2k2—2 (23)
and
N _
AREy, = & (24)

where M, N and R are defined in the appendices. Using these Equations and R-Gui software
Tables 4.4, 4.5 and 4.6 were generated .

p |n=0=09 | np=0¢0=098 | n=0¢=097 | n=0=0.96 | n=¢=0.90
0.1 9.7163 9.7158 9.7153 9.7149 9.7126
0.2 0.7369 0.7383 9.7396 9.7400 9.7480
0.3 9.7712 9.7775 9.7836 9.7893 9.8188
0.4 0.8384 0.8627 0.8846 9.9043 9.9913
0.5 10.0142 10.1098 10.1865 10.2492 10.4700
0.6 10.7070 11.0878 11.3347 11.5076 11.9708
0.7 14.7585 16.0357 16.6444 17.0000 17.7520
0.8 47.4125 50.0019 51.0753 51.5856 52.5348

Table 4.4: ARE values of ps relative to p; for specified p,7 and ¢

p |n=¢=099 | n=¢=098 | n=0=097 | n=0=0.96 | n=0=0.90
0.1 3.6211 3.6160 3.6111 3.6063 3.5801
0.2 6.7871 6.6413 6.5045 6.3761 5.7484
0.3 17.6647 16.0685 14.7652 13.6813 0.7387
0.4 48.5664 37.0247 30.0569 25.3924 13.6778
0.5 102.7462 61.4910 44.1744 34.6400 15.7793
0.6 140.1473 73.3601 50.0271 38.1510 16.4663
0.7 150.1342 76.1234 51.3380 38.9206 16.6292
0.8 151.4241 76.4962 51.5258 39.0479 16.6611

Table 4.5: ARE values of ps relative to ps for specified p,n and ¢
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p |n=¢=099 | n=06=098 | n=0¢=097 | n=0¢=0.96 | n=0¢=0.90
0.1 3.9481 3.9349 3.9221 3.9096 3.8420
0.2 9.8857 9.4430 9.0475 8.6920 7.1475
0.3 31.9137 26.4622 22.6951 19.9353 11.9794
0.4 85.1181 54.4296 40.3510 32.2515 15.3742
0.5 135.2677 72.6353 50.1207 38.4952 16.8860
0.6 154.7372 79.1945 53.6152 40.7423 17.4759
0.7 160.3179 8£1.1190 54.6702 41.44267 17.6922
0.8 161.4478 81.5535 54.9309 41.6278 17.7616

Table 4.6: ARE values of py relative to ps3 for specified p,n and ¢

As clearly shown from tables 4.4, 4.5 and 4.6, ARE values are high across all stages. That
is, the adaptve estimator at stage two is is more efficient than that at stage one, the adaptive
estimator at stage three is more efficient than that at stage two and the estimator at stage four
is more efficient than that at stage three. This means that py is a better estimator than ps, ps
is a better estimator than po and ps is a better estimator than py. A closer look at table 4.4
shows that ARE wvalues for p2 relative to p1 rise by very small margins at values of p < 0.8 and
steadily shoot when p = 0.8, while for higher estimators ARE wvalues rise steadily at p < 0.6
and almost level off at p = 0.6,0.7,0.8. It is also evident from tables 4.5 and 4.6 that ARE
values increase with increase in sensitivity and specificity of the test kits. As pointed out earlier,

this analysis shows that the adaptive testing scheme improves as the number of stages increases.

These observations can he graphically depicted by Figures 4.4, 4.5 and 4.6.
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Figure 4.5: ARE of §iz relative to pa vs probability, p
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4.1.3 Conclusion and Recommendations

From the above discussions, it is clear that the multi-stage adaptive estimator outperforms the
non-adaptive estimator in the presence of test errors. It is also clear that the adaptive testing
scheme improves as the number of stages increases. A closer look at the results reveals that the
multi-stage adaptive estimator is particularly better in cases where test kits have low sensitivity
and specificity. Given that experiments are never 100% perfect, the multi-stage adaptive testing
scheme is therefore more ideal in estimating prevalence of a trait.
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